Condorset's paradox and probability of its occurence

Sergey Verentsov

Higher School of Economics
07.11.2014
49% vote for A, tolerate B and hate C 30% vote for C, tolerate B and hate A 21% vote for B, tolerate C and hate A
49% vote for A, tolerate B and hate C 30% vote for C, tolerate B and hate A 21% vote for B, tolerate C and hate A

Simple majority: A wins -49% of voters are satisfied.
49% vote for A, tolerate B and hate C 30% vote for C, tolerate B and hate A 21% vote for B, tolerate C and hate A

Simple majority: A wins -49% of voters are satisfied.
Two-round system: C wins - 51% satisfied.

$\mathrm{A}>\mathrm{B}>\mathrm{C}$	5
$\mathrm{~A}>\mathrm{C}>\mathrm{B}$	4
$\mathrm{~B}>\mathrm{A}>\mathrm{C}$	2
$\mathrm{~B}>\mathrm{C}>\mathrm{A}$	8
$\mathrm{C}>\mathrm{A}>\mathrm{B}$	8
$\mathrm{C}>\mathrm{B}>\mathrm{A}$	2

B beats C by 1 vote
C beats A by 7 votes
A beats B by 5 votes

$\mathrm{A}>\mathrm{B}>\mathrm{C}$	a
$\mathrm{A}>\mathrm{C}>\mathrm{B}$	b
$\mathrm{B}>\mathrm{A}>\mathrm{C}$	c
$\mathrm{B}>\mathrm{C}>\mathrm{A}$	d
$\mathrm{C}>\mathrm{A}>\mathrm{B}$	e
$\mathrm{C}>\mathrm{B}>\mathrm{A}$	f

A beats B by $a+b+e-c-d-f$ votes
A beats C by $a+b+c-d-e-f$ votes

$$
p(K)=1-3 \cdot \sum_{i=0}^{M} \sum_{j=0}^{M-i} \sum_{k=0}^{M-i} \frac{N!}{i!\cdot j!\cdot k!\cdot(N-i-j-k)!} \cdot\left(\frac{1}{3}\right)^{i} \cdot\left(\frac{1}{6}\right)^{j} \cdot\left(\frac{1}{6}\right)^{k} \cdot\left(\frac{1}{3}\right)^{N-i-j-k} \quad ; \quad M=\left[\frac{N-1}{2}\right]
$$

