
Multi-objective Optimization and Network
Clustering

Julius Žilinskas

Vilnius University, Lithuania

Clustering and Search Techniques in Large Scale Networks
November 5, 2014

Multi-objective network clustering

I Network clustering can be seen as agglomeration of densely
connected vertices into the communities or partitioning the
network into sparsely interconnected ones.

I So there is a trade-off between separating some connections
or joining some vertices where not all of them are densely
enough connected.

I In this talk we discuss multi-objective optimization for
attacking this trade-off.

I As an example we analyze cell formation problem [1] arising in
group technology and industrial engineering which can be
interpreted as a clustering of a network.

[1] Paper with P.M. Pardalos. Pareto-optimal front of cell formation problem in group technology. Journal of

Global Optimization, in press. doi:10.1007/s10898-014-0154-6

Multi-objective optimization

I Real-world optimization problems usually involve more than
one criteria – multi-objective optimization.

I Such a kind of optimization problems are important in various
fields of industry and research (e.g. [2]).

I In most cases it is impossible to minimize all objectives at the
same time, so there is no single optimal solution to a given
multi-objective optimization problem. Therefore
non-dominated “Pareto-optimal” solutions are searched.

I Many methods convert the multi-objective optimization
problem into a set of single-objective problems. The most
known methods are the linear scalarization where objectives
are aggregated with positive weights and the ε-constraint
method where one objective is minimized while the others are
converted to constraints.

[2] Paper with A. Lančinskas, M.R. Guarracino (2014) Application of multi-objective optimization to pooled

experiments of next generation sequencing for detection of rare mutations. PLOS ONE, 9(9), Art. no. e104992.

Multi-objective optimization problem
I A multi-objective optimization problem with d objectives

f1(x), f2(x), . . . , fd(x) is to minimize the objective vector
f(x) = (f1(x), f2(x), . . . , fd(x)):

min
x∈A

f(x),

where x is the decision vector and A is the search space.

0 0.5 1 1.5 2
0

0.5

1

1.5

2

f1(x)

f2(x)

x

f
(x

)

Decision space

0 0.5 1
0

0.5

1

f1

f 2

Objective space

Pareto front
I The decision vector a dominates the decision vector b if:

∀i ∈ {1, 2, . . . , d} : fi (a) ≤ fi (b) & ∃j ∈ {1, 2, . . . , d} : fj(a) < fj(b).

I Non-dominated decision vector are called Pareto optimal and
a set of those vectors is called Pareto set. The set of
corresponding objective vectors is called Pareto front P(f)O .

I When it is difficult to determine the Pareto front an
approximation of Pareto front is sought.

f1

f 2

Pareto front

f1

f 2

Hyper volume

Scalarization in multi-objective optimization

I Scalarization is formulation of a single-objective optimization
problem such that its optimal solutions are Pareto optimal
solutions to the multi-objective optimization problem.

I Linear scalarization

min
x∈A

d∑
i=1

wi fi (x),

where the positive weights wi are the parameters of the
scalarization.

I ε-constraint method

min fj(x)

s.t. x ∈ A
fi (x) ≤ εi for i ∈ {1, . . . , d} \ {j},

where εi are parameters and fj is the objective to be
minimized.

Example of linear scalarization

I Choose weights wi :

min 0.4 f1(x) + 0.6 f2(x),

min 0.8 f1(x) + 0.2 f2(x),

. . .

0.5 1
0

0.5

x

f
(x

)

Decision space

0 0.5
0

0.5

f1

f 2

Objective space

Example of non-convex multi-objective optimization

min
x∈[−1,1]

f(x),

f1(x) = (x + 0.5)2 − cos(18(x + 0.5)),

f2(x) = (x − 0.5)2 − cos(18(x − 0.5)).

−1 0 1

−1

0

1

2

f1(x)
f2(x)

x

f
(x

)

−1 0 1
−1

0

1

f1

f 2

Non-convex multi-objective optimization

I If objective functions are non-convex, even the scalarized
single-objective optimization problem is not easily solved –
global optimization must be used.

I Special care must be taken in the case of non-convex Pareto
front.

−1 0 1

−1

0

1

2 0.5f1(x) + 0.5f2(x)

x

f
(x

)

−1 0 1
−1

0

1

f1

f 2

Branch and bound algorithm

I The main concept of branch and bound is to detect sets of
feasible solutions which cannot contain optimal solutions.

I The search process can be illustrated as a tree with branches
corresponding to subsets of the search space.

I An iteration of the classical branch and bound algorithm
processes a node in the search tree that represents an
unexplored subset of feasible solutions.

I The iteration has three main components: selection of the
subset to be processed, branching corresponding to
subdivision of the subset, and bound calculation.

I In single objective optimization, the subset cannot contain
optimal solutions and the branch of the search three
corresponding to the subset can be pruned, if the bound for
the objective function over a subset is worse than the known
function value.

Multi-objective branch and bound algorithm
I In multi-objective optimization, the subset cannot contain

Pareto optimal solutions if each bounding vector b ∈ B in
bounding front B is dominated by at least one already known
decision vector a in the current solution set S :

∀b ∈ B ∃a ∈ S :
∀i ∈ {1, 2, . . . , d} : fi (a) ≤ bi &
∃j ∈ {1, 2, . . . , d} : fj(a) < bj .

I The simplest bounding front consists of a single ideal vector
composed of lower bounds for each objective function.

f1

f 2

f1

f 2

Cell formation

I Cell formation suggests grouping of machines into
manufacturing cells and parts into product families so that
each family is processed mainly within one cell.

I Cell formation may be interpreted as a network problem and
solved as machine/part-machine graph partitioning.

I Practical implementation of cellular manufacturing systems
involves conflicting objectives.

I We consider two models for bi-objective cell formation
problem. The goal of the problem is to find groupings of
machines simultaneously optimizing two objectives. The
objectives conflict, therefore a single solution minimizing both
objectives does not generally exist.

Cell formation problems: notations

I The number of machines is denoted by m, the number of
parts by n and the number of cells by k.

I X is an m× k cell membership matrix where 1 in i-th row and
j-th column means that i-th machine is assigned to j-th cell.

I Each machine can only be assigned to one cell: Xek = em,
where et is a t-element column vector of ones.

I Minimal (L) and maximal (U)
number of machines in each cell
may be restricted.

I The data is an m × n machine-part
incidence matrix W specifying
which part needs processing on
which machine (1 in i-th row and
j-th column means that j-th part
needs processing on i-th machine)
or specifying workload on each
machine induced by each part.

Parts
Machines 1 2 3 4

1 0 0 0 1
2 1 1 0 1
3 0 0 0 1
4 1 1 0 1
5 1 1 0 1
6 0 1 1 0
7 0 1 1 0
8 0 0 0 1

Branch and bound for bi-objective cell formation

I We will represent a subset of feasible solutions as a partial
solution where only some (m′) first machines are considered.

I In this case the partial solution is represented by an m′ × k
cell membership matrix X′.

I Instead of operating with zero-one matrix X we will operate
with the integer m-element vector c defining labels of cells to
which machines are assigned.

I The vector (1, 1, 2, 3, . . .) means that the first and the second
machines are assigned to the first cell, the third machine is
assigned to the second cell and the fourth machine is assigned
to the third cell.

I The matrix X can be easily built from c:

xij =

{
1, ci = j ,
0, otherwise,

i = 1, 2, . . . ,m.

An example of the search tree for cell formation problem
m = 4

I In order to avoid equivalent solutions some restrictions are set:

min
ci=j

i < min
ci=j+1

i .

Such restrictions correspond to arrangement of X so that

min
xij=1

i < min
xil=1

i ↔ j < l .

I Taking into account such restrictions a search tree of the
problem with m = 4 is shown in the figure. Only numerals are
shown to save space.

1
``````

11�����

12      
``````

111 112 121 122 123

@�
H
H

�
�

H
H

�
�

H
H

�
�

�
�
H
H

XXXX
1111 1112 1121 1122 1123 1211 1212 1213 1221 1222 1223 1231 1232 1233 1234

Branch and bound algorithm for bi-objective cell formation

1. Start with c = (1, 1, . . . , 1), m′ ← m

2. If the current solution is complete (m′ = m)
I If no solutions in the solution list dominate the current

solution, add it to the solution list
I If there are solutions in the solution list dominated by the

current solution, remove them from the solution list
I Change c by removing from the tail all numbers appearing only

once in c and increasing the last remaining number, set m′

accordingly

3. Otherwise (partial solution)
I If no solutions in the solution list dominate the bound vector

of the current set of solutions represented by the current
partial solution, append 1 to the tail of c and increase m′

I Otherwise change c by removing from the tail all numbers
appearing only once in c and increasing the last remaining
number, set m′ accordingly

4. If c is not empty, return to Step 2

Cell formation Model 1

I Decision variables are not only machine-cell membership
matrix X, but also n× k part-cell membership matrix Y where
1 in i-th row and j-th column means that i-th part is assigned
to j-th cell. Each part can only be assigned to one cell:
Yek = en.

I The data of the problem is an m × n machine-part incidence
matrix W where 1 in i-th row and j-th column means that
j-th part needs processing on i-th machine.

W1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 1 1 0 1 1 0 0 1 1 1 0 1 1 0 1 0 1
2 0 1 1 1 1 0 1 1 1 1 1 0 1 0 1 0 1
3 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1
4 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 1 0
5 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0
6 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1
7 1 1 0 0 0 1 0 1 0 1 0 1 1 1 0 0 0
8 0 0 0 1 1 1 0 0 0 1 0 1 1 1 0 0 1
9 0 0 0 1 0 0 0 0 1 1 1 0 1 1 0 1 0
10 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0

Cell formation Model 1: objectives

I Minimization of the number of exceptional elements: The
number of times the parts are processed outside their own
cells is minimized.
The number of exceptional elements is computed as

f1(X,Y) = 〈W,E− XYT 〉,

where 〈, 〉 denotes the inner product of matrices and E is an
m × n matrix of ones.

I Minimization of the number of voids: The number of times
the part is not processed inside its own cell is minimized.
The number of voids is computed as

f2(X,Y) = 〈E−W,XYT 〉.

Cell formation Model 1: example

I There are m = 8 machines and n = 4 parts in this problem.

I Additional restrictions are used: two cells, minimum 2 and
maximum 6 machines in each cell (K = 2, L = 2, U = 6).

I All three solutions have the same grouping of the machines to
cells, but different assignments of the parts to cells.

(6, 2)
4 1 2 3

1 1 0 0 0
3 1 0 0 0
8 1 0 0 0
2 1 1 1 0
4 1 1 1 0
5 1 1 1 0
6 0 0 1 1
7 0 0 1 1

(3, 3)
4 1 2 3

1 1 0 0 0
3 1 0 0 0
8 1 0 0 0
2 1 1 1 0
4 1 1 1 0
5 1 1 1 0
6 0 0 1 1
7 0 0 1 1

(2, 6)
4 1 2 3

1 1 0 0 0
3 1 0 0 0
8 1 0 0 0
2 1 1 1 0
4 1 1 1 0
5 1 1 1 0
6 0 0 1 1
7 0 0 1 1

Cell formation Model 1: bounds
I The bounding front of objective functions of Model 1 may be

computed taking non-dominated vectors from the set{(∑n
i=1

∑m′

j=1(wji − wjix
′
jli

)∑n
i=1

∑m′

j=1(x ′jli − wjix
′
jli

)

)
: li ∈ {1, 2, . . . , k}

}
.

I A less computationally expensive bounding set of objective
functions may be computed as a single vector of separate
bounds

b1(X′) =
n∑

i=1

min
l=1,...,k

m′∑
j=1

(wji − wjix
′
jl),

b2(X′) =
n∑

i=1

min
l=1,...,k

m′∑
j=1

(x ′jl − wjix
′
jl).

Assignment of other machines to cells later on during the
search process can only increase objective functions since
already assigned machines will not change and additional non
negative elements will be added to the rightmost sums.

Cell formation Model 2

I Decision variables are machine-cell membership matrix X.

I The data is an m × n machine-part incidence matrix W
specifying workload on each machine induced by each part and
an n-element vector p of production requirements of parts.

W2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
1 .3 .6 .6 .2 .2 .5 .7 .4 .6
2 .4 .5 .7 .3 .4 .3 .6 .8 .9 .2
3 .6 .7 .3 .2 .4 .9 .6 .2 .2 .4 .3 .5
4 .2 .3 .4 .7 .5 .6 .2 .4 .4 .5 .6
5 .2 .3 .4 .5 .7 .8 .9 .6 .8 .2
6 .8 .9 1.0 .7 .2 .3 .4 .5 .6 .8
7 .8 .9 .3 .5 .5 .7 .3 .5 .6 .9
8 1.1 1.2 .3 .8 .3 .9 .2 .3 .4 .5
9 .4 .5 .6 .9 .5 .6 .7 .8 .91.0

10 .6 .2 .3 .9 .2 .3 .4 .5 .6 .8
11 .3 .3 .2 .3 .4 .5 .9 .2 .5 .6 .7 .8
12 .6 .7 .8 .9 .9 .3 .5 .5 .6 .7
13 .7 .5 .6 .8 .5 .3 .4 .5 .7 .8
14 .2 .6 .8 1.0 .5 .4 .6 .8 .2 .8
15 .5 .7 .9 .3 .7 .9 .3 .4
p155 150148160 144158152155164148140 144145162170140156132172164 144158155152140166 148145144170

Cell formation Model 2: objectives
I Minimization of the total intercell moves: The number of cells

processing each part is minimized.
Intercell moves are computed as

f1(X) = pT (Φ(WTX)ek − en),

where the function Φ changes the nonzero elements of matrix
to ones.

I Minimization of within-cell load variation: The differences
between workload induced by a part on a specific machine and
the average workload induced by this part on the cell are
minimized.
Within-cell load variation is computed as

f2(X) = 〈W −M(X),W −M(X)〉,

where the matrix M(X) is an m × n matrix with average cell
loads: the element in i-th row and j-th column specifies the
average load of j-th part in the cell where i-th machine is
assigned.

Cell formation Model 2: example
I Model 2 provides grouping of the machines to cells only.
I One can interpret that the part is supposed to be assigned to

one of the cells where it needs processing (boxed).
I Intercell moves are required if the part needs processing in

several cells, the labels of such parts are shown in bold.
I When workloads of the same part vary in the same cell we

show them in bold font.

(0, 6.75)
4 1 2 3

1 1 0 0 0
3 1 0 0 0
8 1 0 0 0
2 1 1 1 0
4 1 1 1 0
5 1 1 1 0
6 0 0 1 1
7 0 0 1 1

(1, 3)
4 1 2 3

1 1 0 0 0
3 1 0 0 0
8 1 0 0 0
2 1 1 1 0
4 1 1 1 0
5 1 1 1 0

6 0 0 1 1
7 0 0 1 1

(2, 0)
4 1 2 3

1 1 0 0 0
3 1 0 0 0
8 1 0 0 0

2 1 1 1 0
4 1 1 1 0
5 1 1 1 0

6 0 0 1 1
7 0 0 1 1

Cell formation Model 2: bounds

I The bounds of objective functions may be computed as

b1(X′) = pT (Φ(W′TX′)ek − Φ(Φ(W′TX′)ek)),

b2(X′) = 〈W′ −M(X′),W′ −M(X′)〉,

where W′ denotes a matrix composed of m′ first rows of
matrix W.

I Assignment of other machines to cells later on during the
search process cannot reduce intercell moves since already
assigned machines will not change and the newly assigned
machines can only introduce new intercell moves.

I The cell load variation will remain the same if the other
machines are assigned to new separate cells and cannot
decrease after assignment of other machines.

Results from the literature solving W0 (Arkat et al., 2011)

I ε-constraint method

Round f1 f2 Efficiency t, s

1 6 2 Efficient 1
2 5 3 – 2
3 3 3 Efficient 1
4 2 6 Efficient 1
5 Infeasible 1

I Genetic algorithm: 20 individuals, 20 generations, 10 runs,
3 seconds.

Results of branch and bound algorithm solving W0
m = 8, n = 4

Branch and bound ε-CM GA
Model 1 Model 2 (Arkat et

Bounding front Bounding vector al., 2011)
K L U t, s NFE t, s NFE t, s NFE t, s t, s

2 0 132 0 180 0 72
2 2 5 0 20 0 20
2 2 6 0 12 0 60 6 0.3
3 0 257 0 2582 0 143
4 0 639 0 9348 0 186
5 0 1501 0 21772 0 192
6 0 3034 0 44048 0 192
7 0 5521 0.01 79878 0 192

0.02 9292 0.02 133788 0 192

Results from the literature solving W1 (Arkat et al., 2011)

I ε-constraint method

Round f1 f2 Efficiency t, h:min Round f1 f2 Efficiency t, h:min

1 53 5 1:00 12 32 14 Efficient 1:30
2 49 5 Efficient 1:20 13 31 15 Efficient 1:40
3 47 6 – 1:30 14 30 16 Efficient 0:51
4 46 6 Efficient 1:30 15 29 18 Efficient 0:41
5 45 7 – 1:45 16 28 20 Efficient 0:31
6 38 7 – 2:18 17 27 22 Efficient 0:27
7 37 7 – 0:56 18 26 26 Efficient 0:27
8 36 7 Efficient 1:18 19 25 29 Efficient 0:27
9 35 8 Efficient 1:45 20 24 32 Efficient 0:20
10 34 11 – 0:54 21 23 35 Efficient 0:35
11 33 11 Efficient 1:00 22 Infeasible 0:11

Total run time 22:56

I Genetic algorithm: 100 individuals, 200 generations, 15 runs,
5 minutes.

Results of branch and bound algorithm solving W1
m = 10, n = 17

Branch and bound ε-CM GA
Model 1 Model 2

Bounding front Bounding vector t, t,
K L U t, s NFE t, s NFE t, s NFE h:min s

2 0.62 1268833 0.77 4931885 0 708
3 2 5 1.06 2553 0.02 44069
3 2 6 7.83 563193 5.80 41121849 22:56 20
3 3240 175522936 3385 1779232148 0.01 4726
4 0.02 10179
5 0.02 12226
6 0.02 12088
7 0.01 10994
8 0.01 10678
9 0.01 10597

0.02 10598

Pareto front for W1 with Model 1
K = 3 (o), K = 3, L = 2, U = 5 (x) and K = 3, L = 2, U = 6 (+)

Number of Voids

N
u
m

b
er

 o
f

E
x
ce

p
ti

o
n
al

 E
le

m
en

ts

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

xxxx
xx

xx xx

xx

xxx

xx

x

++ ++++ ++ ++ ++
++++ ++ ++++++ ++++++++

++
++

++++++
++

++++++++ ++++
++

++

++++++++ ++++++

++++ ++ ++++ ++
++

++

+++

++

+++++

++

+

++

+++++

++

+

++

o
o

oo

o

ooo

oo

o

oo

o

oo

o

oo

o
o

oo

o
o

oooo
o

oo
o

o ooooo

ooooo

ooooo
ooo

oo

oo

o
oooo

o
oo

o
o

oo
o

oo

o

o

ooo

oooo
oo

oo

Pareto front for W1 with Model 2
Pareto front of complete problem (o), 2 cells (x), 3 cells (+), other (v)

Cell Load Variation

In
te

rc
e
ll

 M
o
v
e
s

0 10 20 30
0

10

20

30

40

50

60

x

x

x
x

x

x

x
x

x
x

+

+

+
+

+

+

+

+
+

+
+

+
+

+

v

v

v
v

v

v

v

v

v
v

v

v

v
v

v

v
v

v

v

v

v
v

v

v

v

v

v
v

v

v

v

v
v

v
v

v

v
v

v

v
v

v

v

v
v

v

v

v

v

v
v

v

v

v

v
v

v
v

v

v

v

v

v
v

v

v

v

v

v
v

v

v

v

v

v
v

v

v

v

v
v

v
v

v

v

v

v

v

v

v

v

v

v

v

v

v
v

v

v

v

v

v
v

v

v

v

v
v

v
v

v

v

v

v

v

v

v

v

v

v
v

v

v

v

v
v

v

v

v

v

v
v

v

v

v

v
v

v
v

v

v

v

v

v

v

v

v

v

v
v

v

v

o

o

o
o

o

o

o

o

o
o

o

o

o

o
o

o
o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

Experimental comparison on W2 with Model 2
m = 15, n = 30

Branch and bound Complete enumeration Speed-up
K t, s NFE t, s NFE t NFE

2 0 3197 0.05 16384 5
3 0.02 4077 7.41 2391485 371 587
4 0.02 12108 148.63 44747435 7432 3696
5 0.08 29738 894.31 255514355 11179 8592
6 0.21 57544 2497 676207628 11890 11751
7 0.32 90280 4643 1084948961 14509 12018
8 0.44 119939 5082 1301576801 11550 10852
9 0.53 140514 5382 1368705291 10155 9741
10 0.61 150819 5442 1381367941 8921 9159
11 0.61 154462 6066 1382847419 9944 8953
12 0.59 155485 5457 1382953889 9249 8894
13 0.68 155692 5459 1382958439 8028 8883
14 0.64 155717 6055 1382958544 9461 8881

0.67 155718 6134 1382958545 9155 8881

Pareto front for W2 with Model 2
Pareto front found with branch and bound (o) and solutions given in literature:
+ (Dimopoulos, 2007) and x (Venugopal and Narendran, 1992)

Cell Load Variation

In
te

rc
e
ll

 M
o
v
e
s

0 10 20 30
0

2000

4000

6000

8000

10000

12000

14000

16000

18000
+

+

+

+

+

+
+

+

x

o
o

o

ooo

oo
o

oo

ooo

oo

ooo

ooooo

oooo

oooo

ooo

oo

o

Results on industrial problem (Dimopoulos, 2007)
m = 22, n = 62

Branch and bound Complete enumeration
K t, s NFE t, s NFE

2 0.08 13886 17 2097152
3 2.68 465361 44617 5230176602
4 25.14 3799397
5 76.39 11816033
6 141.13 20751874
8 205.48 27595382
10 203.04 27370592
12 198.74 27250725
14 196.90 27257573
16 196.05 27263219
18 206.64 27264741
20 195.86 27264764
22 203.67 27264764

Pareto front for industrial problem
Pareto front of complete problem (o), 2 cells (x), 3 cells (+), other (v)

Cell Load Variation

In
te

rc
e
ll

 M
o
v
e
s

0 500 1000 1500
0

20

40

60

x

x

x
x

+

+

+
+

+
+

+

+

v
v

v
v

v

v
v
v

v
v

v
v

v

v

v
v

v
v

v
v

v
v

v

v

v

v

v
v

v
v

v
v

v

v

v

v

v
v

v
v

v
v

v

v

v

v

v

v

v

v

v
v

v
v

v
v

v

v

v
v

v

v

v
v

v

v
v

v
v

v
v

v

v

v
v

v

v
v

v
v

v
v

v

v
v

v
v

v
v

v

v

v
v

v

v
v

v
v

v
v

v

v
v

v
v

v
v

v

v

v
v

v

v
v

v
v

v

v
v

v

v
v

v
v

v
v

v

v

v
v

v

v
v

v
v

v

v
v

v

v
v

v
v

v
v

v
v

v

v

v
v

v

v
v

v
v

v

v
v

v

v

v

v

v

v
v

v
v

v
v

v

v

v
v

v

v
v

v
v

v

v
v

v

v
v

v

v
v
v

v
v

v
v

v
v

v

v

v
v

v

v
v

v
v

v

v
v

v

v
v

v

v
v

v

v

v

v
v

v
v

v
v

v

v

v
v

v

v
v

v
v

v

v
v

v

v
v

v

v
v

v

v

v

v
v

v
v

v
v

v
v

v

v

v
v

v

v
v

v
v

v

v
v

v

v
v

v

v
v

v

v

v

v
v

v
v

v
v

v
v

v
v

v

v

v
v

v

v
v

v
v

v

v
v

v

v
v

v

v
v

v

v

v

v
v

v
v

v

v
v

v
v

v
v

v

v

v
v

v

v
v

v
v

v

v
v

v

v
v

v

v
v

v

v

v

v
v

v
v

v

v
v

v
v

v
v

v

v

v
v

v

v
v

v
v

v

v
v

v

v
v

v

v
v

v

v

v

v
v

v
v

v

o
o

o
o

o
o

o

o

o
o

o

o
o

o
o

o

o
o

o

o
o

o

o
o

o

o

o

o
o

o
o

o

Non-dominated Sorting Genetic Algorithm (NSGA-II)
Algorithm starts with an initial parent population P consisting of
N randomly generated decision vectors (individuals)

(1) A child population Q is created by combining elements of P.
Usually genetic operators (crossover and mutation) are used.

(2) Populations P and Q are combined into one population R,

(3) which is sorted according to the dominance relation,

(4) and reduced by rejecting a half most-dominated vectors.

(5) Obtained population is used as P in the next generation.

NSGA-II: genetic operations

(1) Two parents are selected form population

(2) and combined to generate a child (Crossover).

(3) A small random change of each gene is made with probability
1
d

NSGA-II: evolution

After a number of NSGA-II generations, individuals approximate
Pareto front

Parallel version of NSGA-II

NSGA-II: complexity of Pareto ranking

I Suppose we have a set R of 2N individuals.

I The full Pareto ranking procedure requires to
pick individuals one by one and to count their
dominators.

I The procedure requires 2N(2N − 1) Pareto
comparisons.

I The procedure requires information of all
objective values.

NSGA-II: decomposition of Pareto ranking

I The set R can be divided into two subsets P and
Q.

I Lets denote by dom(P ⊗ Q) the procedure of
counting how many dominators of each
individual in P exist between individuals in Q.

I If we perform procedures

dom(P ⊗ Q), dom(Q ⊗ P), dom(P ⊗ P),
dom(Q ⊗ Q),

then the set R would be fully Pareto ranked with
the same complexity 2N(2N − 1).

Parallel NSGA-II: hierarchic ranking

I P is distributed among all
processors.

I Each processor makes a
part of child population Q
and performs operations
dom(Q ⊗ Q) and
dom(Q ⊗ P).

I A half of processors send
information to the
neighbors.

I Receiving processors save received information as Q∗, perform
dom(Q ⊗ Q∗) and dom(Q∗ ⊗ Q) and send the information.

Parallel NSGA-II: distributed ranking

I Population P is distributed among all processors.

I Each processor makes a part of child population Q.

I The master gathers Q and distributes it among slaves.

I Each processor ranks respective subpopulation of Q.

I The master gathers the rank values and distributes them
among slaves.

Parallel NSGA-II: hybrid MPI-OpenMP

I Information from n MPI CPUs can be gathered in log2n steps.

I Number of the steps can be reduced by utilizing groups of
shared memory (OpenMP) processors.

Thank you for your attention

