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In all cases we are interested in mesoscopic system behavior, derived
from the known microscopic dynamics.
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Clustering in Graphs = Community Structure

m Graph G = (V, E) and let |V(G)| = n while
|E(G)| =m

m AclusteringC = {G, G, .. ., Ck}is a
partition of V/(G)

m The C; € C are the clusters

m C partitions also |E(G)| into:

m extra-cluster edges denoted E~(G,C)

m intra-cluster edges denoted E1(G,C)

A network exhibits community structure, if there is a partition of the
vertices into groups where the density of edges joining the vertices
within the groups is higher than the density of edges joining the
groups themselves
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Comparing clusterings

Definition (Jaccard similarity coefficient)
Given G(V/, E) and two clusterings C1, C let

= number of vertex pairs which belong to same cluster in both C; and C;

i
aio = number of vertex pairs which belong to same cluster in C; only
a1 = number of vertex pairs which belong to same cluster in Co only

The Jaccard similarity coefficient is defined as

i1
aio+ ao1+ a1

J(C1,C) =
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Comparing clusterings

Definition (Jaccard similarity coefficient)
Given G(V/, E) and two clusterings C1, C let

= number of vertex pairs which belong to same cluster in both C; and C;

i
aio = number of vertex pairs which belong to same cluster in C; only
a1 = number of vertex pairs which belong to same cluster in Co only

The Jaccard similarity coefficient is defined as

i1
aio+ado1+ a1

J(C1,C) =

m J(C1,C) € [0, 1] with higher values directly proportional to similarity
B more exact algebraic metric for clusterings in Pitsoulis Nanscimento (COR 2013)
but requires O(n?) time.
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Distance between clusterings

Definition

A matrix S = (s;) € {0, 1}**" is called a basic clustering matrix if
1) it has no zero rows
i) Zf;ls,-jzlforalljzl,...,n

iii) if s; is the first nonzero element of row / then s =0 for /=i+1,...,nand
t=1,....J.

If only conditions i) and ii) are satisfied then the matrix is called clustering matrix.




Quality Functions in Graph Clustering = Preliminaries

Distance between clusterings

Definition

A matrix S = (s;) € {0, 1}**" is called a basic clustering matrix if
1) it has no zero rows
i) Zf;ls,-jzlforalljzl,...,n

iii) if s; is the first nonzero element of row / then s =0 for /=i+1,...,nand
t=1,....J.

If only conditions i) and ii) are satisfied then the matrix is called clustering matrix.

= there is a one-to-one correspondence between the set of clusterings of size k and the
{0, 1}**" basic clustering matrices




Distance between clusterings

Definition

A matrix S = (s;) € {0, 1}**" is called a basic clustering matrix if
1) it has no zero rows
i) Zf;ls,-jzlfor allj=1,..., n

iii) if s; is the first nonzero element of row j then s =0 for I =i+1,..., n and
t=1,..., J.

If only conditions i) and ii) are satisfied then the matrix is called clustering matrix.

= there is a one-to-one correspondence between the set of clusterings of size k and the
{0, 1}**" basic clustering matrices

Given any two clustering matrices S € {0, 1}%*"7 and T € {0, 1}*2*" we define their
difference set as the set

AS T)={i:S;#Tpi=1,... min{k,k}j=1.n}

which is the set of columns that these matrices differ.




Distance beween clusterings

The distance between any two basic clustering matrices S € {0, 1}¥*" and
52 € {0, 1}%X" is thus defined as

d(S*, S?) := min{|A(S, T)| : S € M(S), T € M(S?)}.
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Distance beween clusterings

The distance between any two basic clustering matrices S € {0, 1}¥*" and
52 € {0, 1}%X" is thus defined as

d(S*, S?) := min{|A(S, T)| : S € M(S), T € M(S?)}.

= d(S?, S?) is the minimum number of moves of elements between the clusters in the
clusterings associated with the basic clustering matrices S! and S?, needed to transform
one clustering to another

Lemma

For some graph G(V/, E) and any three clusterings C1, Co and Cs the following
statements are true:

) d(Se,. Se,) = 0 with equality iff Se, = Se,
) d(Se;, Se,) = d(Se,. Se;)
i) d(Se,. Se,) + d(Sc,. Ses) = d(Se, . Se,)
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Clusterings - Distance

Problem: direct computation of the distance requires (min{k1, k2})! steps.

Proposition (Pitsoulis & Nascimento (COR 2013))

Given two basic clustering matrices S* € {0, 1}K*" and S? € {0, 1}%*" their distance
d(S?t, S2) can be computed in O(k3) time, where k := min{ky, ko }.

Proof.

Given the two basic clustering matrices S* = (sj) and % = (s7), construct a k x k
cost matrix C = (¢j)

fori,j=1,..., k. Then optimum solution to related LAP gives the distance. O
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Say we have n = 10 vertices and two clusterings

C1 = {{1,4,5},{2} {3,8}.{6, 7}, {9, 10}},
C> = {{1,2,9} {3,8}, {4,5,10}, {6, 7}}

Then the basic clustering matrices

1 0 01 1.0 0 0 0O 11000000 10
0 1 0 0 OO OO0 O0TDO
001 00 0 O 1 0O
Se,=10 01 0 0 0 0 1 0 0],S,=
0 0 01 1.0 0 O0O0 1
00 00O O 1 1 0 0O 000001100 0
00 00O 0 0 OO0 1 1
For the distance computation
4 [2] 5 =5
c—| 58 3 [of 4
2] 4 4 5
5 3 4 [0]
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So the optimum permutation is p = (3, 1, 2,4) and

0001 1O0O0O0O01
S_1100000010
0010000100

0 000011000

So we have A*(S¢,, S¢,) = A(Se,, S) = {1,9, 10}, which implies that d(S¢,, Se,) = 3.
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m d: X x X — R is a distance function:
midx,y)>0Vx,yeX

mii. dx,y)=0iffx=y

miii. d(x,y)=d(y,x)
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Distance based clustering

X ={x,x,..., X} is a data set o..

m d: X x X — R is a distance function: 10 ® i ‘
\ § o

i dxy)>0VxyeX . e o

mii. d(x,y) =0iff x=y — 3 e
e X

miii. d(x,y)=d(y,x) o A

m A clustering C is a partition of X R
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Clustering functions

Definition
m A clustering function is a function F which given a data set X and a distance
function d it returns a partition C of X.

F:(X.d)—>C

m A clustering quality function is any function Q which given a data set X, a
partioning C of X and a distance function d it returns a real number.

Q:(X.d,C) =R
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Clustering functions

Definition
m A clustering function is a function F which given a data set X and a distance
function d it returns a partition C of X.

F:(X.d)—>C

m A clustering quality function is any function Q which given a data set X, a
partioning C of X and a distance function d it returns a real number.

Q:(X.d,C) =R

Given @ we can define F as the extrema

F(X,d) =argmax Q(X,d,C)
c

= any property of clustering functions can stated for clustering quality functions
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Kleinberg's Impossibility Theorem

Kleinberg's axioms for clustering functions F(X, d)

i. Scale Invariance: F produces the same clustering if distances between points are
scaled uniformly.

ii. Richness: if any clustering of the points can be produced by modifying the
distances between the points.

iii. Consistency: for any clustering that F produces, decreasing inner cluster distances
or increasing outer cluster distances gives a set of points that F produces the
same clustering.
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Kleinberg's Impossibility Theorem

Kleinberg's axioms for clustering functions F(X, d)

i. Scale Invariance: F produces the same clustering if distances between points are
scaled uniformly.

ii. Richness: if any clustering of the points can be produced by modifying the
distances between the points.

iii. Consistency: for any clustering that F produces, decreasing inner cluster distances
or increasing outer cluster distances gives a set of points that F produces the
same clustering.

Theorem (Kleinberg (NIPS 2002))

There is no clustering function that satisfies scale invariance, richness and consistency
at the same time.
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Consistency through quality functions

Ackerman and Ben-David (NIPS 2009) properties for quality functions.

i. Scale Invariance: Q is scale invariant if for every clustering C of (X, d) and every
positive A
Q(X,d,C) = Q(X,\d,C)

ii. Richness: Q is rich if for any C* of X there exists some d over X such that

C* =argmax Q(X, d,C)
c

iii. Consistency: Q is consistent if for any C of X, if d¢ corresponds to d where intra
(extra) cluster distances are decreased (increased) then

Q(X,d,C) > Q(X, de,C)
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Consistency through quality functions

Ackerman and Ben-David (NIPS 2009) properties for quality functions.

i. Scale Invariance: Q is scale invariant if for every clustering C of (X, d) and every

positive A
Q(X,d,C) = Q(X,\d,C)

ii. Richness: Q is rich if for any C* of X there exists some d over X such that

*=argmax Q(X, d,C)
c

iii. Consistency: Q is consistent if for any C of X, if d¢ corresponds to d where intra
(extra) cluster distances are decreased (increased) then

Q(X,d,C) > Q(X, de,C)

m presented a number of quality functions which constitute the above set of axioms
consistent

m propose a set of axioms which include relaxations of the above plus isomorphism
invariance

m the above results can be extended to graph clustering quality functions
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Properties of graph clustering quality functions

We have identified the following properties

Iv.

V.

Vi.
Vil.

viii.

Isomorphism invariance
Scale invariance
Richness

Monotonicity
Perfectness
Connectivity

Convexity

Complementarity

. Resolution limit free

Axioms for graph clustering
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Isomorphism

Property (Isomorphism invariance)

A quality function Q is isomorphism invariant if for any pair of isomorphic graphs
G = G, with isomorphism ¢, we have

Q(G1,C) = Q(Gy, ¢(C)),  forall ¢ 2!V (1)

where ¢(C) = {{¢(v): ve C}: C eC}.

quality function values of two isomorphic graphs should be equal for clusterings under
the same isomorphism
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Scaling

Property (Scale invariance)

A quality function Q is scale invariant /f for a graph G with weight function
w: E(G) — R and a constant a > 0, we have

Q(G.C) = Q(aG,C), forall ¢ €2V (2)

where the weighted graph aG is defined as E(aG) = E(G), V(aG) = V(G) with
weight function z(e) = aw(e), e € E(aG).

quality function should be invariant under a uniform scaling of the edge weights in a
graph
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Richness

Property (Richness)

A quality function Q is rich if for any finite set of vertices \/ and a partition C* € 2!VI
there exists a set of edges E such that for G = (V, E)

C* =argmax{Q(G,C): C e 2V}, (3)

for any partition of a finite set VV we can find a graph with V' as its vertex set such that
the partition will be the maximum value of the clustering quality function
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Monotonicity

Property (Monotonicity)
A quality function is monotone if for any graph G, clustering C of V(G), and any
graph G’ satisfying:
() v(¢') = Vv(G),
(i) E*(G,C) CET(G'.C) and E-(G'.C) C E~(G,C),

we have

Q(G.C) < Q(G'.C).

(4)
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the value given by the quality function to a clustering upon which we delete extra-cluster
edges and/or add of intra-cluster edges should not decrease
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Perfectness

Property (Perfectness)

A quality function is perfect if for any graph G(V, E), the following are true

(i) ifC* is a clustering on V/(G) such that we cannot add an intra-cluster edge nor
remove an extra-cluster edge, then

Q(G,C*) =max{Q(G',C) : all G’ such that V(G') = V,C € 2IVI}.

(ii) ifC* is a clustering on V/(G) such that we cannot add an extra-cluster edge nor
remove an intra-cluster edge, then

Q(G,C*) =min{Q(G',C) : all G’ such that V(G') = V,C € 2IVI}.

quality function should provide the maximum value among all possible graphs and
clusterings on this vertex set
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Connectivity

Property (Connectivity)

Let a graph G, a clustering C that contains a dissconnected cluster C with a partition
{G. G, ..., Cx} such that G[(4], ..., G[Ck] are the connected components of G[(],
and a clustering D obtained from C by replacing C with {Cy, Gy, . . ., Ck}. A quality
function Q is called connected if for any such triple G,C, D we have

Q(G,C) < Q(6.D)

minimum requirement for a cluster to be be classified as a community is that the
associated induced subgraph should be connected
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Convexity

Definition
Given a graph G(V, E) some set of vertices X C V/(G) is called convex in G if for any
pair of vertices v, w € X the shortest v — w path contains vertices only from X.

Property (Convexity)

Let a graph G, a clustering C that contains a nonconvex cluster C with a partition
{G, G, .., Ck} such that Cy, ..., Ci are convex, and a clustering D obtained from C
by replacing C with {Cy, Gy, .. ., Ck}. A quality function Q is called convex if for any
such triple G,C, D we have

Q(G,C) < Q(G,D)
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Complentarity

Property (Complementarity)

A quality function Q is complementary if for any graph G, its complement G, and any

clustering C of V(G), _
Q'(G,.C)=1-Q@(G.C)

where Q' the function which results as a uniform scaling on the range of Q in the

interval [0, 1].
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Complentarity

Property (Complementarity)

A quality function Q is complementary if for any graph G, its complement G, and any
clustering C of V(G), B
Q'(G,C)=1-Q(G,C)

where Q' the function which results as a uniform scaling on the range of Q in the
interval [0, 1].
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Resolution-limit-free

Introduced by Traag, van Dooren, and Nesterov (2011)

Property (Resolution-limit-freedom)

LetC={C, G, ..., Ck} be a Q-optimal clustering of a graph G, for some quality
function Q. Then, Q is called resolution-limit-free if for each subgraph of G induced
by D C C, the partition D is also Q-optimal.

attempt to rigorously define the resolution limit of some quality functions




Axiomatic system

Consider that we have an axiomatic system say AQF. Then it should be:
m consistent: there exists at least one quality function which satisfies all axioms

m independent: there does not exist a set of axioms A of AQF and an axiom A of
AQF such that A %A A.




Quality Functions in Graph Clustering = Axioms for graph clustering

Axiomatic system

Consider that we have an axiomatic system say AQF. Then it should be:
m consistent: there exists at least one quality function which satisfies all axioms

m independent: there does not exist a set of axioms A of AQF and an axiom A of
AQF such that A %A A.

But we would like to have results of the form

Theorem

Let Q1 and Q, be two graph clustering quality functions which satisfy AQF and G a
graph. Then

argmax{@(G,C):C € 2|V(G)I} =argmax{@(G,C):C € 2|V(G)I}.
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Graph clustering quality functions

We have examined the following types of graph clustering quality functions
i.

ii.
ii.
iv.

V.

modularity
density
distance

node membership

connectivity

Graph clustering quality functions
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Graph clustering quality functions

We have examined the following types of graph clustering quality functions

i
ii.
ii.
Iv.

V.

modularity
density

distance

node membership

connectivity

m all functions other than the modularity are new

m in each type of function we can formulated it based on a random model
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Modularity

Modularity is a quality function introduced by Newman and Girvan that quantifies the
community structure by providing a value for every clustering of a given graph.

m Newman MJ, Girvan M. Finding and evaluating community structure in networks,
Physical Review E 2004, 69(026113).




Quality Functions in Graph Clustering

Graph clustering quality functions Modularity based

Modularity - Main ldea

Employ a random graph on the same vertex set that does not have any community

structure and compare the edge densities of the clusters in the original graph and the
random graph.
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Modularity - Main ldea

Employ a random graph on the same vertex set that does not have any community

structure and compare the edge densities of the clusters in the original graph and the
random graph.

The modularity of a clustering C for some graph G, is defined by the following
normalized sum of differences

Qn(C. 6) = 5= 5" " (@~ my)

ceCijecC

B a; = number of edges between vertices i and j in G

m pj = is the expected number of edges between vertices i and j in the random graph
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Modularity - Main ldea

Question: How do we define the random graph (equivalently the p;) ?

v(G) O H 0O

7 AY
AN AR SN
4 1 \ \\-
/ \
4 Ay
’ /? \? N
_—— - - - X
0 O @o=or===t==—9)
3 \?/? R
~ -1
P N /
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Modularity - the Random Graph

Random Graph Property: Keep the same degree distribution as in the original graph

G H o
e
’ N
sV N
0063 , 10042
’ A N
7 0063 0021 N
, /sz\ N
scodSEE Lo oo
}&) Cz--; .---0
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Modularity - the Random Graph

Random Graph Property: Keep the same degree distribution as in the original graph

on
VAR
sV N
0063,” ;| T\0022
’ 0 A N
7 0063 0021 N
, 1 \ N
SR 0 G2 | R,
Cz--; .---0
’
/

AN -

o
[ \

({Z Voo Yo/
|_O Cj__ﬁoz_l__o

Random graph H will have V(H) = V(G) and E(G) defined by

Priij) e E(H) = 2el) . del)

2m 2m
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Modularity - the Random Graph

Random Graph Property: Keep the same degree distribution as in the original graph

G H o
e
’ N
s VN
0063,” ;| T\0022
’ A N
, v N

[ \
({ Z \C,)/’o.mz Sout
|_O __602_1__0

Random graph H will have V(H) = V(G) and E(G) defined by

ds(1)  ds()
2m 2m

Pri(i.j) € E(H)] =

= expected number of edges between / and j then is

pi = 2m x Pr{(i.j) € E(H)] = 261)90)
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Modularity - unweighted graphs

we thus have

On(G.C) Z T (au :76( ))

CEC/]EC

where aj; is the number of edges between vertices i and j in G. Its is straighforward to

show that .
Qn(G.C) =3 l% - (%)

ceC

(5)

where m = |E(G)| and m¢c = |E(G[C])|, and the terms

m . .
FC . fraction of edges within cluster C

ds(C)\? _ -~
( om ) . expected fraction of edges within cluster C
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Modularity - weighted graphs

Given a weight function w : E(G) — R on the edges of a graph, we can define the
strength of a vertex i € V/(G) as

se(i)== Y w(iJ).

JjeV(G)

We can then write for the modularity of a clustering C for some weighted graph G

__seli)sel)
@m, (6.€) = 2ZeeE @ 22 ( 22 ec(©) W(e)> |

CGC ijeC
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Modularity - directed graphs

If G directed let a; denote the number of directed edges from vertex / to vertex j while
d¥(i) and d; (i) be in-degree and out-degree of vertex i, respectively. We will therefore

have
=> ai dz()=>_ay
J i

In order to generalize modularity for directed graphs, it is enough to construct a random
directed graph without any community structure for where the expected in-degree and
out-degree sequence will be the same as in G. The modularity of a clustering C in a
directed graph G is given by the following

Qm,(G.C) = ZZ(aU ﬂ)_

ceCijeC
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Modularity - weighted directed graphs

Generalizing the strength of a vertex i € V(G) into in-strength and out-strength for a
weighted directed graph G as follows,

se()= > w(ig), sg(i):= Y w(.i), (6)
JjeV(G) JEV(G)

we can combine the expressions for Qn,, and Qm, to derive the an expression for
modularity for weighted directed graphs

Qo (6,€) = -

s(1)sé ) ) |

AN 7 ) E ) DIPD <W(’ DS e W) + WG )

ceCijeC
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Modularity maximization - [P Formulation

Define n? binary variables x; for each pair of nodes /,j € V(G) as

0, otherwise.

. { 1, if vertices / and j belong in the same cluster,
i
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Modularity maximization - [P Formulation

Define n? binary variables x; for each pair of nodes /,j € V(G) as

. 1, if vertices / and j belong in the same cluster,
g 0, otherwise.

This results in the following {0, 1} program

1 ds(1)ds ()
maX % ZG) (aU — 72”, Xij

ijeV(
s.t. xi=1, Vie \/(G)
Xij = Xji, Vi,j€ V(G)

xj + X < 2xi +1, Vi j, k € V(G)
xj €0,1, Vi j€ V(G)
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Modularity properties

Theorem (Gevezes, Kehagias and Pitsoulis, 2013)
The modularity function is not:
B monotone
connected
convex

complementary

resolution-limit free

so it seems that modularity fails in almost all theoretical properties, but is the most
widely used!
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Anti-modularity

Based on the same random model as modularity, but instead of maximizing intra-cluster
edge density it minimizes extra-cluster edge density.

E—— {m%c?(d@(cl)de(cg)ﬂ

m 4m?
G, GeC
G#G

where mc,« ¢, denotes the number of edges with an end-vertex in cluster C; and an
end-vertex in cluster G,.
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Graph clustering quality functions Modularity based

Anti-modularity

Based on the same random model as modularity, but instead of maximizing intra-cluster
edge density it minimizes extra-cluster edge density.

E—— {m%c?(d@(cl)de(cg)ﬂ

m 4m?
G, GeC
G#G

where mc,« ¢, denotes the number of edges with an end-vertex in cluster C; and an
end-vertex in cluster G,.

m similar behavior as modularity

m performs better in unbalanced community structure

m open problem: has not been examined yet w.r.t. properties
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Components quality function

Definition

A graph is connected if for any v, w € V(G) there exists a v — w path. The number of
connected components of a graph G will be denoted by kg.

The components quality function takes the value of 1 for clusterings which identify
with the connected components of the graph and 0 elsewhere. It is defined as follows

1 if the members of C are the connected components of G,
Qcoco —

7
0 otherwise, (7)
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Components quality function

Definition
A graph is connected if for any v, w € V(G) there exists a v — w path. The number of
connected components of a graph G will be denoted by kg.

The components quality function takes the value of 1 for clusterings which identify
with the connected components of the graph and 0 elsewhere. It is defined as follows

(7)

1 if the members of C are the connected components of G,
Qcoco —

0 otherwise,

Theorem (Gevezes, Kehagias and Pitsoulis, 2013)

Qcoco IS Isomorphishm invariant, scale invariant, rich, connected, monotone,
complementary and perfect.
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Higher connectivity

Definition (edge connectivity)

m For k € N we say that a graph G is k-edge-connected, if |[E(G)| > k and G\Y is
connected for any Y C E(G) with | Y| < k.

m Equivalently G is k-edge-connected if k is the minimum number of edges that you
can delete and make G disconnected or the trivial graph Ki.

m We will write a(G) for the edge connectivity number of a graph.
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Higher connectivity

Definition (edge connectivity)

m For k € N we say that a graph G is k-edge-connected, if |[E(G)| > k and G\Y is
connected for any Y C E(G) with | Y| < k.

m Equivalently G is k-edge-connected if k is the minimum number of edges that you
can delete and make G disconnected or the trivial graph Kj.

m We will write a(G) for the edge connectivity number of a graph.

Gy G G

€1

: OO

€2

a(G1) =3 OL(GI*):2 a(G) =2
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Edge connectivity quality function

Using the same random graph H definition as in modularity we define the edge
connectivity quality function as

Qu(G.C) = Z a(G) mincut(H)

CEC

where G[C] and H[C] are the induced subgraphs of G and H by the set of vertices C,
and

[a(G[C]) mincut(H[C])

a(G[C))

. relative edge connectivity of cluster C
a(G)

mincut(H[C])
mincut(H)

expected edge connectivity of cluster C
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Edge connectivity quality function

Using the same random graph H definition as in modularity we define the edge
connectivity quality function as

a(G) mincut(H)

Qa(GvC) = Z

[a(G[C]) mincut(H[C])
cec

where G[C] and H[C] are the induced subgraphs of G and H by the set of vertices C,
and

G[C
“Elel) . relative edge connectivity of cluster C
a(G)
incut(H[C .
7m/n§u (HICD) expected edge connectivity of cluster C
mincut(H)

m other variations using Tutte-connectivity and vertex connectivity
m computationally not attractive

m open problem: is it monotone, rich, etc. 7
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Graph clustering quality functions Density based functions

Local density

These functions are based on the densities of intra-cluster and extra-cluster edges.
We are given a graph G and a clustering C = {Cy, ..., Ck}. Let

Ec : the edges of G with both end-vertices in cluster C
E- : the edges of G with one end-vertex in cluster C
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Graph clustering quality functions Density based functions

Local density

These functions are based on the densities of intra-cluster and extra-cluster edges.
We are given a graph G and a clustering C = {Cy, ..., Ck}. Let

Ec : the edges of G with both end-vertices in cluster C
E- : the edges of G with one end-vertex in cluster C

The local density quality function is defined as

Ec| ey
(G szLc 1cl—1)/2 *(1 C|-V(G)—c>}

cecC
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Graph clustering quality functions Density based functions

Local density

These functions are based on the densities of intra-cluster and extra-cluster edges.
We are given a graph G and a clustering C = {Cq, ..., Ck}. Let

Ec : the edges of G with both end-vertices in cluster C

E- : the edges of G with one end-vertex in cluster C

The local density quality function is defined as

Ec| ey
(G ngLc 1cl—1)/2 *(1 C|-V(G)—c>}

cecC

|Ec| : .
———————= : density of intra-cluster edges of cluster C
IC|- (IC|—1)/2

|Ec] ,
—————=———= : density of extra-cluster edges of cluster C
ICl-IV(G) - Cl

Qu(G,C) : average of cluster densities
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Graph clustering quality functions Density based functions

Global density

The global density quality function as

1 > cec lEcl ( > cec |EC]
Qud(G,C) = = S +(1-— S
(60 =3 |Seelcl-(e- 2 > cecICI- V(G) = C]
where
ZCeC |EC| " .
. density of all intra-cluster edges
YceclCl-(IC]=1)/2
. cec |Ec] :
. density of all extra-cluster edges
> cecCl-IV(G) = C

Qga(G,C) : average of cluster densities
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Density based quality functions

Theorem (Gevezes, Kehagias and Pitsoulis, 2013)

Qi and Qqq are isomorphishm invariant, scale invariant, monotone, complementary
and perfect.

— Let graph G, its complement G and a clustering C of V/(G).

— Since the range of both functions Qg and Qg is [0, 1] scaling will not be necessary.
We will first prove the statement for Qjq
— For some C €C let

mc = |Ec| +|Ec| : number of possible edges with both end-vertices in G[C] (8)
me = |EL| +|EL| : number of possible edges with one end-vertex in G[C]  (9)

— It follows that

|Ec| _ Bl |Ec|
ICl-(IC] —1)/2 mc mc '
|E¢] _ lEcl _,_ E

ICl-Iv(G)-Cl — me me
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— Letting

and

we have that

E E
aC_| C|"—9C:| cl (10)
C mc
|Ecl . |Ef]
pr— g pr— 5 11
< me =€ me )

ac=1—3ac, ec=1—¢éc.

Substituting (10) and (11) in the expression for Qi4(G,C) we get

Qu(G.C)

- > lac+(1 - ec)]

cec

1 _ _

ﬂZ[(l—&‘C)Jrl—(l—eC)]
cec

1 1

5 — 57 0 _(ac —&c)

2 2k =

1 - Qu(G,C).
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For Qqu we extend the analysis by summing up the values of (8) and (9)

— Let
m=Yme, m=Ym.
cec cec
and
_ ZC€C|EC|’E]: ZC€C|EC| (12)
m m
SeeelEtl ,_ TeeclBE )
m m

while it follows that

—Substituting (12) and (13) in the expression for Quu(G,C) we get

Qu(6.€) = 3la+1-¢
1 _ _ 1
= -3 -@-8+;

= 1-Qu(G.0)
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Preliminaries

Definition
Given a graph G(V, E) we define the following:
m v — w walk is an alternating sequence of vertices and edges, begining with vertex
v and ending with vertex w
m trail is a walk with distinct edges
m path is a walk with distinct vertices
m shortest path between two vertices is a path with the smallest number of edges
(may not be unique)
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Preliminaries

Definition (adjacency matrix)

The adjacency matrix of a graph G(V/, E), is a n x n matrix Ag defined as

Ac(ii)) 1 if vertex v; is adjacent to vertex v;,
G\l,J) = .
0 otherwise.
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Preliminaries

Definition (adjacency matrix)

The adjacency matrix of a graph G(V/, E), is a n x n matrix Ag defined as

1 if vertex v; is adjacent to vertex v,
0 otherwise.

Aclij) = {

Vi Vo V3 Va V5 Ve G - %
wl[O0O 1 1 1 0 0
w |1 0 0 1 1 0
A._% |1 00 100 i v
CT L, l1 110 1 0
w | 0 1 0 1 0 1
w |0 0 0 0 1 0

V3 Va4
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Preliminaries

It is well know that by taking the powers of the adjacency matrix A’é we have

AK —is the number of v; — v; walks

So we have for our example

w3 1 1 2 2 0
w |1 3 2 2 1 1
JYREnC 1 2 2 1 1 0
T w2 2 1 4 1 1
w |2 1 1 1 3 0

w L0 1 0 1 0 1

and the diagonal of AZ corresponds to the degrees of the vertices in G (if the graph is
simple).
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Distance matrix

Definition
The distance matrix of a graph G(V/, E) is a n x n matrix Dy
Dy = min{k : AL(i,j) # 0}

and it contains the distances between pairs of vertices. If only a subset of the vertices
U C V is used we write Dy(i, /) to denote the distance of vertices v; and v; in G[U].

m the diameter of G(V/, E) is diam(G) = max{Dy(i,j) : Vi,j € V}
m for CC W C V we denote Dw(C) =>_; icc Dw(i.J).

m so for C C V by Dy(C) we mean the sum of distances of vertex pairs in C using all
vertices of the graph, while

m by Dc(C) we mean the sum of distances of vertex pairs in C in the subgraph G[C].
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Paths matrix

Definition
The paths matrix of a graph G(V/, E) is defined as an n x n matrix Py
Py(i,j) = A% (i,j) where | =min{k: A%(i,j) # 0}

and it contains number of different shortest paths between pairs of vertices. If only a
subset of the vertices U C V is used we write Py(/, /) to denote the number of
shortest paths between vertices v; and v; in G[U].
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Paths matrix

Definition
The paths matrix of a graph G(V/, E) is defined as an n x n matrix Py
Py(i,j) = A% (i,j) where | =min{k: A%(i,j) # 0}

and it contains number of different shortest paths between pairs of vertices. If only a
subset of the vertices U C V is used we write Py(/, /) to denote the number of
shortest paths between vertices v; and v; in G[U].

So the distance and paths matrices for our example:

Vi V2 V3w Vs W Vi V2 v3owv Vs W
vi 0O 1 1 1 2 3 vi 1 11 1 2 2
v2 1 0 2 1 1 2 v2 1 1 2 1 1 1
Dy — vi 1 2 0 1 2 3 Py — vs 1 2 1 1 1 1
va 1 11 0 1 2 va 1 11 1 1 1
Vs 21 2 1 0 1 Vs 2 1 1 1 1 1
V6 3 2 3 2 1 0 V6 2 1 1 1 1 1
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Generalized degree

Definition (generalized degree)

The k-degree of a vertex v denoted by di(v) is the number of shortest paths of length
k that this vertex participates as a source vertex.
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Generalized degree

Definition (generalized degree)

The k-degree of a vertex v denoted by di(v) is the number of shortest paths of length
k that this vertex participates as a source vertex.

m we have dk(v) = Y {Pv(v,i): Dy(v,i) = k}
m given a graph G(V, E) the total number of shortest paths of length k < diam(G) is

m(G)=7 Y d(v)

veV(G)

m for k = 1 we have the degree of a vertex and the familiar m;(G) = |E(G)|
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Distance quality function

we are now ready to formulate the distance quality function using a random graph

m the probability that vertices /,j are joined by a path of length k

) db)
Priid = 50 (G 2me(G)

m expected distance between vertices /, J

diam(

6)
Dy(i.j)= Y_ KPrli,j k]
k=1

m sum of expected pairwise distances in cluster C

DC) =5 3 D7)

ijeC

m given a cluster of vertices C we want to have the smallest sum of pairwise distances
w.r.t. a random model

Qu(6.€) =Y (Bv(C) - Dv(©))

ceC
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Outline of the talk

Modularity negative results
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Resolution limit: underestimation of clusters

m Resolution limit in community detection, S. Fortunato and M. Barthelemy ,
Proceedings of the National Academy of Sciences, Vol. 104, pp. 36-41 (2007).

We have n cliques Ky,
2 1
= 1 _—— -
Cm m(m—2)+2 n
1 2
= ]_ _—a— = =
Cm m(m—2)+2 n

so Qm > Qp, only if
mm—1)+2>n

So for m=5,n=30

Qm =0.876 < 0.888 = Qp,




Quality Functions in Graph Clustering | Modularity negative results

Overestimation of clusters

For a clustering C = {Cy, ..., Ck} we can decompose modularity
— Mmc ds(C)\?
Qm(C, G)_ZF_Z (W
cec cec
——

Qr(C.G) Qo(C.G)
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Overestimation of clusters

For a clustering C = {Cy, .. ., Ck} we can decompose modularity
me ds(C)\?
an(e.6)= 3 -3 (5
cec cec
——
Qr(C.G) Qo(C.G)

m Qr(C, G) gets maximized at K = 1.
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Overestimation of clusters

For a clustering C = {Cy, ..., Ck} we can decompose modularity
me ds(C)\?
an(e.6)= 3 -3 (5
cec cec
——
Qr(C.G) Qo(C.G)

m Qr(C, G) gets maximized at K = 1.
m Q(C, G) gets minimized at K = n.
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Overestimation of clusters

For a clustering C = {Cy, ..., Ck} we can decompose modularity
me ds(C)\?
an(e.6)= 3 -3 (5
cec cec
——
Qr(C.G) Qo(C.G)

m Qr(C, G) gets maximized at K = 1.
m Q(C, G) gets minimized at K = n.

m Qr term favors clusterings with few extra-cluster edges.
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Overestimation of clusters

For a clustering C = {Cy, ..., Ck} we can decompose modularity
me ds(C)\?
an(e.6)= 3 -3 (5
cec cec
——
Qr(C.G) Qo(C.G)

m Qr(C, G) gets maximized at K = 1.
B Q(C, G) gets minimized at K = n.

m Qr term favors clusterings with few extra-cluster edges.

m () term favors clusterings with balanced clusters.
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Overestimation of clusters

Consider the following family of graphs

m family Hy n,.n, of graphs
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Overestimation of clusters

Consider the following family of graphs
m family Hy n,.n, Of graphs
m natural clustering Cy
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Overestimation of clusters

Consider the following family of graphs
m family Hy n,.n, Of graphs

m natural clustering Cy

m balanced clustering Cg(J) for J =8
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Overestimation of clusters

Theorem (Kehagias and Pitsoulis (EPJ 2013))
For every k € N and € € (0, ﬁ) there exist ny, n», J such that
Q(CNv Hk,nl,nz) <l-e< Q(CB(J)v Hk,nl,nz)

and
J(C/\/, CB(J)) < €.
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Overestimation of clusters

Theorem (Kehagias and Pitsoulis (EPJ 2013))
For every k € N and € € (0, ﬁ) there exist ny, n», J such that
Q(CNv Hk,nl,nz) <l-e< Q(CB(J)v Hk,nl,nz)

and
J(C/\/, CB(J)) < €.

m J(C1,C2) €0, 1] is the Jaccard similarity coefficient.
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Overestimation of clusters

Theorem (Kehagias and Pitsoulis (EPJ 2013))
For every k € N and € € (0, ﬁ) there exist ny, n», J such that
Q(CNv Hk,nl,nz) <l-e< Q(CB(J)v Hk,nl,nz)

and
J(C/\/, CB(J)) < €.

m J(C1,C2) €0, 1] is the Jaccard similarity coefficient.

m = natural clustering does not have maximum modularity.
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Overestimation of clusters

Theorem (Kehagias and Pitsoulis (EPJ 2013))
For every k € N and € € (0, ﬁ) there exist ny, n», J such that
Q(CNv Hk,nl,nz) <l-e< Q(CB(J)v Hk,nl,nz)

and
J(C/\/, CB(J)) < €.

m J(C1,C2) €0, 1] is the Jaccard similarity coefficient.

m = natural clustering does not have maximum modularity.

m = balanced "bad” clustering can achieve an almost maximum modularity.
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Overestimation of clusters

Theorem (Kehagias and Pitsoulis (EPJ 2013))
For every k € N and € € (0, ﬁ) there exist ny, n», J such that
Q(CNv Hk,nl,nz) <l-e< Q(CB(J)v Hk,nlvnz)

and
J(C/\/, CB(J)) < €.

m J(C1,C2) €0, 1] is the Jaccard similarity coefficient.
m = natural clustering does not have maximum modularity.

m = balanced "bad” clustering can achieve an almost maximum modularity.

®m = natural clustering can be arbitrarily different than balanced clustering.
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Overestimation of clusters

Theorem (Kehagias and Pitsoulis (EPJ 2013))

For every k € N and € € (0, ﬁ) there exist ny, n», J such that
Q(CNv Hk,n1,n2) <l-e< Q(CB(J)v Hk,nlvnz)

and
J(C/\/, CB(J)) < €.

J(C1,Co) € [0, 1] is the Jaccard similarity coefficient.

= natural clustering does not have maximum modularity.

= balanced “bad"” clustering can achieve an almost maximum modularity.
= natural clustering can be arbitrarily different than balanced clustering.

= modularity maximization can overestimate the number of clusters.
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Outline of the talk

A Computational experiments
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Girvan-Newman artificial graphs

preliminary results with the GN graphs
n = 128, 4 communities with 32 vertices each

|
|

m expected degree of each vertex = 16

B Djn, Pout: Probabilities for an intra-cluster and extra-cluster edge respectively
|

more tests with benchmark instances with heterogeneous cluster sizes and degree
distributions

A. Lancichinetti, S. Fortunato and F. Radicchi (2008). " Benchmark graphs for
testing community detection algorithms”. Phys. Rev. E 78 (4): 046110.
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{32,32,32,32}

greedy experiment modularity
. . d modul
experiment: greedy — — — anti-modularity
greedy repeats: 4 local-density

adjusted—-local-density
— — — node-membership
node-membership-basic
shortest-paths-zero
shortest-paths-rm
— — — shortest-paths-induced
— — — shortest-paths-induced-rm
shortest-paths-rm-distances
— — — shortest-paths-rm-distances-all
shortest-paths-induced-rm-Chung|
diameter—induced
adjusted-local-density-rm
O node-membership-basic-rm
1 * -~ node-membership-basic-rm2

number of constructed instances for each zout: 4

generator: newman-girvan-instance

constructed partitior| (4 clusters): 32 32 32 32

expected degree of pach vertex: 16

number of competitiye quality functions: 18

Jaccard simi

zout




Quality Functions in Graph Clustering  Computa ments

{32,32,32,32}, zoyr = 6, antimodularity

tional exp
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s in Graph Clustering Computa

{32,32,32,32}

experiment: g
greedy repeat:

number of col

leedy
- 20

istructed instances for each zout: 10

generator: newman-girvan-instance

constructed p:

rtition (4 clusters): 32 32 32 32

expected degree of each vertex: 16

number of competitive quality functions: 5

0.9

Jaccard similarity
[

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

greedy experiment

— modularity

— — — anti-modularity
shortest-paths—-rm
shortest-paths-rm-distances

— — — shortest-paths-rm-distances-all|

zout
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(5,15, 25,30}

Computa

experiment: greedy

greedy repeat:

4

number of constructed instances for each zout: 4

generator: newman-girvan-instance

constructed p4rtition (4 clusters): 5 15 25 30

expected degree of each vertex: 12

number of competitive quality functions: 18

-

Jaccard similarity

greedy experiment

modularity
modul
— — — anti-modularity
local-density
adjusted-local-density
— — — node-membership
node-membership-basic
shortest-paths-zero
shortest-paths-rm
— — — shortest-paths-induced
— — — shortest-paths-induced-rm
shortest-paths-rm-distances
— — — shortest-paths-rm-distances-all
O shortest-paths-induced-rm-Chung
diameter—induced
adjusted-local-density-rm
O node-membership-basic-rm
* -~ node-membership-basic-rm2
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{4,6,34}

greedy experiment

experiment: greedy —— modularity

— — — anti-modularity
shortest-paths—-rm
shortest-paths-rm-distances

— — — shortest-paths-rm-distances-all|

greedy repeats: 16

number of constructed instances for each zout: 4

generator: newman-girvan-instance
constructed p4rtition (3 clusters): 4 6 34
expected degree of each vertex: 20

number of competitive quality functions: 5

Jaccard similarity

zout
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{4, 6,34} antimodularity




Computati
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{4, 6,34} distance
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resolution

bash

lImit

bash

5 - 30: modularity 0.8758 ——> 0.8879 [ -0.0121]
anti modularity : 0.3924 -—> 0.4212 [ -0.0288]
modul H 0.3924 —> 0.4212 [ -0.0288]
NM basic rm H 57.8000 ——> 29.3000 [ 28.5000] ——— good ——
NM : 0.8248 ——> 0.4486 [ 0.3763] -—— good ——
NM basic rm2 : 1.9267 —> 1.9533 [ -0.0267]
LD adjstd rm 0.0165 —> 0.0154 [ 0.0011] —— good —-
LD H 0.0165 ——> 0.0154 [ 0.0011] ——— good ———
SP rm dist all : 4478.2019 —> 9514.2970 [ -5036.0951]
SP rm : 1592.8626 —> 2606.7470 [ -1013.8844]
SP rm dist 4483.3091 —> 9523.0786 [ -5039.7694]
SP indcd rm dist: 150.0000 ——> -306.7966 [ 456.79661
SP indcd rm Chun: 2.1658 -—> -0.1583 [ 2.3241]
SP zero : 2.1658 ——> -0.1583 [ 2.3241]
SP inf 2.1658 ——> -0.1583 [ 2.3241]
SP induced -120.0000 —> -255.0000 [ 135.0000] ——— good ——
5 - 32: modularity : 0.8778 ——> 0.8920 [ -0.0142]
anti modularity : 0.3935 —> 0.4233 [ -0.0298]
modul H 0.3935 ——> 0.4233 [ -0.0298]
NM basic rm : 61.8000 ——> 31.4000 [ 30.4000] -— good ——-
NM : 0.8232 ——> 0.4467 [ 0.3766] -— good ——
NM basic rm2 H 1.9312 —> 1.9625 [ -0.0313]
LD adjstd rm H 0.0155 ——> 0.0144 [ 0.0010] ——— good —-—
LD H 0.0155 ——> 0.0144 [ 0.0010] ——— good —-
SP rm dist all : 5097.1651 ——>  10869.6378 [ -5772.4727]
SP rm H 1732.4676 ——> 2855.6838 [ -1123.2161]
SP rm dist H 5102.6855 ——>  10879.1751 [ -5776.4895]
SP indcd rm dist: 160.0000 ——> -327.2497 [ 487.24971 good
SP indcd rm Chun: 2.3102 -—> -0.1689 [ 2.4790] good
SP zero : 2.3102 —> -0.1689 [ 2.4790] good
SP inf H 2.3102 ——> -0.1689 [ 2.4790] good
SP_induced H =128.0000 —— =272.0000 [ 144,00001 ———_good ———
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Outline of the talk

Clustering criteria
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Probability that a GN-graph meets the community criteria

Definition (Community in the Strong Sense)
Given a graph G(V, E) some C C V(G) is a community in the strong sense if

din(v) > dout(v), Vv € C,

where djp(v) and doue(v) are the incident intra-cluster and extra-cluster edges
respectively.
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Probability that a GN-graph meets the community criteria

Definition (Community in the Strong Sense)
Given a graph G(V, E) some C C V(G) is a community in the strong sense if

din(v) > dout(v), Vv € C,

where djp(v) and doue(v) are the incident intra-cluster and extra-cluster edges
respectively.

Consider a GN graph with no fixed expected degree, k clusters each with size n and

pin : probability of intra-cluster edge
Pout . Pprobability of extra-cluster edge
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Probability that a GN-graph meets the community criteria

Then we have the following:

m probability that a vertex is incident to mj, intra-cluster edges

n _
7T+(mf) = ( )P;:’(l = pm)n L
m
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Probability that a GN-graph meets the community criteria

Then we have the following:

m probability that a vertex is incident to mj, intra-cluster edges
-+ n m; n—m;
mt(m) = Pin' (1 = pin)
m

m probability that a vertex is incident to my,;: extra-cluster edges

n(k —
Mo

7 (mo) = (

1
)> szjot(l - pout)n(k_l)_mo

m probability that a vertex is incident to mj, intra-cluster and my,: extra-cluster edges

w(mj, my) = 7t (m;)m (mo)
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Probability that a GN-graph meets the community criteria

Then we have the following:

m probability that a vertex is incident to mj, intra-cluster edges
-+ n m; n—m;
mt(m) = Pin' (1 = pin)
m

m probability that a vertex is incident to my,;: extra-cluster edges

n(k —
Mo

7 (mo) = (

1
)> szjot(l - pout)n(k_l)_mo

m probability that a vertex is incident to mj, intra-cluster and my,: extra-cluster edges
w(mj, my) = 7t (m;)m (mo)

m probability that a vertex satisfies the strong condition, assuming independence
between the events of having different degrees

Prli is strong] = Z m(mj, mo)

mo<mj
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Probability that a GN-graph meets the community criteria

m probability that a cluster with n vertices satisfies the strong condition
Pr[C is strong] = (Pr[i is strong])"”

m probability that a clustering with k clusters of size n satisfies the strong condition

(Prli is strong])™ = ( Z w(mj, mo)>

mo<mj
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Thank You!




