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Networks

Networks often used to represent complex systems

Mathematical representation: Graph G = (V ,E)

V = Vertices, associated with the entities of the system under study
E = Edges, express that a relation defined on all pairs of vertices holds or not for each such pair

social networks
telecommunication networks
transportation networks
...
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Network Clustering

Automatic analysis of complex systems represented as networks
⇓

identification of communities

community (cluster) ≈ a subset of vertices that are more densely connected
within the community while edges joining it to the outside are sparse

⇒ finding a partition of V into subgraphs induced by nonempty subsets
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Clustering: finding communities

How to find and evaluate a partition?

We need
a clustering criterion / definition of community
a clustering algorithm
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Evaluating a partition

(i) Use a heuristic

Example: edge removal heuristic (Girvan & Newman, 2002):

edges with maximum betweeness are iteratively removed, yielding partitions into
an increasing number of communities.
The quality of the obtained results can only be judged a posteriori.

(ii) Choose a quality function, to be maximized or minimized

Example: Modularity (Newman & Girvan, 2004)

(iii) Specify conditions to be satisfied by a community

Example: Strong and Weak conditions (Radicchi et al., 2004)

Semi-Strong and Extra-Weak conditions (Hu et al., 2008)

Almost-Strong condition (Cafieri et al., 2012)
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Evaluating a partition

What is the best criterion to evaluate a partition of a network? – open question!

Idea: combine different criteria

study to what extent optimal partitions for modularity maximization satisfy the
cohesion conditions

examine the effect of imposing these conditions, one at a time, as constraints in
an optimization model for modularity maximization
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Optimizing a quality function: Modularity

Newman and Girvan, 2004:

compare the fraction of edges falling within communities
to the expected fraction of such edges

Modularity:
Q =

∑
s

[as − es]

as = fraction of all edges that lie within module s

es = expected value of the same quantity in a graph in which the vertices have
the same degrees but edges are placed at random.

Q ≈ 0 : the network is equivalent to a random network (barring fluctuations);
Q ≈ 1 : the network has a strong community structure;
in practice, the maximum modularity Q is often between 0.3 and 0.7.

Maximizing modularity gives an optimal partition with the optimal number of clusters
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Modularity maximization methods

Exact algorithms for modularity maximization

proposed only in a few papers

can only solve small instances (with a few hundred entities) in reasonable time

provide an optimal solution together with the proof of its optimality

Heuristics for modularity maximization

widely used

can solve approximately very large instances with up to thousand entities

do not have either an a priori performance guarantee
(finding always a solution with a value which is at least a given percentage of the
optimal one),
nor an a posteriori performance guarantee
(that the obtained solution is at least a computable percentage of the optimal one)
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Cohesion conditions

a priori conditions to have a community

Strong condition

Almost-strong condition

Semi-strong condition

Weak condition

Extra-weak condition

G = (V ,E) graph, A = (Aij) adjacency matrix

ki = degree of vertex vi

kin
i (S) = number of neighbors of vi inside S ⊆ V

kout
i (S) = number of neighbors of vi outside S ⊆ V
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Cohesion strong conditions

Strong Cohesion Condition (SCC):
S community in the strong sense if and only if
every one of its vertices has more neighbors within the community than outside:

∀vi ∈ S kin
i (S) > kout

i (S)

Almost-Strong Cohesion Condition (ASCC):
S community in the almost-strong sense if and only if
every one of its vertices with degree different from 2 has more neighbors within
the community than outside, and
every vertex with degree 2 has at least one neighbor in the same community:

∀vi ∈ S | ki , 2 kin
i (S) > kout

i (S)

∀vi ∈ S | ki = 2 kin
i (S) > 0
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Cohesion strong conditions

Semi-Strong Cohesion Condition (SSCC):
S community in the semi-strong sense if and only if
every one of its vertices has more neighbors within the community than the
maximum number of neighbors within any other community:

∀vi ∈ S kin
i (S) > max

t=1,2,...,M, S,St

∑
vj∈St

Aij
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Cohesion weak conditions

Weak Cohesion Condition (WCC):
S community in the weak sense if and only if
the sum of internal degrees within S is larger than the sum of external degrees,
that is the number of edges joining S to the rest of the network V \ S:∑

vi∈S

kin
i (S) >

∑
vi∈S

kout
i (S)

Extra-Weak Cohesion Condition (EWCC):
S community in the extra-weak sense if and only if
the sum of internal degrees within S is larger than the maximum number of edges
joining a vertex of S to a vertex in some other community in the rest of the
network: ∑

vi∈S

kin
i (S) > max

t=1,2,...,M, S,St

∑
vi∈S

∑
vj∈St

Aij
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Cohesion conditions: Example

1

2

34

5

6

WCC and EWCC satisfied

SCC and SSCC not satisfied
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Cohesion conditions in modularity maximization

Do optimal solutions obtained by modularity maximization satisfy,
and to which degree, the five cohesion conditions?

dataset n m M M_strong M_almost M_semi M_weak M_extra
strong strong weak

strike 24 38 4 2 3 2 4 4
karate 34 78 4 1 2 2 4 4
Korea1 35 69 5 2 2 3 5 5
Korea2 35 84 5 3 4 3 5 5
sawmill 36 62 4 4 4 4 4 4
dolphins small 40 70 6 3 6 3 6 6
graph 60 114 7 0 2 3 7 7
dolphins 62 159 5 2 2 3 4 5
Les Misérables 77 254 6 2 2 3 6 6
p53 protein 104 226 7 1 2 2 6 7
political books 105 441 5 2 2 2 4 4

percentage of communities
satisfying the condition 37.93% 53.45% 51.72% 94.83% 98.28%
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Modularity maximization formulations

Mathematical Programming formulations:

? reduction of modularity maximization to clique partitioning

⇒ linear optimization problem (LP) in 0-1 variables

? direct formulation

⇒ mixed 0-1 quadratic optimization problem (MIQP)

- Clique partitioning: assignment of entities to communities is not explicitly considered, it

only appears as a consequence of the optimal solution

→ adding cohesion conditions not easy

- MIQP formulation: uses variables to denote assignment of entities to communities

→ adding cohesion conditions easier
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Modularity maximization: MIQP (Xu, Tsoka and Papageorgiou, 2007)

Variables used to identify to which community each vertex and each edge belongs:

Xrs =

{
1 if edge r belongs to community s
0 otherwise ∀r = 1, 2, . . .m, s = 1, 2, . . .M

Yis =

{
1 if vertex i belongs to community s
0 otherwise. ∀i = 1, 2, . . . n, s = 1, 2, . . .M

max Q =
∑

s

[as − es] =
∑

s

ms

m
−

(
ds

2m

)2 ms = number of edges in community s
dS = sum of degrees ki of vertices in s

ms =
∑

r Xrs and dS =
∑

i kiYis∑
s Yis = 1 ∀i = 1, 2, . . . n each vertex belongs to one community

Xrs ≤ Yis ∀r = {vi, vj} ∈ E
Xrs ≤ Yjs ∀r = {vi, vj} ∈ E

any edge r = {vi, vj} belongs to community s
⇔ both of its end vertices i,j belong to s

us ≤ us−1

community s nonempty⇔ s − 1 is so
(us = 1 if module s nonempty, 0 otherwise)

symmetry-breaking constraints

⇓

Mixed-Integer Quadratic Program
with a convex continuous relaxation
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Adding cohesion conditions in the MIQP (1/5)

SCC:
S community in the strong sense⇔ every one of its vertices has more neighbors within
the community than outside:

∀s ∈ {1, . . . ,M}, ∀vi ∈ V
∑

vj∈V:j,i

AijYjs ≥ Yis

(
b
ki

2
c + 1

)
.

Indeed, from the definition of SCC:

∀s ∈ {1, . . . ,M}, ∀vi ∈ V
∑

vj∈V:j,i

AijYjs ≥ ki −
∑

vj∈V:j,i

AijYjs + 1,

i.e. the in-degree (
∑

vj∈V:j,i AijYjs) of vertex vi is strictly greater than the out-degree.

=⇒ (algebraic manipulations)

∀s ∈ {1, . . . ,M}, ∀vi ∈ V
∑

vj∈V:j,i

AijYjs ≥ b
ki

2
c − (1 − Yis) b

ki

2
c + Yis

(easily checked for both Yis = 1 and Yis = 0).
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Adding cohesion conditions in the MIQP (2/5)

ASCC:
S community in the almost-strong sense ⇔ every one of its vertices with degree different
from 2 has more neighbors within the community than outside, and
every vertex with degree 2 has at least one neighbor in the same community:

∀s ∈ {1, . . . ,M}, ∀vi ∈ V | ki , 2
∑

vj∈V:j,i

AijYjs ≥ Yis

(
b
ki

2
c + 1

)
∀s ∈ {1, . . . ,M}, ∀vi ∈ V | ki = 2

∑
vj∈V:j,i

AijYjs ≥ Yis
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Adding cohesion conditions in the MIQP (3/5)

SSCC:
S community in the semi-strong sense⇔ every one of its vertices has more neighbors
within the community than the max number of neighbors within any other community:

∀s, t ∈ {1, . . . ,M} | s , t, ∀vi ∈ V
∑

j∈V:j,i

AijYjs ≥
∑

vj∈V:j,i

AijYjt + 1 − (1 − Yis)(ki + 1)

Indeed:
(i) Yis = 1⇒

- the lhs term = in-degree of vi,
- the first term of the rhs = part of the out-degree of vi corresponding to edges with

extremities in s and t , s.
The last term disappears→ this partial out-degree must be strictly smaller than the
in-degree of vi.
Similar conditions hold for all other communities→ such a relation holds for the
community for which the partial out-degree of vi is largest.

(ii) Yis = 0⇒ the rhs is non-positive and the condition is verified.
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Adding cohesion conditions in the MIQP (4/5)

WCC:
S community in the weak sense ⇔ the sum of internal degrees within S is larger than the
sum of external degrees, that is the number of edges joining S to the rest of the network :

∀s ∈ {1, . . . ,M} 4
∑
r∈E

Xrs ≥
∑
vi∈V

kiYis + 1

Indeed:

- the sum of in-degrees for community s may be written as 2
∑
r∈E

Xrs

- the sum of out-degrees of s = sum of all the degrees minus the sum of in-degrees for
vertices of that community:

∑
vi∈V

kiYis − 2
∑
r∈E

Xrs.
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Adding cohesion conditions in the MIQP (5/5)

EWCC:
S community in the extra-weak sense⇔ the sum of internal degrees within S is larger than
the max number of edges joining a vertex of S to a vertex in some other community:

∀s, t ∈ {1, . . . ,M} | s , t 2
∑
r∈E

Xrs ≥
∑

r={vi,vj}∈E

(
YisYjt + YjsYit

)
+ 1.

Linearization:
introduce ∀r = {vi, vj} ∈ E non-negative variables Zrst = YisYjt and Z′rst = YjsYit:

∀s, t ∈ {1, . . . ,M} | s , t 2
∑
r∈E

Xrs ≥
∑
r∈E

(
Zrst + Z′rst

)
+ 1

and add linearization constraints ∀s, t ∈ {1, . . . ,M} | s , t:

Zrst ≤ Yis

Zrst ≤ Yjt

Zrst ≥ Yis + Yjt − 1

Z′rst ≤ Yjs

Z′rst ≤ Yit

Z′rst ≥ Yjs + Yit − 1
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Mathematical Programming models
using cohesion conditions

Modularity maximization with cohesion constraints:

New mathematical models:

MIQP + SCC

MIQP + SSCC

MIQP + ASCC

MIQP + WCC

MIQP + EWCC

Sonia Cafieri (ENAC) On network modularity maximization with cohesion conditions November 2014 28 / 51



Outline

1 Community identification: modularity maximization and cohesion conditions
Modularity maximization
Cohesion conditions
Cohesion conditions in modularity maximization

2 Adding cohesion conditions in modularity maximization

3 Numerical results and analysis
Results on real-world datasets
Qualitative analysis for two real-world datasets
Impact of cohesion conditions on resolution limit
Relation with detectability

4 Conclusions

Sonia Cafieri (ENAC) On network modularity maximization with cohesion conditions November 2014 29 / 51



Solving the optimization problems by an exact method

The proposed MIQP problems solved exactly using CPLEX

Why exact methods?

having an exact solution solves the problem of separating possible inadequacies

of the model from eventual errors resulting from the use of heuristics

⇒ communities may be interpreted with more confidence

an exact algorithm can provide a benchmark of exactly solved instances

which can be used to compare heuristics and fine tune them

an exact algorithm may be stopped and the best solution found considered

as a heuristic one

Inconvenient: cannot solve large-scale problems
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Results: Modularity maximization + weak constraints

network modularity maximization weak extra-weak

dataset n m M Q Mw Qw Mew Qew

strike 24 38 4 0.561981 4 0.561981 4 0.561981

karate 34 78 4 0.41979 4 0.41979 4 0.41979

Korea1 35 69 5 0.477736 5 0.477736 5 0.477736

Korea2 35 84 5 0.450822 5 0.450822 5 0.450822

sawmill 36 62 4 0.550078 4 0.550078 4 0.550078

dolphins small 40 70 4 0.620714 4 0.620714 4 0.620714

graph 60 114 7 0.502655 7 0.502655 7 0.502655

dolphins 62 159 5 0.528519 4 0.526799 5 0.528519

Les Misérables 77 254 6 0.560008 6 0.560008 6 0.560008

p53 protein 104 226 7 0.535134 6 0.534488 7 0.535134

political books 105 441 5 0.527237 4 0.526938 4 0.526938
average 5.090909 0.521334 4.818182 0.521092 5 0.521307
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Results: Modularity maximization + weak constraints -
Details

dolphins dataset
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Results: Modularity maximization + weak constraints -
Details

dolphins dataset

Partition obtained with unconstrained modularity maximization

C1 C2 C3 C4 C5
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Results: Modularity maximization + weak constraints -
Details

p53 protein dataset

1

2

3

4

5
67

8

9

10

11

12

13

14

15

16

17 18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36
37

38

39

40

41

42

43

4445

46

47

48

49

50

51

52 53

54 55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72
73

74

75

76

77
78

79

80

81

82

83

8485

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
18

19

20

21
22

23

24

25

26

27

28

29

30

31

32

33

34

35

36
37

38

39

40

41

42

43

44
45

46

47

48

49

50

51

52 53

54 55
56

57

58

59

60

61
62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77 78

79
80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

unconstrained modularity maximization modularity maximization + weak cohesion constraint

Sonia Cafieri (ENAC) On network modularity maximization with cohesion conditions November 2014 35 / 51



Results: Modularity maximization + weak constraints -
Details

polbooks dataset
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Results: Modularity maximization + strong constraints

network modularity max strong almost-strong semi-strong

dataset n m M Q Ms Qs Mas Qas Mss Qss

strike 24 38 4 0.561981 2 0.257271 3 0.54813 2 0.257271

karate 34 78 4 0.41979 2 0.132807 4 0.402038 2 0.132807

Korea1 35 69 5 0.477736 4 0.383638 4 0.383638 4 0.383638

Korea2 35 84 5 0.450822 3 0.424036 4 0.432469 3 0.424036

sawmill 36 62 4 0.550078 4 0.550078 4 0.550078 4 0.550078

dolphins small 40 70 4 0.620714 3 0.573571 4 0.620714 3 0.573571

graph 60 114 7 0.502655 1 0 4 0.438135 1 0

dolphins 62 159 5 0.528519 2 0.359242 3 0.480598 2 0.359242

Les Misérables 77 254 6 0.560008 4 0.437868 6 0.52921 4 0.437868

p53 protein 104 226 7 0.535134 2 0.284204 4 0.472502 2 0.284204

political books 105 441 5 0.527237 3 0.497969 3 0.497969 3 0.497969

average 5.09091 0.521334 2.727273 0.354608 3.909091 0.486862 2.727273 0.354608
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Results: Modularity maximization + strong constraints

modularity with the strong and the semi-strong conditions yields different results:

8

1 1
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1 86
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1 4

modularity = 0.476371 modularity = 0.483932

Vertex 18 in the semi-strong partition does not respect the strong condition,
since it has two neighbors inside its own community (i.e., vertices 9 and 10)
and two neighbors outside (i.e., vertices 2 and 6).

In the strong partition all the neighbors of vertex 18 belong to its own community.
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1 Community identification: modularity maximization and cohesion conditions
Modularity maximization
Cohesion conditions
Cohesion conditions in modularity maximization

2 Adding cohesion conditions in modularity maximization
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Sonia Cafieri (ENAC) On network modularity maximization with cohesion conditions November 2014 39 / 51



Results: qualitative analysis

For some real world problems, the behaviour of the system is known
⇒ compare obtained partitions against the actual outcomes

strike dataset
informal communications among the 24 employees of a wood processing facility
concerning a strike.

vertices = employees
edges = frequent discussions beetween employees about the strike

3 categories of employees:
- spanish-speaking

- young (below 30 years old) english-speaking

- old english-speaking

⇒ the correct partition consists of 3 communities
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Results: qualitative analysis

strike dataset
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modularity maximization alone and modularity + strong and semi-strong conditions
modularity + weak and extra-weak conditions

4 communities: 2 communities:
the new one (red) does not seem to be related spanish-speaking employees, english-speaking employees

to any particular tie between the workers ⇒ strong and semi-strong cond. have got the effect of
breaking the hierarchical structure of

the english-speaking community
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Results: qualitative analysis

For some real world problems, the behaviour of the system is known
⇒ compare obtained partitions against the actual outcomes

political books dataset
vertices = books about politics in US
edges = two vertices are connected if they are often bought by the same readers

3 main types of books:
- liberal
- conservative
- centrist or unaligned
⇒ we would expect 3 communities

modularity maximization: 5 communities

modularity + weak and extra-weak conditions: 4 communities

modularity + strong, almost-strong, and semi-strong conditions: 3 communities
Average number of vertices classified correctly: 60.8%
Books belonging to the 3rd category (i.e., centrist or unaligned) are not densely connected
between each other and have got many neighbors in other communities
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Impact on modularity resolution limit

Modularity resolution limit:
in some cases small clusters may not be detected, and they remain hidden within
other clusters

Example (Fortunato & Barthelemy, 2007)
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- modularity without cohesion conditions:
3 communities (the two large cliques + the
union of the small ones)

- modularity + weak and exra-weak cond.:
3 communities

- modularity + strong, almost-strong, and
semi-strong conditions:
correct partition with 4 cliques

strong, semi-strong and almost-strong cohesion conditions overcome the resolution limit
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Relation with detectability (1/3)

Theory of detectability of communities:
There is a sharp phase transition s.t.
community detection appears to be possible above a certain threshold,
while below this threshold methods to detect communities are expected to fail.

In case of
Poissonian degrees distribution
2 communities

the detection of a modular structure is possible when

cin − cout ≥
√

cin + cout

cin = internal node degrees averages
cout = external node degrees averages
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Relation with detectability (2/3)

Can we relate the detectability of communities to the strength of cohesion conditions?

Numerical tests:
√

cin + cout constantly equal to 2
√

2 ⇒ threshold at cin = 5.4 and cout = 2.6

cin increased from 4 to 7, cout decreased from 4 to 1, step size 0.2

for each one of these 16 combinations, 10 random instances generated
⇒ 80 instances below the detectability threshold, and 80 above

quality metric: average number of vertices that are classified correctly on the 2
communities, averaged over the 10 random instances

The behaviour of modularity maximization subject to cohesion constraints appears to
be coherent with the detectability of the considered network structures
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Relation with detectability (3/3)

Strict cohesion conditions (SCC, SSCC, ASCC):

for instances below the detectability threshold
(community structure intrinsically difficult to detect)
→ low percentage of correctly classified vertices

for instances above the threshold
→ a significantly higher precision even with such strict conditions
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Conclusions

Five kinds of cohesion conditions

Some of them are quite strict, the weak one is more intuitive

Added to a modularity maximization (MIQP) model, yield interesting results

Future work:

Solution of large-scale datasets:

⇒ heuristics tailored on the problem

Hierarchical network clustering using cohesion conditions
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The end

Thank you!
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