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Hierarchical complex systems

Hierarchy is observed or postulated in many complex systems

several levels of grouping of the entities ⇒ multilevel structure

different levels of organization/structure at different scales

partitions can be hierarchically ordered

Example
Social network of children living in the same town:
one could group the children according to the schools they attend,
within each school one can make a subdivision into classes, etc.
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Hierarchies
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Hierarchical graph clustering heuristics

Hierarchical heuristics are in principle devised for

finding a hierarchy of partitions implicit in the given network

They aim at finding a set of nested partitions.

Agglomerative heuristics

Divisive heuristics
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Agglomerative and Divisive heuristics

Agglomerative heuristics
Proceed from an initial partition with n communities each containing 1 entity

Iteratively merge the pair of entities for which merging increases most the
objective function (e.g., modularity)
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Agglomerative and Divisive heuristics

Divisive heuristics
Proceed from an initial partition containing all entities

Iteratively divide a cluster into two in such a way to increase most the objective
function (or the decrease in the objective value is the smallest possible)

critical point:
bipartitioning a cluster
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Hierarchical heuristics

Bottom-up and Top-down procedures illustrated by means of dendrograms:

horizontal cuts correspond to partitions of the graph in communities

Sometimes, stopping conditions are imposed to select a partition or a group of partitions satisfy-
ing a special criterion:
- a given number of clusters
- the optimization of a quality function (e.g. modularity).
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Hierarchical heuristics

Hierarchical heuristics

Advantages:

does not require a preliminary knowledge on the number and size of the clusters

specially suitable for hierarchical systems

Disadvantages:

does not provide a way to discriminate between the obtained partitions

the results depend on the specific similarity measure adopted

yields a hierarchical structure by construction, which is rather artificial for graphs

not having a hierarchical structure
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Hierarchical agglomerative and divisive

Agglomerative
choosing at each iteration which pair of communities should be merged is easy:
consider all O(n2) mergings of pairs of entities
a careful use of data structures often reduces complexity

Divisive
finding a bipartition locally optimizing the adopted criterion is more difficult
(example: modularity is NP-hard even for 2 clusters)
bipartitioning requires a specific algorithm

In both cases, no guarantee that the partitions are optimal
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Modularity

Newman and Girvan, 2004:

compare the fraction of edges falling within communities
to the expected fraction of such edges

Modularity:
Q =

∑
s

[as − es]

as = fraction of all edges in module s

es = expected value of the same quantity in a graph with same vertex degree
and edges placed at random

Q ≈ 0 : the network is equivalent to a random network (barring fluctuations)
Q ≈ 1 : the network has a strong community structure
in practice, max Q often between 0.3 and 0.7

Maximizing modularity gives an optimal partition with the optimal number of clusters
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Modularity: another expression

Modularity as a sum of values over all edges of the complete graph Kn:

Q =
1

2m

∑
i,j∈V

(
aij −

kikj

2m

)
δ(ci, cj)

where:
m = |E|

ki, kj = degrees of vertices i and j

aij = ij component of the adjacency matrix of G

δ(ci, cj) = 1 if the communities to which i and j belong are the same,
0 otherwise (Kronecker symbol)

kikj/2m = expected number of edges between vertices i and j in a null model
where edges are placed at random and the distribution of degrees
remains the same.
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Building agglomerative modularity heuristics

Usually greedy

Decision which clusters should be merged based on:

cluster C, cluster C′ which results from the merge of Ci and Cj of C

∆Q(Ci,Cj) = Q(C,G) − Q(C′,G) = eij + eji − 2aiaj = 2(eij − aiaj)

local measure as it depends only on Ci and Cj:

eij= fraction of edges connecting Ci and Cj

ai= fraction of edges attached to vertices in Ci

Question

How to select clusters to be merged?
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Existing agglomerative modularity heuristics

Newman, 2004:

At each step, two clusters Ci and Cj get merged that have the highest ∆Q(Ci,Cj).

Slow, as ∆Q(Ci,Cj) computed for each pair of communities.

Clauset-Newman-Moore, 2004 (CNM):

∆Q(Ci,Cj) only recalculated if there is at least an edge joining Ci and Cj.

Careful use of data structures is done.

Significantly faster than Newman’s heuristic.

Schuetz and Caflisch, 2008 (MSG):

multistep greedy algorithm, builds classes of joins (= pairs of vertices) with the

same ∆Q(Ci,Cj) and sorts them in descending order. In each step all joins in the

top l classes are executed.

Faster than CNM.
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Agglomerative modularity heuristics: Remarks

Prior mergers in the neighborhood of a cluster influence later merger decisions

for this cluster

Possibly unbalanced merge processes, where some regions of the graph are

heavily more contracted than others

⇒ bad clustering results

Example
1) merging Ci = {v1} and Cj = {v4}:

eij = 1, ai = 6, aj = 6

∆Q = 2
(

1
2m
−

6
2m

6
2m

)
=

2
2m

(
1 −

6 ∗ 6
2m

)
2) merging Ci = {v1} and Cj = {v4, v5}:

eij = 2, ai = 6, aj = 12

∆Q = 2
(

2
2m
−

6
2m

12
2m

)
=

4
2m

(
1 −

6 ∗ 6
2m

)
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Agglomerative modularity heuristics: Remarks

Example 2 Star-like graph

(a) merging two vertices (b) merging vertices with the
same neighbours

(c) merging more than two
vertices at a time
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Building divisive modularity heuristics

Question

What we need to build a divisive algorithm?

Two subproblems:

Select the cluster to split (bipartition)

Solve the bipartitioning problem

Question

When using modularity?
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Existing divisive modularity heuristics (1/2)
Finding the optimal (modularity maximizing) splitting:

Newman, 2006 (spectral):

The first eigenvector of the modularity matrix B = (bij) with

bij = aij − kikj/2m

is computed. The entities corresponding to positive components of this eigenvector form

one community and the remaining ones form the other.

Kernighan-Lin heuristic (KL):

from an initial bipartition, proceed to a sequence of reassignments of one entity from a

community to the other.
- At each step, select and perform the reassignment which improves most, or

deteriorates least, the objective function value (modularity) ;

further reassignments of the moved entity are forbidden.

- Once no more reassignments are allowed, select the best partition found among the

considered partitionsas new initial partition.

- Stops the whole procedure when a full sequence of n reassignments does not lead to

any improvement.

Newman, 2006: spectral + KL:

KL used as refinement step

Sonia Cafieri (ENAC) Hierarchical network clustering November 2014 23 / 28



Existing divisive modularity heuristics (1/2)
Finding the optimal (modularity maximizing) splitting:

Newman, 2006 (spectral):

The first eigenvector of the modularity matrix B = (bij) with

bij = aij − kikj/2m

is computed. The entities corresponding to positive components of this eigenvector form

one community and the remaining ones form the other.

Kernighan-Lin heuristic (KL):

from an initial bipartition, proceed to a sequence of reassignments of one entity from a

community to the other.
- At each step, select and perform the reassignment which improves most, or

deteriorates least, the objective function value (modularity) ;

further reassignments of the moved entity are forbidden.

- Once no more reassignments are allowed, select the best partition found among the

considered partitionsas new initial partition.

- Stops the whole procedure when a full sequence of n reassignments does not lead to

any improvement.

Newman, 2006: spectral + KL:

KL used as refinement step

Sonia Cafieri (ENAC) Hierarchical network clustering November 2014 23 / 28



Existing divisive modularity heuristics (2/2)

Newman, 2006: spectral + KL:

KL used as refinement step

Cafieri et al., 2011 (CHL):

Bipartition is computed exactly solving a mixed-integer quadratic problem (MIQP),

with a convex continuous relaxation.

Modularity as objective function of the MIQP
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MIQP for modularity maximization (Xu, Tsoka and Papageorgiou, 2007)

Variables used to identify to which module each vertex and each edge belongs:

Xrs =

{
1 if edge r belongs to module s
0 otherwise ∀r = 1, 2, . . .m, s = 1, 2, . . .M

Yis =

{
1 if vertex i belongs to module s
0 otherwise. ∀i = 1, 2, . . . n, s = 1, 2, . . .M

max Q =
∑

s

[as − es] =
∑

s

ms

m
−

(
ds

2m

)2 ms = number of edges in module s
dS = sum of degrees ki of vertices in s

ms =
∑

r Xrs and dS =
∑

i kiYis∑
s Yis = 1 ∀i = 1, 2, . . . n each vertex belongs to one module

Xrs ≤ Yis ∀r = {vi, vj} ∈ E
Xrs ≤ Yjs ∀r = {vi, vj} ∈ E

any edge r = {vi, vj} can belong to module s
⇔ both of its end vertices i,j belong to s

us ≤ us−1

module s nonempty⇔ s − 1 is so
(us = 1 if module s nonempty, 0 otherwise)

symmetry-breaking constraints

⇓

Mixed-Integer Quadratic Program

with a convex continuous relaxation
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An exact algorithm for bipartition

Q =
∑

s

ms

m
−

(
ds

2m

)2 bipartition ⇒ s ∈ {1, 2}

the MIQP can be
specialized

Express d2 as a function of d1: d2 = dt − d1
(dt = sum of degrees in the community to be bipartitioned)

⇒ Modularity: Q =
m1 + m2

m
−

d2
1

4m2 −
d2

t

4m2 +
dtd1

2m2

Bipartitioning model:

max Q

Xr1 ≤ Yi1 ∀r = {vi, vj} ∈ E

Xr1 ≤ Yj1 ∀r = {vi, vj} ∈ E

Xr2 ≤ 1 − Yi1 ∀r = {vi, vj} ∈ E

Xr2 ≤ 1 − Yj1 ∀r = {vi, vj} ∈ E

ms =
∑

r Xrs ∀s ∈ {1, 2}

d1 =
∑

i∈V1
kiYi1

MIQP
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CHL hierarchical divisive algorithm

Bipartitioning problem:

Mixed-Integer Quadratic Program

with a single non linear but concave term, in the obj.funct. to be maximized

⇒ continuous relaxation easy to solve ⇒ exactly solved using CPLEX

Hierarchical divisive algorithm:
divisive scheme

splitting step performed using the above exact algorithm for bipartition

⇒ the proposed heuristic is locally optimal (but not globally optimal)

Finding:

the algorithm performs better than the main existing hierarchical algorithms

(agglomerative by Clauset et al., divisive spectral by Newman)
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Closing question

Question

Can cohesion conditions, mixed to modularity,

be used to build hierarchical heuristics?

Future research direction!
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