
National Research University Higher School of Economics
Laboratory of Algorithms and Technologies for Networks Analysis

Nizhny Novgorod

2014

“A fast greedy sequential heuristic for
the vertex coloring problem ”

Larisa Komosko,
Mikhail Batsyn

Workshop on "Clustering and Search techniques in large scale networks"

November 4 – 7, 2014
Nizhny Novgorod

History: four color problem 1852

no more than four colors are required
to color the regions of the map so that
no two adjacent regions have the
same color

proof : 1976
Kenneth Appel
Wolfgang Haken Thomas Gutherie

Coloring methods

vertex coloring edge coloring

Applications:
timetabling
register allocation
traffic lights phasing
map coloring
storage and transportation of goods
computing upper bounds in branch-and-bound
algorithms for the maximum clique problem

Vertex coloring problem:
finding the minimum number of colors to paint the
vertices of a graph in such a way that any two vertices
joined by an edge always have different colors

NP-hard: 1979
Garey, Johnson

Mathematical model :

xih =

yh =

1, if color h is assigned to vertex i
0, otherwise

1, if color h is used in the solution
0, otherwise

The main idea of the sequential algorithm

The main idea of the sequential algorithm

3

7

6

1

5

4

2

The main idea of the sequential algorithm

3

7

6

1

5

4

2

The main idea of the sequential algorithm

3

7

6

1

5

4

2

The main idea of the sequential algorithm

3

7

6

1

5

4

2

The main idea of the sequential algorithm

3

7

6

1

5

4

2

The main idea of the sequential algorithm

3

7

6

1

5

4

2

The main idea of the sequential algorithm

3

7

6

1

5

4

2

The main idea of the sequential algorithm

3

7

6

1

5

4

2

Classical coloring algorithms

Greedy-Color
Color-with-Interchange
Random-Sequential-Color
Largest-First-Color
Smallest-Last-Color
Random-Sequential-Interchange-Color
Largest-First-Interchange-Color
Smallest-Last-Interchange-Color
Connected-Sequential-Color
Saturation-Color
Greedy Independent Sets-Color

Pseudo code

begin
maxColor = 0;
for vertex=0 to n

 for k=0 to n
 if ck,vertex = 0 then

color = k;
break;

 end if
 if color > maxColor then

recolour(A,C,n,vertex,color);
maxColor = color;

 end if
 end for
Ccolor := Ccolor ˅ Avertex;
end for
end

Procedure Coloring(A,C,n)

The main idea of the sequential algorithm

А =

1 2 3 4 5 6 7

0 0 1 1 0 1 0 1

0 0 1 0 1 0 1 2

1 1 0 1 0 0 1 3

1 0 1 0 0 1 0 4

0 1 0 0 0 1 0 5

1 0 0 1 1 0 1 6

0 1 1 0 0 1 0 7

1 2 3 4 5 6 7

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 3

0 0 0 0 0 0 0 4

0 0 0 0 0 0 0 5

0 0 0 0 0 0 0 6

0 0 0 0 0 0 0 7

C =

The main idea of the developed algorithm

aij =

1, if vertices i and j are

connected with an edge

0, otherwise

cij =

1, if color i cannot be

assigned to vertex j

0, otherwise

vertex = 1

The main idea of the developed algorithm

А =

1 2 3 4 5 6 7

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 3

0 0 0 0 0 0 0 4

0 0 0 0 0 0 0 5

0 0 0 0 0 0 0 6

0 0 0 0 0 0 0 7

C =

1 2 3 4 5 6 7

0 0 1 1 0 1 0 1

0 0 1 0 1 0 1 2

1 1 0 1 0 0 1 3

1 0 1 0 0 1 0 4

0 1 0 0 0 1 0 5

1 0 0 1 1 0 1 6

0 1 1 0 0 1 0 7

А =

1 2 3 4 5 6 7

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 3

0 0 0 0 0 0 0 4

0 0 0 0 0 0 0 5

0 0 0 0 0 0 0 6

0 0 0 0 0 0 0 7

C =

color = 1

The main idea of the developed algorithm

1 2 3 4 5 6 7

0 0 1 1 0 1 0 1

0 0 1 0 1 0 1 2

1 1 0 1 0 0 1 3

1 0 1 0 0 1 0 4

0 1 0 0 0 1 0 5

1 0 0 1 1 0 1 6

0 1 1 0 0 1 0 7

А =

1 2 3 4 5 6 7

0 0 1 1 0 1 0 1

0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 3

0 0 0 0 0 0 0 4

0 0 0 0 0 0 0 5

0 0 0 0 0 0 0 6

0 0 0 0 0 0 0 7

C =

A[vertex] ∨ C[color] = A[1] ∨ C[1]

The main idea of the developed algorithm

1 2 3 4 5 6 7

0 0 1 1 0 1 0 1

0 0 1 0 1 0 1 2

1 1 0 1 0 0 1 3

1 0 1 0 0 1 0 4

0 1 0 0 0 1 0 5

1 0 0 1 1 0 1 6

0 1 1 0 0 1 0 7

vertex = 2

The main idea of the developed algorithm

А =

1 2 3 4 5 6 7

0 0 1 1 0 1 0 1

0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 3

0 0 0 0 0 0 0 4

0 0 0 0 0 0 0 5

0 0 0 0 0 0 0 6

0 0 0 0 0 0 0 7

C =

1 2 3 4 5 6 7

0 0 1 1 0 1 0 1

0 0 1 0 1 0 1 2

1 1 0 1 0 0 1 3

1 0 1 0 0 1 0 4

0 1 0 0 0 1 0 5

1 0 0 1 1 0 1 6

0 1 1 0 0 1 0 7

А =

1 2 3 4 5 6 7

0 0 1 1 0 1 0 1

0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 3

0 0 0 0 0 0 0 4

0 0 0 0 0 0 0 5

0 0 0 0 0 0 0 6

0 0 0 0 0 0 0 7

C =

color = 1

The main idea of the developed algorithm

1 2 3 4 5 6 7

0 0 1 1 0 1 0 1

0 0 1 0 1 0 1 2

1 1 0 1 0 0 1 3

1 0 1 0 0 1 0 4

0 1 0 0 0 1 0 5

1 0 0 1 1 0 1 6

0 1 1 0 0 1 0 7

А =

1 2 3 4 5 6 7

0 0 1 1 1 1 1 1

0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 3

0 0 0 0 0 0 0 4

0 0 0 0 0 0 0 5

0 0 0 0 0 0 0 6

0 0 0 0 0 0 0 7

C =

A[vertex] ∨ C[color] = A[2] ∨ C[1]

The main idea of the developed algorithm

1 2 3 4 5 6 7

0 0 1 1 0 1 0 1

0 0 1 0 1 0 1 2

1 1 0 1 0 0 1 3

1 0 1 0 0 1 0 4

0 1 0 0 0 1 0 5

1 0 0 1 1 0 1 6

0 1 1 0 0 1 0 7

vertex = 3

The main idea of the developed algorithm

А =

1 2 3 4 5 6 7

0 0 1 1 1 1 1 1

0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 3

0 0 0 0 0 0 0 4

0 0 0 0 0 0 0 5

0 0 0 0 0 0 0 6

0 0 0 0 0 0 0 7

C =

1 2 3 4 5 6 7

0 0 1 1 0 1 0 1

0 0 1 0 1 0 1 2

1 1 0 1 0 0 1 3

1 0 1 0 0 1 0 4

0 1 0 0 0 1 0 5

1 0 0 1 1 0 1 6

0 1 1 0 0 1 0 7

А =

1 2 3 4 5 6 7

0 0 1 1 1 1 1 1

0 0 0 0 0 0 0 2

0 0 0 0 0 0 0 3

0 0 0 0 0 0 0 4

0 0 0 0 0 0 0 5

0 0 0 0 0 0 0 6

0 0 0 0 0 0 0 7

C =

color = 2

The main idea of the developed algorithm

1 2 3 4 5 6 7

0 0 1 1 0 1 0 1

0 0 1 0 1 0 1 2

1 1 0 1 0 0 1 3

1 0 1 0 0 1 0 4

0 1 0 0 0 1 0 5

1 0 0 1 1 0 1 6

0 1 1 0 0 1 0 7

А =

1 2 3 4 5 6 7

0 0 1 1 1 1 1 1

1 1 0 1 0 0 1 2

0 0 0 0 0 0 0 3

0 0 0 0 0 0 0 4

0 0 0 0 0 0 0 5

0 0 0 0 0 0 0 6

0 0 0 0 0 0 0 7

C =

A[vertex] ∨ C[color] = A[3] ∨ C[2]

The main idea of the developed algorithm

1 2 3 4 5 6 7

0 0 1 1 0 1 0 1

0 0 1 0 1 0 1 2

1 1 0 1 0 0 1 3

1 0 1 0 0 1 0 4

0 1 0 0 0 1 0 5

1 0 0 1 1 0 1 6

0 1 1 0 0 1 0 7

vertex = 4

The main idea of the developed algorithm

А =

1 2 3 4 5 6 7

0 0 1 1 1 1 1 1

1 1 0 1 0 0 1 2

0 0 0 0 0 0 0 3

0 0 0 0 0 0 0 4

0 0 0 0 0 0 0 5

0 0 0 0 0 0 0 6

0 0 0 0 0 0 0 7

C =

1 2 3 4 5 6 7

0 0 1 1 0 1 0 1

0 0 1 0 1 0 1 2

1 1 0 1 0 0 1 3

1 0 1 0 0 1 0 4

0 1 0 0 0 1 0 5

1 0 0 1 1 0 1 6

0 1 1 0 0 1 0 7

color = 3

The main idea of the developed algorithm

А =

1 2 3 4 5 6 7

0 0 1 1 1 1 1 1

1 1 0 1 0 0 1 2

0 0 0 0 0 0 0 3

0 0 0 0 0 0 0 4

0 0 0 0 0 0 0 5

0 0 0 0 0 0 0 6

0 0 0 0 0 0 0 7

C =

1 2 3 4 5 6 7

0 0 1 1 0 1 0 1

0 0 1 0 1 0 1 2

1 1 0 1 0 0 1 3

1 0 1 0 0 1 0 4

0 1 0 0 0 1 0 5

1 0 0 1 1 0 1 6

0 1 1 0 0 1 0 7

The main idea of the developed algorithm

А = C =

A[vertex] ∨ C[color] = A[4] ∨ C[3]

1 2 3 4 5 6 7

0 0 1 1 1 1 1 1

1 1 0 1 0 0 1 2

1 0 1 0 0 1 0 3

0 0 0 0 0 0 0 4

0 0 0 0 0 0 0 5

0 0 0 0 0 0 0 6

0 0 0 0 0 0 0 7

1 2 3 4 5 6 7

0 0 1 1 0 1 0 1

0 0 1 0 1 0 1 2

1 1 0 1 0 0 1 3

1 0 1 0 0 1 0 4

0 1 0 0 0 1 0 5

1 0 0 1 1 0 1 6

0 1 1 0 0 1 0 7

vertex = 5

The main idea of the developed algorithm

А = C =

1 2 3 4 5 6 7

0 0 1 1 1 1 1 1

1 1 0 1 0 0 1 2

1 0 1 0 0 1 0 3

0 0 0 0 0 0 0 4

0 0 0 0 0 0 0 5

0 0 0 0 0 0 0 6

0 0 0 0 0 0 0 7

1 2 3 4 5 6 7

0 0 1 1 0 1 0 1

0 0 1 0 1 0 1 2

1 1 0 1 0 0 1 3

1 0 1 0 0 1 0 4

0 1 0 0 0 1 0 5

1 0 0 1 1 0 1 6

0 1 1 0 0 1 0 7

color = 2

The main idea of the developed algorithm

А = C =

1 2 3 4 5 6 7

0 0 1 1 1 1 1 1

1 1 0 1 0 0 1 2

1 0 1 0 0 1 0 3

0 0 0 0 0 0 0 4

0 0 0 0 0 0 0 5

0 0 0 0 0 0 0 6

0 0 0 0 0 0 0 7

1 2 3 4 5 6 7

0 0 1 1 0 1 0 1

0 0 1 0 1 0 1 2

1 1 0 1 0 0 1 3

1 0 1 0 0 1 0 4

0 1 0 0 0 1 0 5

1 0 0 1 1 0 1 6

0 1 1 0 0 1 0 7

The main idea of the developed algorithm

А = C =

A[vertex] ∨ C[color] = A[5] ∨ C[2]

1 2 3 4 5 6 7

0 0 1 1 1 1 1 1

1 1 0 1 0 1 1 2

1 0 1 0 0 1 0 3

0 0 0 0 0 0 0 4

0 0 0 0 0 0 0 5

0 0 0 0 0 0 0 6

0 0 0 0 0 0 0 7

1 2 3 4 5 6 7

0 0 1 1 0 1 0 1

0 0 1 0 1 0 1 2

1 1 0 1 0 0 1 3

1 0 1 0 0 1 0 4

0 1 0 0 0 1 0 5

1 0 0 1 1 0 1 6

0 1 1 0 0 1 0 7

vertex = 6

The main idea of the developed algorithm

А = C =

1 2 3 4 5 6 7

0 0 1 1 1 1 1 1

1 1 0 1 0 1 1 2

1 0 1 0 0 1 0 3

0 0 0 0 0 0 0 4

0 0 0 0 0 0 0 5

0 0 0 0 0 0 0 6

0 0 0 0 0 0 0 7

1 2 3 4 5 6 7

0 0 1 1 0 1 0 1

0 0 1 0 1 0 1 2

1 1 0 1 0 0 1 3

1 0 1 0 0 1 0 4

0 1 0 0 0 1 0 5

1 0 0 1 1 0 1 6

0 1 1 0 0 1 0 7

color = 4

The main idea of the developed algorithm

А = C =

1 2 3 4 5 6 7

0 0 1 1 1 1 1 1

1 1 0 1 0 1 1 2

1 0 1 0 0 1 0 3

0 0 0 0 0 0 0 4

0 0 0 0 0 0 0 5

0 0 0 0 0 0 0 6

0 0 0 0 0 0 0 7

1 2 3 4 5 6 7

0 0 1 1 0 1 0 1

0 0 1 0 1 0 1 2

1 1 0 1 0 0 1 3

1 0 1 0 0 1 0 4

0 1 0 0 0 1 0 5

1 0 0 1 1 0 1 6

0 1 1 0 0 1 0 7

The main idea of the developed algorithm

А = C =

A[vertex] ∨ C[color] = A[6] ∨ C[4]

1 2 3 4 5 6 7

0 0 1 1 1 1 1 1

1 1 0 1 0 1 1 2

1 0 1 0 0 1 0 3

1 0 0 1 1 0 1 4

0 0 0 0 0 0 0 5

0 0 0 0 0 0 0 6

0 0 0 0 0 0 0 7

1 2 3 4 5 6 7

0 0 1 1 0 1 0 1

0 0 1 0 1 0 1 2

1 1 0 1 0 0 1 3

1 0 1 0 0 1 0 4

0 1 0 0 0 1 0 5

1 0 0 1 1 0 1 6

0 1 1 0 0 1 0 7

vertex = 7

The main idea of the developed algorithm

А = C =

1 2 3 4 5 6 7

0 0 1 1 1 1 1 1

1 1 0 1 0 1 1 2

1 0 1 0 0 1 0 3

1 0 0 1 1 0 1 4

0 0 0 0 0 0 0 5

0 0 0 0 0 0 0 6

0 0 0 0 0 0 0 7

1 2 3 4 5 6 7

0 0 1 1 0 1 0 1

0 0 1 0 1 0 1 2

1 1 0 1 0 0 1 3

1 0 1 0 0 1 0 4

0 1 0 0 0 1 0 5

1 0 0 1 1 0 1 6

0 1 1 0 0 1 0 7

color = 3

The main idea of the developed algorithm

А = C =

1 2 3 4 5 6 7

0 0 1 1 0 1 0 1

0 0 1 0 1 0 1 2

1 1 0 1 0 0 1 3

1 0 1 0 0 1 0 4

0 1 0 0 0 1 0 5

1 0 0 1 1 0 1 6

0 1 1 0 0 1 0 7

1 2 3 4 5 6 7

0 0 1 1 1 1 1 1

1 1 0 1 0 1 1 2

1 0 1 0 0 1 0 3

1 0 0 1 1 0 1 4

0 0 0 0 0 0 0 5

0 0 0 0 0 0 0 6

0 0 0 0 0 0 0 7

The main idea of the developed algorithm

А = C =

A[vertex] ∨ C[color] = A[7] ∨ C[3]

1 2 3 4 5 6 7

0 0 1 1 1 1 1 1

1 1 0 1 0 1 1 2

1 1 1 0 0 1 0 3

1 0 0 1 1 0 1 4

0 0 0 0 0 0 0 5

0 0 0 0 0 0 0 6

0 0 0 0 0 0 0 7

1 2 3 4 5 6 7

0 0 1 1 0 1 0 1

0 0 1 0 1 0 1 2

1 1 0 1 0 0 1 3

1 0 1 0 0 1 0 4

0 1 0 0 0 1 0 5

1 0 0 1 1 0 1 6

0 1 1 0 0 1 0 7

C =

vertex color

1 1

2 1

3 2

4 3

5 2

6 4

7 3

The result

1 2 3 4 5 6 7

0 0 1 1 1 1 1 1

1 1 0 1 0 1 1 2

1 1 1 0 0 1 0 3

1 0 0 1 1 0 1 4

0 0 0 0 0 0 0 5

0 0 0 0 0 0 0 6

0 0 0 0 0 0 0 7

6

1
5

2

4

7

3

C =

vertex color

1 1

2 1

3 2

4 3

5 2

6 4

7 3

The result

1 2 3 4 5 6 7

0 0 1 1 1 1 1 1

1 1 0 1 0 1 1 2

1 1 1 0 0 1 0 3

1 0 0 1 1 0 1 4

0 0 0 0 0 0 0 5

0 0 0 0 0 0 0 6

0 0 0 0 0 0 0 7

6

1
5

2

4

7

3

C =

vertex color

1 1

2 1

3 2

4 3

5 2

6 4

7 3

The result

1 2 3 4 5 6 7

0 0 1 1 1 1 1 1

1 1 0 1 0 1 1 2

1 1 1 0 0 1 0 3

1 0 0 1 1 0 1 4

0 0 0 0 0 0 0 5

0 0 0 0 0 0 0 6

0 0 0 0 0 0 0 7

6

1
5

2

4

7

3

COLOURS: 1 – {1,2}; 2 – {3,5}; 3 – {4,7}; 4 – {6}

G(V,E) V E Bit-Greedy-Color Greedy-Color speedup

brock800_4 800 207643 3869 22043 6

c-fat500-10 500 46627 1835 12333 7

C1000.9 1000 450079 6563 37622 6

dsjc500.5.col.txt 500 62624 1260 10163 8

frb30-15-5 450 83231 871 7851 9

gen400_p0.9_55 400 71820 1353 8364 6

hamming10-4 1024 434176 5423 54761 10

johnson32-2-4 496 107880 815 4501 6

keller5 776 225990 2083 21203 10

MANN_a9 45 918 36 804 22

p_hat1000-3 1000 371746 6550 25553 4

san1000 1000 250500 3315 20426 6

sanr400_0.7 400 55869 1406 5335 4

Experimental results: speed
time, ms (for 10000 runs)

Advantages of the developed algorithm :

the usage of the bit representations of the
adjacency and forbidden colors matrices;

bitwise disjunction operation on the rows of the
adjacency and forbidden colors matrixes.

 average acceleration- 6.8 times

Pseudo code

begin
for i=0 to color
 for c=0 to n
 neighbors= count_number_of_neighbors(A,vertex);

 if neighbors >= 2 then
break;

 end if
 if neighbors =1 then
 for g=0 to color

 value=find _neighbor_to_exchange_colors_with(c,C,g);
end for

 end if
 end for
 Ccolor := Ccolor ˅ Aj;
end for
end

Procedure Recoloring(A,C,n,vertex,color)

Recoloring algorithm

3,5

1,2

4,7

6

try to recolor 6-th vertex – it is only one in the color class

Recoloring algorithm

3,5

1,2

4,7

1 2 3 4 5 6 7

0 0 1 1 0 1 0 1

0 0 1 0 1 0 1 2

1 1 0 1 0 0 1 3

1 0 1 0 0 1 0 4

0 1 0 0 0 1 0 5

1 0 0 1 1 0 1 6

0 1 1 0 0 1 0 7

А =

Step 1:

count the number of
neighbors of the 6th vertex
in each color class

Recoloring algorithm

3,5

1,2

4,7

1 2 3 4 5 6 7

0 0 1 1 0 1 0 1

0 0 1 0 1 0 1 2

1 1 0 1 0 0 1 3

1 0 1 0 0 1 0 4

0 1 0 0 0 1 0 5

1 0 0 1 1 0 1 6

0 1 1 0 0 1 0 7

А =

Step 1:

count the number of
neighbors of the 6th vertex
in each color class

Recoloring algorithm

Step 1:

count the number of
neighbors of the 6th vertex
in each color class

3,5

1,2

4,7

1 2 3 4 5 6 7

0 0 1 1 0 1 0 1

0 0 1 0 1 0 1 2

1 1 0 1 0 0 1 3

1 0 1 0 0 1 0 4

0 1 0 0 0 1 0 5

1 0 0 1 1 0 1 6

0 1 1 0 0 1 0 7

А =

Recoloring algorithm

3,5

1,2

4,7

1 2 3 4 5 6 7

0 0 1 1 0 1 0 1

0 0 1 0 1 0 1 2

1 1 0 1 0 0 1 3

1 0 1 0 0 1 0 4

0 1 0 0 0 1 0 5

1 0 0 1 1 0 1 6

0 1 1 0 0 1 0 7

А =

Step 1:

count the number of
neighbors of the 6th vertex
in each color class

Recoloring algorithm

Step 2:

consider only
color classes with
only one neighbor

3,5

1,2

if 0 – the vertex would be in
that color class

if more than 1 – the
elements in the color class
wouldn’t be independent

Recoloring algorithm

Step 2:

consider only
color classes with
only one neighbor

3,5

1,2

if 0 – the vertex would be in
that color class

if more than 1 – the
elements in the color class
wouldn’t be independent

Step 3:

take the vertices
from that classes
which are the
neighbors of the 6th

Recoloring algorithm

Step 4:

for vertices 1 and 5
check if they can be
recolored

 C =

1 2 3 4 5 6 7

0 0 1 1 1 1 1 1

1 1 0 1 0 1 1 2

1 1 1 0 0 1 0 3

1 0 0 1 1 0 1 4

0 0 0 0 0 0 0 5

0 0 0 0 0 0 0 6

0 0 0 0 0 0 0 7

Recoloring algorithm

Step 4:

for vertices 1 and 5
check if they can be
recolored

 C =

1 2 3 4 5 6 7

0 0 1 1 1 1 1 1

1 1 0 1 0 1 1 2

1 1 1 0 0 1 0 3

1 0 0 1 1 0 1 4

0 0 0 0 0 0 0 5

0 0 0 0 0 0 0 6

0 0 0 0 0 0 0 7

don’t take into account
the last color class

containing the 6th vertex

Recoloring algorithm

Step 4:

for vertices 1 and 5
check if they can be
recolored

C =

1 2 3 4 5 6 7

0 0 1 1 1 1 1 1

1 1 0 1 0 1 1 2

1 1 1 0 0 1 0 3

5th vertex can be recolored

Recoloring algorithm

Step 5:

new color for the 5th
vertex is № 3:

• move the 5th vertex
to the 3rd color class

• assign the 6th vertex
color №2 – former
color of the 5th vertex

3,6

1,2

4,5,7

6

1
5

2

4

7

3

G(V,E) V E GC + recolor BGC + recolor speedup

brock200_4 200 13089 1415 383 3,7

c-fat500-1 500 4459 4634 298 15,6

C500.9 500 112332 4023 3064 1,3

frb30-15-2 450 83151 4039 221 18,3

gen400_p0.9_65 400 71820 6388 1562 4,1

hamming6-4 64 704 464 10 46,4

johnson8-2-4 28 210 145 4 36,3

MANN_a9 45 918 336 12 28,0

dsjc500.1.col.txt 500 12458 3036 428 7,1

p_hat500-3 500 93800 7267 3047 2,4

san200_0.9_3 200 17910 1693 226 7,5

sanr400_0.5 400 39984 4211 841 5,0

Experimental results: speed
time, ms (for 1000 runs)

average acceleration- 5 times

jean.col 80 254 10 10 10 10 10

queen13_13.col 169 6656 13 21 21 20 20

queen15_15.col 225 10360 15 25 25 23 23

myciel3.col 11 20 4 4 4 4 4

myciel7.col 191 2360 8 8 8 8 8

mulsol.i.3.col 184 3916 31 31 31 31 31

mulsol.i.5.col 185 3973 31 31 31 31 31

zeroin.i.2.col 211 3541 30 30 30 30 30

zeroin.i.3.col 206 3540 30 30 30 30 30

anna.col 138 493 11 12 12 11 11

david.col 87 406 11 12 12 12 12

fpsol2.i.3.col 425 8688 30 30 30 30 30

games120.col 120 638 9 10 10 9 9

homer.col 561 1629 13 15 15 13 13

huck.col 74 301 11 11 11 11 11

Experimental results: quality

THANK YOU

for your attention!

vertices 500 1000 5000 10000

density usual bool bit usual bool bit usual bool bit usual bool bit

0.01 1135,94 328,78 15,26 2377,93 1323,83 55,63 17821,60 32674,00 1259,33 16880,00 65455,50 6400,50

0.1 1030,44 332,57 17,24 2231,97 1331,53 62,43 16302,62 32767,60 1353,47 15250,00 65913,00 6660,00

0.2 956,34 333,76 18,80 2148,63 1332,70 68,07 15496,82 32942,40 1468,27

0.3 709,38 327,72 20,45 1733,77 1343,90 74,47 15660,89 33554,22 1605,93

0.4 574,52 329,06 22,21 1380,57 1353,17 80,63 14242,80 34632,00 1778,00

0.5 471,52 330,09 24,09 1181,80 1323,37 88,00 13635,00 35568,00 1986,67

0.6 399,44 332,60 26,21 1017,13 1333,30 96,60 13614,60 38034,00 2641,33

0.7 342,56 334,84 28,95 870,33 1337,43 110,07 14111,00 40092,00 3150,67

0.8 282,64 338,33 32,43 749,53 1349,33 128,70

0.9 229,68 344,26 37,30 607,10 1369,50 159,33

0.99 175,82 358,24 51,23 539,80 1447,27 245,83

vertices 500 1000 5000 10000

density speedup

0.01 74,43 42,74 14,15 2,64

0.1 59,76 35,75 12,05 2,29

0.2 50,87 31,57 10,55

0.3 34,69 23,28 9,75

0.4 25,86 17,12 8,01

0.5 19,57 13,43 6,86

0.6 15,24 10,53 5,15

0.7 11,83 7,91 4,48

0.8 8,72 5,82

0.9 6,16 3,81

0.99 3,43 2,20

DSJ: Random graphs used in David Johnson’s paper with Aragon, McGeoch, and Schevon
DSJR are geometric graphs, with being complements of geometric graphs.
CUL: Quasi-random coloring problem.
REG: Problem based on register allocation for variables in real codes.
LEI: Leighton graphs with guaranteed coloring size.
SCH:Class scheduling graphs, with and without study halls.
LAT: Latin square problem.
SGB: Graphs from Donald Knuth's Stanford GraphBase. These can be divided into:

Book Graphs. Given a work of literature, a graph is created where each node represents a character. Two
nodes are connected by an edge if the corresponding characters encounter each other in the book. Knuth
creates the graphs for five classic works: Tolstoy's Anna Karenina (anna), Dicken's David Copperfield
(david), Homer's Iliad (homer), Twain's Huckleberry Finn (huck), and Hugo's Les Mis\'erables (jean).

Game Graphs. A graph representing the games played in a college football season can be represented by
a graph where the nodes represent each college team. Two teams are connected by an edge if they played
each other during the season. Knuth gives the graph for the 1990 college football season.

Miles Graphs. These graphs are similar to geometric graphs in that nodes are placed in space with two
nodes connected if they are close enough. These graphs, however, are not random. The nodes represent a
set of United States cities and the distance between them is given by by road mileage from 1947. These
graphs are also due to Kuth.

Queen Graphs. Given an n by n chessboard, a queen graph is a graph on n^2 nodes, each corresponding
to a square of the board. Two nodes are connected by an edge if the corresponding squares are in the
same row, column, or diagonal. Unlike some of the other graphs, the coloring problem on this graph has a
natural interpretation: Given such a chessboard, is it possible to place n sets of n queens on the board so
that no two queens of the same set are in the same row, column, or diagonal? The answer is yes if and
only if the graph has coloring number n. Martin Gardner states without proof that this is the case if and
only if n is not divisible by either 2 or 3. In all cases, the maximum clique in the graph is no more than n,
and the coloring value is no less than n.

MYC: Graphs based on the Mycielski transformation. These graphs are difficult to solve because they are
triangle free (clique number 2) but the coloring number increases in problem size.

Coloring methods

vertex coloring edge coloring

