
Quality Functions in Graph Clustering

Quality Functions in Graph Clustering

Leonidas Pitsoulis

Department of Electrical and Computer Engineering

Aristotle University of Thessaloniki, Greece

Workshop on clustering and search techniques in large scale networks

Nizhny Novgorod, Russia

3-8 November 2014

Leonidas Pitsoulis | University of Thessaloniki 1 / 81



Quality Functions in Graph Clustering

Outline of the talk

1 Preliminaries

2 Axioms for distance based clustering

3 Axioms for graph clustering

4 Graph clustering quality functions

5 Modularity negative results

6 Computational experiments

7 Clustering criteria

Leonidas Pitsoulis | University of Thessaloniki 2 / 81



Quality Functions in Graph Clustering

Communities in (complex) Networks

Neural network of Caenorhabditis Elegans (D. J. Watts and S. H. Strogatz, Nature 393,

440-442 (1998))

Leonidas Pitsoulis | University of Thessaloniki 3 / 81



Quality Functions in Graph Clustering

Communities in (complex) Networks

Neural network of Caenorhabditis Elegans (D. J. Watts and S. H. Strogatz, Nature 393,

440-442 (1998))

Leonidas Pitsoulis | University of Thessaloniki 3 / 81



Quality Functions in Graph Clustering

Communities in (complex) Networks

Neural network of Caenorhabditis Elegans (D. J. Watts and S. H. Strogatz, Nature 393,

440-442 (1998))

Leonidas Pitsoulis | University of Thessaloniki 3 / 81



Quality Functions in Graph Clustering

Communities in (complex) Networks

Neural network of Caenorhabditis Elegans (D. J. Watts and S. H. Strogatz, Nature 393,

440-442 (1998))

Leonidas Pitsoulis | University of Thessaloniki 3 / 81



Quality Functions in Graph Clustering

Community Detection

Community detection appears as a problem in many real-life networks
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Community Detection

Community detection appears as a problem in many real-life networks

protein-protein interaction

networks

metabolic networks

social networks

WWW (search engines)

scientific collaboration networks

mobile phone networks

In all cases we are interested in mesoscopic system behavior, derived

from the known microscopic dynamics.
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Graph G = (V ,E ) and let |V (G )| = n while

|E (G )| = m

A clustering C = {C1,C2, . . . ,Ck} is a

partition of V (G )

The Ci ∈ C are the clusters

C partitions also |E (G )| into:

extra-cluster edges denoted E−(G , C)

intra-cluster edges denoted E+(G , C)

C1

C2

C3

C4

A network exhibits community structure, if there is a partition of the

vertices into groups where the density of edges joining the vertices

within the groups is higher than the density of edges joining the

groups themselves
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Comparing clusterings

Definition (Jaccard similarity coefficient)

Given G (V ,E ) and two clusterings C1, C2 let

a1,1 = number of vertex pairs which belong to same cluster in both C1 and C2

a1,0 = number of vertex pairs which belong to same cluster in C1 only

a0,1 = number of vertex pairs which belong to same cluster in C2 only

The Jaccard similarity coefficient is defined as

J(C1, C2) =
a1,1

a1,0 + a0,1 + a1,1
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a1,1 = number of vertex pairs which belong to same cluster in both C1 and C2

a1,0 = number of vertex pairs which belong to same cluster in C1 only

a0,1 = number of vertex pairs which belong to same cluster in C2 only

The Jaccard similarity coefficient is defined as

J(C1, C2) =
a1,1

a1,0 + a0,1 + a1,1

J(C1, C2) ∈ [0, 1] with higher values directly proportional to similarity

more exact algebraic metric for clusterings in Pitsoulis Nanscimento (COR 2013)

but requires O(n3) time.
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Distance between clusterings

Definition

A matrix S = (sij ) ∈ {0, 1}
k×n is called a basic clustering matrix if

i) it has no zero rows

ii)
∑k
i=1 sij = 1 for all j = 1, . . . , n

iii) if sij is the first nonzero element of row i then slt = 0 for l = i + 1, . . . , n and

t = 1, . . . , j .

If only conditions i) and ii) are satisfied then the matrix is called clustering matrix.

⇒ there is a one-to-one correspondence between the set of clusterings of size k and the

{0, 1}k×n basic clustering matrices

Given any two clustering matrices S ∈ {0, 1}k1×n and T ∈ {0, 1}k2×n we define their

difference set as the set

∆(S,T ) := {j : Sij 6= Tij , i = 1, . . . ,min{k1, k2}, j = 1, . . . , n},

which is the set of columns that these matrices differ.
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Distance beween clusterings

The distance between any two basic clustering matrices S1 ∈ {0, 1}k1×n and

S2 ∈ {0, 1}k2×n is thus defined as

d(S1,S2) := min{|∆(S,T )| : S ∈ M(S1),T ∈ M(S2)}.
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The distance between any two basic clustering matrices S1 ∈ {0, 1}k1×n and

S2 ∈ {0, 1}k2×n is thus defined as

d(S1,S2) := min{|∆(S,T )| : S ∈ M(S1),T ∈ M(S2)}.

⇒ d(S1,S2) is the minimum number of moves of elements between the clusters in the
clusterings associated with the basic clustering matrices S1 and S2, needed to transform

one clustering to another

Lemma

For some graph G (V ,E ) and any three clusterings C1, C2 and C3 the following

statements are true:

i) d(SC1 ,SC2) ≥ 0 with equality iff SC1 = SC2

ii) d(SC1 ,SC2) = d(SC2 ,SC1)

iii) d(SC1 ,SC2) + d(SC2 ,SC3) ≥ d(SC1 ,SC3)

⇒ the set of all basic clustering matrices for a given graph along with this distanceLeonidas Pitsoulis | University of Thessaloniki 9 / 81



Quality Functions in Graph Clustering | Preliminaries

Clusterings - Distance

Problem: direct computation of the distance requires (min{k1, k2})! steps.
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Proposition (Pitsoulis & Nascimento (COR 2013))

Given two basic clustering matrices S1 ∈ {0, 1}k1×n and S2 ∈ {0, 1}k2×n their distance

d(S1,S2) can be computed in O(k3) time, where k := min{k1, k2}.

Proof.

Given the two basic clustering matrices S1 = (s1ij ) and S
2 = (s2ij ), construct a k × k

cost matrix C = (cij )

ci j :=

n∑

l=1

|s1i l − s
2
j l |,

for i , j = 1, . . . , k. Then optimum solution to related LAP gives the distance.
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Example

Say we have n = 10 vertices and two clusterings

C1 = {{1, 4, 5}, {2}, {3, 8}, {6, 7}, {9, 10}},

C2 = {{1, 2, 9}, {3, 8}, {4, 5, 10}, {6, 7}}

Then the basic clustering matrices

SC1 =













1 0 0 1 1 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 1 0 0

0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 1 1













, SC2 =









1 1 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 1 0 0

0 0 0 1 1 0 0 0 0 1

0 0 0 0 0 1 1 0 0 0









For the distance computation

C =











4 2 5 5

5 3 0 4

2 4 4 5

5 3 4 0











,
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Example

So the optimum permutation is p = (3, 1, 2, 4) and

S =







0 0 0 1 1 0 0 0 0 1

1 1 0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 1 0 0

0 0 0 0 0 1 1 0 0 0






.

So we have ∆∗(SC1 ,SC2) = ∆(SC1 ,S) = {1, 9, 10}, which implies that d(SC1 ,SC2) = 3.

Leonidas Pitsoulis | University of Thessaloniki 12 / 81



Quality Functions in Graph Clustering | Axioms for distance based clustering

Outline of the talk

1 Preliminaries

2 Axioms for distance based clustering

3 Axioms for graph clustering

4 Graph clustering quality functions

5 Modularity negative results

6 Computational experiments

7 Clustering criteria

Leonidas Pitsoulis | University of Thessaloniki 13 / 81



Quality Functions in Graph Clustering | Axioms for distance based clustering

Distance based clustering

X = {x1, x2, . . . , xn} is a data set

d : X × X → R is a distance function:

x

y

d(
x,
y)
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i. d(x , y ) ≥ 0,∀x , y ∈ X

ii. d(x , y ) = 0 iff x = y

iii. d(x , y ) = d(y , x)
x

y

d(
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Distance based clustering

X = {x1, x2, . . . , xn} is a data set

d : X × X → R is a distance function:

i. d(x , y ) ≥ 0,∀x , y ∈ X

ii. d(x , y ) = 0 iff x = y

iii. d(x , y ) = d(y , x)

A clustering C is a partition of X
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Clustering functions

Definition

A clustering function is a function F which given a data set X and a distance

function d it returns a partition C of X .

F : (X , d)→ C

A clustering quality function is any function Q which given a data set X , a

partioning C of X and a distance function d it returns a real number.

Q : (X , d , C)→ R
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Clustering functions

Definition

A clustering function is a function F which given a data set X and a distance

function d it returns a partition C of X .

F : (X , d)→ C

A clustering quality function is any function Q which given a data set X , a

partioning C of X and a distance function d it returns a real number.

Q : (X , d , C)→ R

Given Q we can define F as the extrema

F (X , d) = argmax
C

Q(X , d , C)

⇒ any property of clustering functions can stated for clustering quality functions
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Kleinberg’s Impossibility Theorem

Kleinberg’s axioms for clustering functions F (X , d)

i. Scale Invariance: F produces the same clustering if distances between points are

scaled uniformly.

ii. Richness: if any clustering of the points can be produced by modifying the

distances between the points.

iii. Consistency: for any clustering that F produces, decreasing inner cluster distances

or increasing outer cluster distances gives a set of points that F produces the

same clustering.
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Kleinberg’s Impossibility Theorem

Kleinberg’s axioms for clustering functions F (X , d)

i. Scale Invariance: F produces the same clustering if distances between points are

scaled uniformly.

ii. Richness: if any clustering of the points can be produced by modifying the

distances between the points.

iii. Consistency: for any clustering that F produces, decreasing inner cluster distances

or increasing outer cluster distances gives a set of points that F produces the

same clustering.

Theorem (Kleinberg (NIPS 2002))

There is no clustering function that satisfies scale invariance, richness and consistency

at the same time.
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Consistency through quality functions

Ackerman and Ben-David (NIPS 2009) properties for quality functions.

i. Scale Invariance: Q is scale invariant if for every clustering C of (X , d) and every
positive λ

Q(X , d , C) = Q(X , λd , C)

ii. Richness: Q is rich if for any C∗ of X there exists some d over X such that

C∗ = argmax
C

Q(X , d , C)

iii. Consistency: Q is consistent if for any C of X , if dC corresponds to d where intra

(extra) cluster distances are decreased (increased) then

Q(X , d , C) ≥ Q(X , dC , C)
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positive λ

Q(X , d , C) = Q(X , λd , C)

ii. Richness: Q is rich if for any C∗ of X there exists some d over X such that

C∗ = argmax
C

Q(X , d , C)

iii. Consistency: Q is consistent if for any C of X , if dC corresponds to d where intra

(extra) cluster distances are decreased (increased) then

Q(X , d , C) ≥ Q(X , dC , C)

presented a number of quality functions which constitute the above set of axioms

consistent

propose a set of axioms which include relaxations of the above plus isomorphism

invariance

the above results can be extended to graph clustering quality functions
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Properties of graph clustering quality functions

We have identified the following properties

i. Isomorphism invariance

ii. Scale invariance

iii. Richness

iv. Monotonicity

v. Perfectness

vi. Connectivity

vii. Convexity

viii. Complementarity

ix. Resolution limit free
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Isomorphism

Property (Isomorphism invariance)

A quality function Q is isomorphism invariant if for any pair of isomorphic graphs

G1 ∼= G2 with isomorphism φ, we have

Q(G1, C) = Q(G2, φ(C)), for all C ∈ 2|V | (1)

where φ(C) = {{φ(v ) : v ∈ C} : C ∈ C}.

quality function values of two isomorphic graphs should be equal for clusterings under

the same isomorphism
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Scaling

Property (Scale invariance)

A quality function Q is scale invariant if for a graph G with weight function

w : E (G )→ R and a constant α > 0, we have

Q(G , C) = Q(αG , C), for all C ∈ 2|V |, (2)

where the weighted graph αG is defined as E (αG ) = E (G ), V (αG ) = V (G ) with

weight function z(e) = αw(e), e ∈ E (αG ).

quality function should be invariant under a uniform scaling of the edge weights in a

graph
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Richness

Property (Richness)

A quality function Q is rich if for any finite set of vertices V and a partition C∗ ∈ 2|V |

there exists a set of edges E such that for G = (V ,E )

C∗ = argmax{Q(G , C) : C ∈ 2|V |}. (3)

for any partition of a finite set V we can find a graph with V as its vertex set such that

the partition will be the maximum value of the clustering quality function
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Monotonicity

Property (Monotonicity)

A quality function is monotone if for any graph G, clustering C of V (G ), and any

graph G ′ satisfying:

(i) V (G ′) = V (G ),

(ii) E+(G , C) ⊆ E+(G ′, C) and E−(G ′, C) ⊆ E−(G , C),

we have

Q(G , C) ≤ Q(G ′, C). (4)
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Monotonicity

the value given by the quality function to a clustering upon which we delete extra-cluster

edges and/or add of intra-cluster edges should not decrease

C1

C2

C3

C4
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Perfectness

Property (Perfectness)

A quality function is perfect if for any graph G (V ,E ), the following are true

(i) if C∗ is a clustering on V (G ) such that we cannot add an intra-cluster edge nor
remove an extra-cluster edge, then

Q(G , C∗) = max{Q(G ′, C) : all G ′ such that V (G ′) = V , C ∈ 2|V |}.

(ii) if C∗ is a clustering on V (G ) such that we cannot add an extra-cluster edge nor

remove an intra-cluster edge, then

Q(G , C∗) = min{Q(G ′, C) : all G ′ such that V (G ′) = V , C ∈ 2|V |}.

quality function should provide the maximum value among all possible graphs and

clusterings on this vertex set
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Connectivity

Property (Connectivity)

Let a graph G, a clustering C that contains a dissconnected cluster C with a partition

{C1,C2, . . . ,Ck} such that G [C1], . . . ,G [Ck ] are the connected components of G [C ],
and a clustering D obtained from C by replacing C with {C1,C2, . . . ,Ck}. A quality

function Q is called connected if for any such triple G , C,D we have

Q(G , C) ≤ Q(G ,D)

minimum requirement for a cluster to be be classified as a community is that the

associated induced subgraph should be connected
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Convexity

Definition

Given a graph G (V ,E ) some set of vertices X ⊆ V (G ) is called convex in G if for any

pair of vertices v ,w ∈ X the shortest v − w path contains vertices only from X .

Property (Convexity)

Let a graph G, a clustering C that contains a nonconvex cluster C with a partition

{C1,C2, . . . ,Ck} such that C1, . . . ,Ck are convex, and a clustering D obtained from C

by replacing C with {C1,C2, . . . ,Ck}. A quality function Q is called convex if for any

such triple G , C,D we have

Q(G , C) ≤ Q(G ,D)
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Complentarity

Property (Complementarity)

A quality function Q is complementary if for any graph G, its complement Ḡ , and any

clustering C of V (G ),
Q ′(G , C) = 1−Q ′(Ḡ , C)

where Q ′ the function which results as a uniform scaling on the range of Q in the

interval [0, 1].

G
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where Q ′ the function which results as a uniform scaling on the range of Q in the

interval [0, 1].

Ḡ
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Resolution-limit-free

Introduced by Traag, van Dooren, and Nesterov (2011)

Property (Resolution-limit-freedom)

Let C = {C1,C2, . . . ,Ck} be a Q-optimal clustering of a graph G, for some quality
function Q. Then, Q is called resolution-limit-free if for each subgraph of G induced

by D ⊂ C, the partition D is also Q-optimal.

attempt to rigorously define the resolution limit of some quality functions
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Axiomatic system

Consider that we have an axiomatic system say AQF. Then it should be:

consistent: there exists at least one quality function which satisfies all axioms

independent: there does not exist a set of axioms A of AQF and an axiom A of

AQF such that A 6⇒ A.
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Axiomatic system

Consider that we have an axiomatic system say AQF. Then it should be:

consistent: there exists at least one quality function which satisfies all axioms

independent: there does not exist a set of axioms A of AQF and an axiom A of

AQF such that A 6⇒ A.

But we would like to have results of the form

Theorem

Let Q1 and Q2 be two graph clustering quality functions which satisfy AQF and G a

graph. Then

argmax{Q1(G , C) : C ∈ 2
|V (G)|} = argmax{Q2(G , C) : C ∈ 2

|V (G)|}.
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Outline of the talk

1 Preliminaries

2 Axioms for distance based clustering

3 Axioms for graph clustering

4 Graph clustering quality functions

5 Modularity negative results

6 Computational experiments

7 Clustering criteria
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Graph clustering quality functions

We have examined the following types of graph clustering quality functions

i. modularity

ii. density

iii. distance

iv. node membership

v. connectivity

Leonidas Pitsoulis | University of Thessaloniki 32 / 81



Quality Functions in Graph Clustering | Graph clustering quality functions

Graph clustering quality functions

We have examined the following types of graph clustering quality functions

i. modularity

ii. density

iii. distance

iv. node membership

v. connectivity

all functions other than the modularity are new

in each type of function we can formulated it based on a random model
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Modularity

Modularity is a quality function introduced by Newman and Girvan that quantifies the

community structure by providing a value for every clustering of a given graph.

Newman MJ, Girvan M. Finding and evaluating community structure in networks,
Physical Review E 2004, 69(026113).
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Modularity - Main Idea

Employ a random graph on the same vertex set that does not have any community

structure and compare the edge densities of the clusters in the original graph and the

random graph.

The modularity of a clustering C for some graph G , is defined by the following

normalized sum of differences

Qm(C,G ) :=
1

2m

∑

C∈C

∑

i ,j∈C

(aij − pij)

aij = number of edges between vertices i and j in G

pij = is the expected number of edges between vertices i and j in the random graph
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Modularity - Main Idea

Employ a random graph on the same vertex set that does not have any community

structure and compare the edge densities of the clusters in the original graph and the

random graph.

The modularity of a clustering C for some graph G , is defined by the following

normalized sum of differences

Qm(C,G ) :=
1

2m

∑

C∈C

∑

i ,j∈C

(aij − pij)

aij = number of edges between vertices i and j in G

pij = is the expected number of edges between vertices i and j in the random graph
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Modularity - Main Idea

Question: How do we define the random graph (equivalently the pij) ?

?

??

?
?

?

?

?

?

V (G) H
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Modularity - the Random Graph

Random Graph Property: Keep the same degree distribution as in the original graph

0.063 0.042

0.042

0.063

0.021

0.014

0.063

0.021

0.021

0.042

G H
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Modularity - the Random Graph

Random Graph Property: Keep the same degree distribution as in the original graph

0.063 0.042

0.042

0.063

0.021

0.014

0.063

0.021

0.021

0.042

G H

Random graph H will have V (H) = V (G ) and E (G ) defined by

Pr [(i , j) ∈ E (H)] =
dG (i)

2m
·
dG (j)

2m
.
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Modularity - the Random Graph

Random Graph Property: Keep the same degree distribution as in the original graph

0.063 0.042

0.042

0.063

0.021

0.014

0.063

0.021

0.021

0.042

G H

Random graph H will have V (H) = V (G ) and E (G ) defined by

Pr [(i , j) ∈ E (H)] =
dG (i)

2m
·
dG (j)

2m
.

⇒ expected number of edges between i and j then is

pij = 2m × Pr [(i , j) ∈ E (H)] =
dG (i)dG (j)

2m
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Modularity - unweighted graphs

we thus have

Qm(G , C) =
1

2m

∑

C∈C

∑

i ,j∈C

(

aij −
dG (i)dG (j)

2m

)

where aij is the number of edges between vertices i and j in G . Its is straighforward to

show that

Qm(G , C) =
∑

C∈C

[

mC
m
−

(
dG (C )

2m

)2
]

(5)

where m = |E (G )| and mC = |E (G [C ])|, and the terms

mC
m

: fraction of edges within cluster C

(
dG (C )

2m

)2

: expected fraction of edges within cluster C
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Modularity - weighted graphs

Given a weight function w : E (G )→ R on the edges of a graph, we can define the

strength of a vertex i ∈ V (G ) as

sG (i) :=
∑

j∈V (G)

w(i , j).

We can then write for the modularity of a clustering C for some weighted graph G

Qmw (G , C) =
1

2
∑

e∈E (G)w(e)

∑

C∈C

∑

i ,j∈C

(

w(i , j)−
sG (i)sG (j)

2
∑

e∈E (G)w(e)

)

.
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Modularity - directed graphs

If G directed let aij denote the number of directed edges from vertex i to vertex j while

d+G (i) and d
−
G (i) be in-degree and out-degree of vertex i , respectively. We will therefore

have

d+G (i) =
∑

j

aji , d
−
G (j) =

∑

i

aij .

In order to generalize modularity for directed graphs, it is enough to construct a random

directed graph without any community structure for where the expected in-degree and

out-degree sequence will be the same as in G . The modularity of a clustering C in a

directed graph G is given by the following

Qmd (G , C) =
1

m

∑

C∈C

∑

i ,j∈C

(

aij −
d−G (i)d

+
G (j)

m

)

.
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Modularity - weighted directed graphs

Generalizing the strength of a vertex i ∈ V (G ) into in-strength and out-strength for a

weighted directed graph G as follows,

s−G (i) =
∑

j∈V (G)

w(i , j), s+G (i) :=
∑

j∈V (G)

w(j , i), (6)

we can combine the expressions for Qmd and Qmw to derive the an expression for
modularity for weighted directed graphs

Qmw ,d (G ,C) =
1

∑

i ,j∈V (G) (w(i , j) + w(j , i))

∑

C∈C

∑

i ,j∈C

(

w(i , j)−
s−G (i)s

+
G (j)

∑

i ,j∈V (G) (w(i , j) + w(j , i))

)

.
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Modularity maximization - IP Formulation

Define n2 binary variables xij for each pair of nodes i , j ∈ V (G ) as

xij :=

{
1, if vertices i and j belong in the same cluster,

0, otherwise.
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Modularity maximization - IP Formulation

Define n2 binary variables xij for each pair of nodes i , j ∈ V (G ) as

xij :=

{
1, if vertices i and j belong in the same cluster,

0, otherwise.

This results in the following {0, 1} program

max
1

2m

∑

i ,j∈V (G)

(

aij −
dG (i)dG (j)

2m

)

xij

s.t. xii = 1, ∀i ∈ V (G )

xij = xji , ∀i , j ∈ V (G )

xij + xjk ≤ 2xik + 1, ∀i , j , k ∈ V (G )

xij ∈ 0, 1, ∀i , j ∈ V (G )
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Modularity properties

Theorem (Gevezes, Kehagias and Pitsoulis, 2013)

The modularity function is not:

monotone

connected

convex

complementary

resolution-limit free

so it seems that modularity fails in almost all theoretical properties, but is the most

widely used!
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Anti-modularity

Based on the same random model as modularity, but instead of maximizing intra-cluster

edge density it minimizes extra-cluster edge density.

Qanti−m(G , C) = −
∑

C1,C2∈C
C1 6=C2

[
mC1↔C2
m

−

(
dG (C1)dG (C2)

4m2

)]

where mC1↔C2 denotes the number of edges with an end-vertex in cluster C1 and an

end-vertex in cluster C2.
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Anti-modularity

Based on the same random model as modularity, but instead of maximizing intra-cluster

edge density it minimizes extra-cluster edge density.

Qanti−m(G , C) = −
∑

C1,C2∈C
C1 6=C2

[
mC1↔C2
m

−

(
dG (C1)dG (C2)

4m2

)]

where mC1↔C2 denotes the number of edges with an end-vertex in cluster C1 and an

end-vertex in cluster C2.

similar behavior as modularity

performs better in unbalanced community structure

open problem: has not been examined yet w.r.t. properties
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Components quality function

Definition

A graph is connected if for any v ,w ∈ V (G ) there exists a v −w path. The number of

connected components of a graph G will be denoted by kG .

The components quality function takes the value of 1 for clusterings which identify

with the connected components of the graph and 0 elsewhere. It is defined as follows

Qcoco =

{

1 if the members of C are the connected components of G ,

0 otherwise,
(7)
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Components quality function

Definition

A graph is connected if for any v ,w ∈ V (G ) there exists a v −w path. The number of

connected components of a graph G will be denoted by kG .

The components quality function takes the value of 1 for clusterings which identify

with the connected components of the graph and 0 elsewhere. It is defined as follows

Qcoco =

{

1 if the members of C are the connected components of G ,

0 otherwise,
(7)

Theorem (Gevezes, Kehagias and Pitsoulis, 2013)

Qcoco is isomorphishm invariant, scale invariant, rich, connected, monotone,

complementary and perfect.
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Higher connectivity

Definition (edge connectivity)

For k ∈ N we say that a graph G is k-edge-connected, if |E (G )| > k and G\Y is

connected for any Y ⊆ E (G ) with |Y | < k.

Equivalently G is k-edge-connected if k is the minimum number of edges that you

can delete and make G disconnected or the trivial graph K1.

We will write α(G ) for the edge connectivity number of a graph.
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Higher connectivity

Definition (edge connectivity)

For k ∈ N we say that a graph G is k-edge-connected, if |E (G )| > k and G\Y is
connected for any Y ⊆ E (G ) with |Y | < k.

Equivalently G is k-edge-connected if k is the minimum number of edges that you

can delete and make G disconnected or the trivial graph K1.

We will write α(G ) for the edge connectivity number of a graph.

G1 G∗1 G2

α(G1) = 3 α(G ∗1 ) = 2 α(G2) = 2

e1

e1

e2

e2
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Edge connectivity quality function

Using the same random graph H definition as in modularity we define the edge

connectivity quality function as

Qα(G , C) =
∑

C∈C

[
α(G [C ])

α(G )
−
mincut(H[C ])

mincut(H)

]

where G [C ] and H[C ] are the induced subgraphs of G and H by the set of vertices C ,

and

α(G [C ])

α(G )
: relative edge connectivity of cluster C

mincut(H[C ])

mincut(H)
: expected edge connectivity of cluster C
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Edge connectivity quality function

Using the same random graph H definition as in modularity we define the edge

connectivity quality function as

Qα(G , C) =
∑

C∈C

[
α(G [C ])

α(G )
−
mincut(H[C ])

mincut(H)

]

where G [C ] and H[C ] are the induced subgraphs of G and H by the set of vertices C ,

and

α(G [C ])

α(G )
: relative edge connectivity of cluster C

mincut(H[C ])

mincut(H)
: expected edge connectivity of cluster C

other variations using Tutte-connectivity and vertex connectivity

computationally not attractive

open problem: is it monotone, rich, etc. ?
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Local density

These functions are based on the densities of intra-cluster and extra-cluster edges.

We are given a graph G and a clustering C = {C1, . . . ,Ck}. Let

EC : the edges of G with both end-vertices in cluster C

E ′C : the edges of G with one end-vertex in cluster C
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Local density

These functions are based on the densities of intra-cluster and extra-cluster edges.

We are given a graph G and a clustering C = {C1, . . . ,Ck}. Let

EC : the edges of G with both end-vertices in cluster C

E ′C : the edges of G with one end-vertex in cluster C

The local density quality function is defined as

Qld (G , C) :=
1

2k

∑

C∈C

[
|EC |

|C | · (|C | − 1)/2
+

(

1−
|E ′C |

|C | · |V (G )− C |

)]

Leonidas Pitsoulis | University of Thessaloniki 47 / 81



Quality Functions in Graph Clustering | Graph clustering quality functions | Density based functions

Local density

These functions are based on the densities of intra-cluster and extra-cluster edges.

We are given a graph G and a clustering C = {C1, . . . ,Ck}. Let

EC : the edges of G with both end-vertices in cluster C

E ′C : the edges of G with one end-vertex in cluster C

The local density quality function is defined as

Qld (G , C) :=
1

2k

∑

C∈C

[
|EC |

|C | · (|C | − 1)/2
+

(

1−
|E ′C |

|C | · |V (G )− C |

)]

|EC |

|C | · (|C | − 1)/2
: density of intra-cluster edges of cluster C

|E ′C |

|C | · |V (G ) − C |
: density of extra-cluster edges of cluster C

Qld(G , C) : average of cluster densities
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Global density

The global density quality function as

Qgd(G , C) :=
1

2

[ ∑

C∈C |EC |
∑

C∈C |C | · (|C | − 1)/2
+

(

1−

∑

C∈C |E
′
C |

∑

C∈C |C | · |V (G ) − C |

)]

where
∑

C∈C |EC |
∑

C∈C |C | · (|C | − 1)/2
: density of all intra-cluster edges

∑

C∈C |E
′
C |

∑

C∈C |C | · |V (G ) − C |
: density of all extra-cluster edges

Qgd(G , C) : average of cluster densities
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Density based quality functions

Theorem (Gevezes, Kehagias and Pitsoulis, 2013)

Qld and Qgd are isomorphishm invariant, scale invariant, monotone, complementary

and perfect.

− Let graph G , its complement Ḡ and a clustering C of V (G ).

− Since the range of both functions Qld and Qgd is [0, 1] scaling will not be necessary.

We will first prove the statement for Qld
− For some C ∈ C let

mC = |EC |+ |ĒC | : number of possible edges with both end-vertices in G [C ] (8)

m′C = |E ′C |+ |Ē
′
C | : number of possible edges with one end-vertex in G [C ] (9)

− It follows that

|EC |

|C | · (|C | − 1)/2
=
|EC |

mC
= 1−

|ĒC |

mC
,

|E ′C |

|C | · |V (G ) − C |
=
|E ′C |

m′C
= 1−

|Ē ′C |

m′C
.
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− Letting

aC =
|EC |

mC
, āC =

|ĒC |

mC
, (10)

and

eC =
|E ′C |

m′C
, ēC =

|Ē ′C |

m′C
, (11)

we have that

aC = 1− āC , eC = 1− ēC .

Substituting (10) and (11) in the expression for Qld (G , C) we get

Qld(G , C) =
1

2k

∑

C∈C

[aC + (1− eC )]

=
1

2k

∑

C∈C

[(1− āC ) + 1− (1− ēC )]

=
1

2
−
1

2k

∑

C∈C

(āC − ēC )

= 1−Qld(Ḡ , C).
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For Qgd we extend the analysis by summing up the values of (8) and (9)

− Let

m =
∑

C∈C

mC , m
′ =

∑

C∈C

m′C

and

a =

∑

C∈C |EC |

m
, ā =

∑

C∈C |ĒC |

m
, (12)

e =

∑

C∈C |E
′
C |

m
, ē =

∑

C∈C |Ē
′
C |

m
, (13)

while it follows that

a = 1− ā, e = 1 − ē.

−Substituting (12) and (13) in the expression for Qgd(G , C) we get

Qgd(G , C) =
1

2
[a + 1− e]

=
1

2
[(1 − ā)− (1− ē)] +

1

2

= 1−Qgd(Ḡ , C)
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Preliminaries

Definition

Given a graph G (V ,E ) we define the following:

v − w walk is an alternating sequence of vertices and edges, begining with vertex

v and ending with vertex w

trail is a walk with distinct edges

path is a walk with distinct vertices

shortest path between two vertices is a path with the smallest number of edges

(may not be unique)
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Preliminaries

Definition (adjacency matrix)

The adjacency matrix of a graph G (V ,E ), is a n × n matrix AG defined as

AG (i , j) =

{

1 if vertex vj is adjacent to vertex vi ,

0 otherwise.
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Preliminaries

Definition (adjacency matrix)

The adjacency matrix of a graph G (V ,E ), is a n × n matrix AG defined as

AG (i , j) =

{

1 if vertex vj is adjacent to vertex vi ,

0 otherwise.

G v1 v2

v3 v4

v5 v6

AG =











v1 v2 v3 v4 v5 v6

v1 0 1 1 1 0 0

v2 1 0 0 1 1 0

v3 1 0 0 1 0 0

v4 1 1 1 0 1 0

v5 0 1 0 1 0 1

v6 0 0 0 0 1 0










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Preliminaries

It is well know that by taking the powers of the adjacency matrix AkG we have

AkG = is the number of vi − vj walks

So we have for our example

A2G =











v1 v2 v3 v4 v5 v6

v1 3 1 1 2 2 0

v2 1 3 2 2 1 1

v3 1 2 2 1 1 0

v4 2 2 1 4 1 1

v5 2 1 1 1 3 0

v6 0 1 0 1 0 1











and the diagonal of A2G corresponds to the degrees of the vertices in G (if the graph is

simple).
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Distance matrix

Definition

The distance matrix of a graph G (V ,E ) is a n × n matrix DV

DV = min{k : AkG (i , j) 6= 0}

and it contains the distances between pairs of vertices. If only a subset of the vertices

U ⊆ V is used we write DU(i , j) to denote the distance of vertices vi and vj in G [U].

the diameter of G (V ,E ) is diam(G ) = max{DV (i , j) : ∀i , j ∈ V }

for C ⊆W ⊆ V we denote DW (C ) =
∑

i ,j∈C DW (i , j).

so for C ⊆ V by DV (C ) we mean the sum of distances of vertex pairs in C using all
vertices of the graph, while

by DC (C ) we mean the sum of distances of vertex pairs in C in the subgraph G [C ].
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Paths matrix

Definition

The paths matrix of a graph G (V ,E ) is defined as an n × n matrix PV

PV (i , j) = A
l
G (i , j) where l = min{k : A

k
G (i , j) 6= 0}

and it contains number of different shortest paths between pairs of vertices. If only a

subset of the vertices U ⊆ V is used we write PU(i , j) to denote the number of

shortest paths between vertices vi and vj in G [U].
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Paths matrix

Definition

The paths matrix of a graph G (V ,E ) is defined as an n × n matrix PV

PV (i , j) = A
l
G (i , j) where l = min{k : A

k
G (i , j) 6= 0}

and it contains number of different shortest paths between pairs of vertices. If only a

subset of the vertices U ⊆ V is used we write PU(i , j) to denote the number of

shortest paths between vertices vi and vj in G [U].

So the distance and paths matrices for our example:

DV =











v1 v2 v3 v4 v5 v6

v1 0 1 1 1 2 3

v2 1 0 2 1 1 2

v3 1 2 0 1 2 3

v4 1 1 1 0 1 2

v5 2 1 2 1 0 1

v6 3 2 3 2 1 0











PV =











v1 v2 v3 v4 v5 v6

v1 1 1 1 1 2 2

v2 1 1 2 1 1 1

v3 1 2 1 1 1 1

v4 1 1 1 1 1 1

v5 2 1 1 1 1 1

v6 2 1 1 1 1 1










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Generalized degree

Definition (generalized degree)

The k-degree of a vertex v denoted by dk(v ) is the number of shortest paths of length

k that this vertex participates as a source vertex.
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Generalized degree

Definition (generalized degree)

The k-degree of a vertex v denoted by dk(v ) is the number of shortest paths of length

k that this vertex participates as a source vertex.

we have dk(v ) =
∑
{PV (v , i) : DV (v , i) = k}

given a graph G (V ,E ) the total number of shortest paths of length k ≤ diam(G ) is

mk (G ) =
1

2

∑

v∈V (G)

dk(v )

for k = 1 we have the degree of a vertex and the familiar m1(G ) = |E (G )|
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Distance quality function

we are now ready to formulate the distance quality function using a random graph

the probability that vertices i , j are joined by a path of length k

Pr [i , j , k] =
dk(i)

2mk(G )

dk(j)

2mk(G )

expected distance between vertices i , j

DV (i , j) =

diam(G)
∑

k=1

kPr [i , j , k]

sum of expected pairwise distances in cluster C

DV (C ) =
1

2

∑

i ,j∈C

DV (i , j)

given a cluster of vertices C we want to have the smallest sum of pairwise distances

w.r.t. a random model

Qd (G , C) =
∑

C∈C

(

DV (C )−DV (C )
)
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Resolution limit: underestimation of clusters

Resolution limit in community detection, S. Fortunato and M. Barthelemy ,

Proceedings of the National Academy of Sciences, Vol. 104, pp. 36-41 (2007).

We have n cliques Km

Qm = 1−
2

m(m − 2) + 2
−
1

n

Qm = 1−
1

m(m − 2) + 2
−
2

n

so Qm > Qm only if

m(m − 1) + 2 > n

So for m = 5, n = 30

Qm = 0.876 < 0.888 = Qm
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Overestimation of clusters

For a clustering C = {C1, . . . ,CK} we can decompose modularity

Qm(C,G ) =
∑

C∈C

mC
m

︸ ︷︷ ︸

Qf (C,G)

−
∑

C∈C

(
dG (C )

2m

)2

︸ ︷︷ ︸

Q0(C,G)
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Overestimation of clusters

For a clustering C = {C1, . . . ,CK} we can decompose modularity

Qm(C,G ) =
∑

C∈C

mC
m

︸ ︷︷ ︸

Qf (C,G)

−
∑

C∈C

(
dG (C )

2m

)2

︸ ︷︷ ︸

Q0(C,G)

Qf (C,G ) gets maximized at K = 1.
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Overestimation of clusters

For a clustering C = {C1, . . . ,CK} we can decompose modularity

Qm(C,G ) =
∑

C∈C

mC
m

︸ ︷︷ ︸

Qf (C,G)

−
∑

C∈C

(
dG (C )

2m

)2

︸ ︷︷ ︸

Q0(C,G)

Qf (C,G ) gets maximized at K = 1.

Q0(C,G ) gets minimized at K = n.
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Overestimation of clusters

For a clustering C = {C1, . . . ,CK} we can decompose modularity

Qm(C,G ) =
∑

C∈C

mC
m

︸ ︷︷ ︸

Qf (C,G)

−
∑

C∈C

(
dG (C )

2m

)2

︸ ︷︷ ︸

Q0(C,G)

Qf (C,G ) gets maximized at K = 1.

Q0(C,G ) gets minimized at K = n.

Qf term favors clusterings with few extra-cluster edges.
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Overestimation of clusters

For a clustering C = {C1, . . . ,CK} we can decompose modularity

Qm(C,G ) =
∑

C∈C

mC
m

︸ ︷︷ ︸

Qf (C,G)

−
∑

C∈C

(
dG (C )

2m

)2

︸ ︷︷ ︸

Q0(C,G)

Qf (C,G ) gets maximized at K = 1.

Q0(C,G ) gets minimized at K = n.

Qf term favors clusterings with few extra-cluster edges.

Q0 term favors clusterings with balanced clusters.
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Overestimation of clusters

Consider the following family of graphs

family Hk,n1,n2 of graphs

21
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Overestimation of clusters

Consider the following family of graphs

family Hk,n1,n2 of graphs

natural clustering CN

balanced clustering CB(J) for J = 8
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Overestimation of clusters

Theorem (Kehagias and Pitsoulis (EPJ 2013))

For every k ∈ N and ǫ ∈ (0, 12k ) there exist n1, n2, J such that

Q(CN ,Hk,n1,n2) < 1− ǫ < Q(CB(J),Hk,n1,n2)

and

J(CN , CB(J)) < ǫ.
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Overestimation of clusters

Theorem (Kehagias and Pitsoulis (EPJ 2013))

For every k ∈ N and ǫ ∈ (0, 12k ) there exist n1, n2, J such that

Q(CN ,Hk,n1,n2) < 1− ǫ < Q(CB(J),Hk,n1,n2)

and

J(CN , CB(J)) < ǫ.

J(C1, C2) ∈ [0, 1] is the Jaccard similarity coefficient.
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⇒ balanced “bad” clustering can achieve an almost maximum modularity.
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Overestimation of clusters

Theorem (Kehagias and Pitsoulis (EPJ 2013))

For every k ∈ N and ǫ ∈ (0, 12k ) there exist n1, n2, J such that

Q(CN ,Hk,n1,n2) < 1− ǫ < Q(CB(J),Hk,n1,n2)

and

J(CN , CB(J)) < ǫ.

J(C1, C2) ∈ [0, 1] is the Jaccard similarity coefficient.

⇒ natural clustering does not have maximum modularity.

⇒ balanced “bad” clustering can achieve an almost maximum modularity.

⇒ natural clustering can be arbitrarily different than balanced clustering.

⇒ modularity maximization can overestimate the number of clusters.

Leonidas Pitsoulis | University of Thessaloniki 63 / 81



Quality Functions in Graph Clustering | Computational experiments

Outline of the talk

1 Preliminaries

2 Axioms for distance based clustering

3 Axioms for graph clustering

4 Graph clustering quality functions

5 Modularity negative results

6 Computational experiments

7 Clustering criteria

Leonidas Pitsoulis | University of Thessaloniki 64 / 81



Quality Functions in Graph Clustering | Computational experiments

Girvan-Newman artificial graphs

preliminary results with the GN graphs

n = 128, 4 communities with 32 vertices each

expected degree of each vertex = 16

pin, pout : probabilities for an intra-cluster and extra-cluster edge respectively

more tests with benchmark instances with heterogeneous cluster sizes and degree

distributions

A. Lancichinetti, S. Fortunato and F. Radicchi (2008). ”Benchmark graphs for

testing community detection algorithms”. Phys. Rev. E 78 (4): 046110.
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{32, 32, 32, 32}
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experiment: greedy

greedy repeats: 4

number of constructed instances for each zout: 4

generator: newman−girvan−instance

constructed partition (4 clusters): 32  32  32  32

expected degree of each vertex: 16

number of competitive quality functions: 18

modularity
modul
anti−modularity
local−density
adjusted−local−density
node−membership
node−membership−basic
shortest−paths−zero
shortest−paths−rm
shortest−paths−induced
shortest−paths−induced−rm
shortest−paths−rm−distances
shortest−paths−rm−distances−all
shortest−paths−induced−rm−Chung
diameter−induced
adjusted−local−density−rm
node−membership−basic−rm
node−membership−basic−rm2

Leonidas Pitsoulis | University of Thessaloniki 66 / 81



Quality Functions in Graph Clustering | Computational experiments

{32, 32, 32, 32}, zout = 6, antimodularity
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{32, 32, 32, 32}, zout = 6 modularity
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{32, 32, 32, 32}, zout = 6 distance
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{32, 32, 32, 32}
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greedy experiment
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experiment: greedy

greedy repeats: 20

number of constructed instances for each zout: 10

generator: newman−girvan−instance

constructed partition (4 clusters): 32  32  32  32

expected degree of each vertex: 16

number of competitive quality functions: 5

modularity
anti−modularity
shortest−paths−rm
shortest−paths−rm−distances
shortest−paths−rm−distances−all
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{5, 15, 25, 30}
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experiment: greedy

greedy repeats: 4

number of constructed instances for each zout: 4

generator: newman−girvan−instance

constructed partition (4 clusters): 5  15  25  30

expected degree of each vertex: 12

number of competitive quality functions: 18

modularity
modul
anti−modularity
local−density
adjusted−local−density
node−membership
node−membership−basic
shortest−paths−zero
shortest−paths−rm
shortest−paths−induced
shortest−paths−induced−rm
shortest−paths−rm−distances
shortest−paths−rm−distances−all
shortest−paths−induced−rm−Chung
diameter−induced
adjusted−local−density−rm
node−membership−basic−rm
node−membership−basic−rm2
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{4, 6, 34}
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experiment: greedy

greedy repeats: 16

number of constructed instances for each zout: 4

generator: newman−girvan−instance

constructed partition (3 clusters): 4   6  34

expected degree of each vertex: 20

number of competitive quality functions: 5

modularity
anti−modularity
shortest−paths−rm
shortest−paths−rm−distances
shortest−paths−rm−distances−all
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{4, 6, 34} antimodularity
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{4, 6, 34} modularity
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{4, 6, 34} distance
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resolution limit
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Probability that a GN-graph meets the community criteria

Definition (Community in the Strong Sense)

Given a graph G (V ,E ) some C ⊆ V (G ) is a community in the strong sense if

din(v ) > dout(v ), ∀v ∈ C ,

where din(v ) and dout(v ) are the incident intra-cluster and extra-cluster edges

respectively.
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Probability that a GN-graph meets the community criteria

Definition (Community in the Strong Sense)

Given a graph G (V ,E ) some C ⊆ V (G ) is a community in the strong sense if

din(v ) > dout(v ), ∀v ∈ C ,

where din(v ) and dout(v ) are the incident intra-cluster and extra-cluster edges

respectively.

Consider a GN graph with no fixed expected degree, k clusters each with size n and

pin : probability of intra-cluster edge

pout : probability of extra-cluster edge
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Probability that a GN-graph meets the community criteria

Then we have the following:

probability that a vertex is incident to min intra-cluster edges

π+(mi ) =

(
n

mi

)

pmiin (1 − pin)
n−mi
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Probability that a GN-graph meets the community criteria

Then we have the following:

probability that a vertex is incident to min intra-cluster edges

π+(mi ) =

(
n

mi

)

pmiin (1 − pin)
n−mi

probability that a vertex is incident to mout extra-cluster edges

π−(mo) =

(
n(k − 1)

mo

)

pmoout(1− pout)
n(k−1)−mo
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Probability that a GN-graph meets the community criteria

Then we have the following:

probability that a vertex is incident to min intra-cluster edges

π+(mi ) =

(
n

mi

)

pmiin (1 − pin)
n−mi

probability that a vertex is incident to mout extra-cluster edges

π−(mo) =

(
n(k − 1)

mo

)

pmoout(1− pout)
n(k−1)−mo

probability that a vertex is incident to min intra-cluster and mout extra-cluster edges

π(mi ,mo) = π
+(mi )π

−(mo)
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Probability that a GN-graph meets the community criteria

Then we have the following:

probability that a vertex is incident to min intra-cluster edges

π+(mi ) =

(
n

mi

)

pmiin (1 − pin)
n−mi

probability that a vertex is incident to mout extra-cluster edges

π−(mo) =

(
n(k − 1)

mo

)

pmoout(1− pout)
n(k−1)−mo

probability that a vertex is incident to min intra-cluster and mout extra-cluster edges

π(mi ,mo) = π
+(mi )π

−(mo)

probability that a vertex satisfies the strong condition, assuming independence

between the events of having different degrees

Pr [i is strong] =
∑

mo<mi

π(mi ,mo)
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Probability that a GN-graph meets the community criteria

probability that a cluster with n vertices satisfies the strong condition

Pr [C is strong] = (Pr [i is strong])n

probability that a clustering with k clusters of size n satisfies the strong condition

(Pr [i is strong])nk =

(
∑

mo<mi

π(mi ,mo)

)nk
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Thank You!

Leonidas Pitsoulis | University of Thessaloniki 81 / 81


