
Exact and approximation algorithms for
designing optical access networks

Ashwin Arulselvan
Department of Management Science

University of Strathclyde

Workshop on Clustering and Search techniques for large scale
networks, Oct 23-25, 2015



Outline

Competitive algorithm - Incremental Facility Location

I Problem definition and motivation
I Worst case example
I Algorithm, analysis and results

Joint work with Olaf Maurer and Martin Skutella

Branch-cut-and-price algorithm - Buy at Bulk FL

I Problem definition and MIP model
I Valid Inequalities
I Implementation and results

Joint work with Mohsen Rezapour and Wolfgang Welz



Problem definition

Input: Given an instance of uncapacitated facility location
problem:

I A set of F facilities
I A set of D customers
I Facility opening cost f : F → R+

I Service cost c : F × D → R+



Problem definition

Output:
I A sequence for opening facilities
I A sequence for serving customers along with their

assignments to an open facility within the partial sequence
I Think of a point in the sequence as an event happening

at a point of time



Problem Definition and Motivation

I Define a partial solution for serving first r customers from
a given sequence of facility and customer as SOLr

I Find a sequence of facility and customer with

min max
r=1...|D|

SOLr
OPTr

OPTr is the optimal value for serving any r customers

Why do we care?

I We have budget restrictions
I Network planning is deployed in phases



Worst case example

1 2.24 4 6

I The above example has a worst case ratio of 2.24
I We can extend the above idea to achieve 3 (for around

200 facilities)



Algorithm

I We assume we are provided with a base algorithm ‘A’
(black box)

I It has a 2-approximation
I SOLA` is the solution from algorithm A for serving `

customers
I With slight abuse of notation

SOLA` = f (SOL(F )A` ) + c(SOL(F ,D)A` )

The framework ‘B’ works in two phases
I Reduction Phase

I Construct partial solutions that are competitive and save
them

I Incremental Phase
I Glue the saved partial solutions to construct a sequence



Algorithm

SOL0

I Start: Approximately serve all customers
(t = 0, SOLt = SOLA|D| = SOLB|D|)

I Reduction Phase:(Iteration ` = |D| − 1 to 1)
I Remove the customer with the highest service cost
I Close a facility if it is not serving any customer
I Call this solution SOLB`
I If 2SOLA` < SOLB`

I t = t + 1
I SOLt = SOLA`
I SOLB` = SOLA`
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Algorithm

SOL0SOL1SOL2

I Start: Approximately serve all customers
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Algorithm

SOL0SOL1SOL2SOLT−1

I Start: Approximately serve all customers
(t = 0, SOLt = SOLA|D| = SOLB|D|)

I Reduction Phase:(Iteration ` = |D| − 1 to 1)
I Remove the customer with the highest service cost
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Algorithm

SOL0SOL1SOL2SOLT−1SOLT

I Start: Approximately serve all customers
(t = 0, SOLt = SOLA|D| = SOLB|D|)

I Reduction Phase:(Iteration ` = |D| − 1 to 1)
I Remove the customer with the highest service cost
I Close a facility if it is not serving any customer
I Call this solution SOLB`
I If 2SOLA` < SOLB`

I t = t + 1
I SOLt = SOLA`
I SOLB` = SOLA`



Algorithm

SOLTSOLT−1SOLT−2SOL1SOL0

Let SOL0 = SOL0

Incremental phase:(Iteration k = 0 to T − 1)
I Let SOLk have rk customers
I SOLk+1 has at least rk+1 − rk customers not in SOLk
I We will pick the cheapest rk+1 − rk customers from this

set SOLDk+1(rk+1 − rk) and the facilities serving them
SOLFk+1(rk+1 − rk) with cost SOLk+1(rk+1 − rk)

I SOL(F ,R)k+1 = SOL(F ,R)k ∪ SOLDk+1(rk+1 − rk)

I SOL(F )k+1 = SOL(F )k ∪ SOLFk+1(rk+1 − rk)
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Proof sketch of Claim
Claim: The algorithm is 8-competitive at each point of the
sequence.

Look at a refinement point k : 2SOLArk < SOLBrk+1
(rk)

2* optimal(rk) ≤ cost of serving rk customers from a solution
obtained from optimal(rk+1)

Let us add SOLk+1(rk+1 − rk) (cost of the rk+1 − rk added in
the incremental phase) to both sides

2SOLArk + SOLk+1(rk+1 − rk)

< SOLBrk+1
(rk) + SOLk+1(rk+1 − rk)

≤ 2SOLBrk+1
= 2SOLArk+1

Remark:
I This is true for all k = 0 to T − 1
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Analysis

2SOLArk + SOLk+1(rk+1 − rk) ≤ 2SOLArk+1

For any k = 1 to T , we can add these terms from
j = 1 to k − 1 to get

2SOL(F )B0 + SOL(R)B0 +
k−1∑
j=0

SOLj+1(rj+1 − rj)

= 2SOLArk ≤ 4OPTrk
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Analysis

We would lose an additional factor 2 at intermediate points
between two refinement point giving an 8-competitive
algorithm!

Tighter analysis
2*Facility cost + service cost ≤ 8*Optimal cost



Experiments

Size # Max gap (%) Ave Gap (%) Time[sec]
200 15 50-60 13-15 250-350
300 15 40-45 11-13 2050-2100

Table: Results of computational experiments from UFLib Library



Typical Network Design

I Given a set of demand nodes in a weighted network
I Find a minimum cost routing network; and route every

client demand to a an open facility

I Cost of routing demand on edge e depends on the total
demand (denoted by De) routed on that edge

I Steiner Tree: coste(De) = ce , for De > 0

I Buy-at-Bulk Network Design: coste(De) = ce · g(De),
where g is a concave cost function

I ...
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Cable Model

I In practice costs arise due to discrete capacity cables:

I The capacity on a link can be purchased at

discrete units: u1 < u2 < ... < uK
costs: σ1 < σ2 < ... < σK
where σ1

u1
> σ2

u2
> ... > σK

uK



Multiple-Sinks (Facilities) Buy-at-Bulk Network
Design

I Given a set of candidate sinks F (called facilities) instead
of a single sink

I We may route demand to any facility, but incur a facility
cost

I Find a trade-off between facility opening and network
design costs



The problem

Input:

I undirected graph G = (V ,E )

I edge lengths ce ∈ Z≥0, e ∈ E

I potential facilities F ⊆ V with opening costs µi ∈ Z≥0,
i ∈ F

I clients D ⊆ V with demands dj ∈ Z>0, j ∈ D

I access cable types K with
I capacity uk ∈ Z>0, k ∈ K
I setup cost (per unit length) σk ∈ Z≥0, k ∈ K

σ1 < ... < σK and σ1
u1
> ... > σK

uK



The problem

Solution:

I open facilities F̄ ⊆ F

I forest A∗ ⊆ E containing one path, for each j , (called Pj)
that connects client j to some open facility ij ∈ F̄

I cable installation x : A∗ × K → Z≥0 of sufficient capacity,
i.e.,

∑
j : e∈Pj

dj ≤
∑

k ukxe,k

Goal:
min

∑
i∈F̄

µi +
∑
e∈A∗

∑
k∈K

σkcexe,k
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Compact Formulation

(IP-1) min
∑
i∈F

µizi +
∑
e∈E

ce

K∑
n=1

σnx
n
e∑

e∈δ+(j)

f je ≥ 1 ∀j ∈ D

∑
e∈δ+(v)

f je =
∑

e∈δ−(v)

f je ∀j ∈ D, v ∈ V \F , v 6= j

∑
e∈δ−(i)

f je −
∑

e∈δ+(i)

f je ≤ zi ∀j ∈ D, i ∈ F

∑
j∈D

dj (f
j

(k,l)
+ f j

(l,k)
) ≤

K∑
n=1

unx
n
kl ∀kl ∈ E

xne , f
j
e , zi non-negative integers

Where:

I zi indicates if facility i is open or not

I xne indicates if cable type n is installed on edge e

I f je indicates if flow from client j uses edge e



Compact Formulation

(IP-1) min
∑
i∈F

µizi +
∑
e∈E

ce

K∑
n=1

σnx
n
e∑

e∈δ+(j)

f je ≥ 1 ∀j ∈ D

∑
e∈δ+(v)

f je =
∑

e∈δ−(v)

f je ∀j ∈ D, v ∈ V \F , v 6= j

∑
e∈δ−(i)

f je −
∑

e∈δ+(i)

f je ≤ zi ∀j ∈ D, i ∈ F

∑
j∈D

dj (f
j

(k,l)
+ f j

(l,k)
) ≤

K∑
n=1

unx
n
kl ∀kl ∈ E

xne , f
j
e , zi non-negative integers

Theorem. The integrality gap of (IP-1) can be arbitrarily large.



Approximate Solution

Modified routing cost:⌈
De

uk

⌉
σkce ≤

(
σk + De

σk
uk

)
ce ≤ 2

⌈
De

uk

⌉
σkce
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(IP-2) min
∑
i∈F

µizi +
K∑

k=1

σk
∑
e∈E

cex
k
e +

∑
j∈D

dj

K∑
k=1

σk

uk

∑
e∈~E

ce f
j
e;k

∑
e∈δ+(j)

K∑
k=1

f je;k ≥ 1 ∀j ∈ D

∑
e∈δ+(v)

K∑
k=1

f je;k =
∑

e∈δ−(v)

K∑
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f je;k ∀j ∈ D, v ∈ V \F , v 6= j

∑
e∈δ−(i)

K∑
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Approximate Solution
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i∈F

µizi +
K∑

k=1

σk
∑
e∈E
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k
e +

∑
j∈D
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k=1

σk
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∑
e∈~E
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j
e;k
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e∈δ+(j)

K∑
k=1

f je;k ≥ 1 ∀j ∈ D

∑
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k=1
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∑

e∈δ−(v)

K∑
k=1

f je;k ∀j ∈ D, v ∈ V \F , v 6= j
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e∈δ−(i)
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k=1

f je;k −
∑

e∈δ+(i)
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k=1
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Theorem (Friggstad, Rezapour, Soto, Salavatipour)
The integrality gap of (IP-2) is at most O(K).



Cable Model

capacity

cost

I g(x) = min cost set of cables of total capacity at least x
(Integer Minimum Knapsack Problem)

I one can compute the optimal combination of cable types
for all flow levels on any edge using dynamic
programming



Path based Formulation

capacity

cost

ue,1ue,2 ue,3

ce,1
ce,2

ce,3

ce,4

I We consider each piece of the step cost function as a
module: module i has a cost of ce,i and a capacity of ue,i

⇒xe,n ∈ {0, 1}

I We create a dummy root node r and connect all facilities
with the root node.

I Let P(j) denote the set of all possible paths starting from
client j and terminating at node r

⇒yp ∈ {0, 1}, p ∈ P(j)
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ce,1
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ce,3
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I We consider each piece of the step cost function as a
module: module i has a cost of ce,i and a capacity of ue,i
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Path based Formulation

(IP-3) min
∑
i∈F

µizi +
∑
e∈E

∑
n∈Ne

ce,n · xe,n

∑
p∈P(j)

yp = 1, ∀j ∈ D

∑
p∈P(j):(i,r)∈p

yp ≤ zi , ∀i ∈ F , ∀j ∈ D

∑
j∈D

∑
p∈P(j):

{(k,l),(l,k)}∩p 6=∅

djyp ≤
∑

n∈Nkl

ukl,nxkl,n, ∀kl ∈ E

∑
n∈Nkl

xkl,n ≤ 1, ∀kl ∈ E

yp , xe,n, zi ∈ {0, 1}

Theorem
IP-3 is at least as strong as IP-2 in terms of the lower bounds.



Cut Inequalities

I Valid inequalities:
For every client j , and S̄ ⊂ V (containing j ; not r), we
have: ∑

kl :k∈S̄

∑
n∈Nkl

xkl ,n +
∑
i∈S̄

zi ≥ 1

I Seperation:
I Given a fractional optimal solution (x∗, y∗, z∗) to IP-3.
I Take the edge capacities to be:

∑
n∈Nkl

x∗kl ,n for all
kl ∈ E ; and z∗i for all ir

I For every client j ∈ D, solve the maximum flow problem
with source as j and sink as r . If the flow value is less
than 1, then we obtain the violated cut.
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have: ∑

kl :k∈S̄

∑
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∑
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zi ≥ 1

I Seperation:
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I Take the edge capacities to be:

∑
n∈Nkl
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kl ∈ E ; and z∗i for all ir
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with source as j and sink as r . If the flow value is less
than 1, then we obtain the violated cut.

x1
e = 0 & x2

e = 1
L



Cover Inequalities
I We define θkl = (Dθ,Mθ) to be a cover if

(where Dθ ⊆ D, Mθ ⊆ Nkl , and Ukl =
∑

n∈Nkl
ukl,n)∑

j∈Dθ

dj +
∑
n∈Mθ

ukl,n > Ukl

I We say that a cover is minimal when just removing any
item either from Dθ or Mθ results a non-cover

I If θkl is a minimal cover, then the following inequalities
are valid:∑

j∈Dθ

∑
p∈P(j):

{(k,l),(l,k)}∩p 6=∅

yp +
∑
n∈Mθ

(1− xkl,n) ≤ |Mθ|+ |Dθ| − 1⇐⇒

∑
j∈Dθ

∑
p∈P(j):

{(k,l),(l,k)}∩p 6=∅

yp ≤
∑
n∈Mθ

xkl,n + |Dθ| − 1



Cover Inequalities
Separation:

I Given a fractional optimal solution (x∗, y ∗, z∗) to IP-3.
I For each j ∈ D, we let

w∗j =
∑

p∈P(j):
{(k,l),(l,k)}∩p 6=∅

y∗p

I A most violated cover inequality is obtained by solving the
following knapsack problem:

min γ =
∑
n∈Fkl

x∗kl,nxkl,n +
∑
j∈D

(1− w∗j )wj

∑
j∈D

djwj +
∑
n∈Fkl

ukl,nxkl,n ≥
∑
n∈Fkl

ukl,n + 1

xkl,n ∈ {0, 1}, ∀n ∈ Fkl

wj ∈ {0, 1}, ∀j ∈ D

I (x∗, y ∗, z∗) violates the following cover inequality if γ < 1.∑
j∈D′

∑
p∈P(j):(k,l)∈p

yp ≤
∑

n∈F ′
kl
∪{Nkl\Fkl}

xkl,n + |D′| − 1
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Basic Idea of Solution Method

I Our formulation contains an exponential number of
variables!

Column Generation:
I We solve the LP to optimality using simplex with only a

subset of the variables–restricted master problem.

I We then ask if any variable that has been left out has
negative reduced cost; if so, that column is added–
pricing problem

I The optimal solution might not be integral!

Branch-and-Bound:
I We use branching to handle integrality.



Restricted Master Problem

I We consider only a subset P ′(j) ⊆ P(j) of paths for each
j

I We enrich the restricted master problem by the routing
paths obtained by a few runs of the following algorithm.

Algorithm GreedyAlgorithm
1. Pick a random permutation of clients in D;

Let Π = (j1, j2, ..., j|D|) be the picked permutation.

2. For i = 1, 2, · · · , |D| do
- Greedily route dji units of demand from ji to root r via the cheapest

cost routing path, using the network constructed by the previous
i − 1 clients.



Restricted Master Problem
I We consider only a subset P ′(j) ⊆ P(j) of paths for each

j
I We enrich the restricted master problem by the routing

paths obtained by a few runs of the following algorithm.

Algorithm GreedyAlgorithm
1. Pick a random permutation of clients in D;

Let Π = (j1, j2, ..., j|D|) be the picked permutation.

2. For i = 1, 2, · · · , |D| do
- Greedily route dji units of demand from ji to root r via the cheapest

cost routing path, using the network constructed by the previous
i − 1 clients.

Theorem (Charikar & Karagiozova; STOC 2005)
The (inflated) greedy algorithm achieves an approximation ratio of
O(log2(|D|)) for the single-sink non-uniform buy-at-bulk problem (with
unit demands).
holds for our problem as well.



Pricing Problem

I We only need to search for some column with negative
reduced cost

min
p∈P(j)

−

µj +
∑

p∈P(j):
{(k,l),(l ,k)}∩p 6=∅,

l 6=r

djπkl +
∑
i∈F

Ipi γ
j
i


I This corresponds to solving a shortest path problem,

where we search for routes with a negative reduced cost
I we take the weight of an edge kl to be −djπkl , for all

kl ∈ E and weights −γji , for all ir edges



Instances details
I Each instance corresponds to a region in Germany concerning

the potential client and facility locations.

I The street segment form the edges, while the street
intersections and traffic circles provide the nodes.



Primal heuristics implementation

I A CPLEX based heuristic
I A LP based heuristics (similar to the previous one)
I A hybrid strategy that has parallel implementation
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Computational Results

Inst. |V | |E | |F | |D| # vars # cuts lp-gap(%) root-gap(%) gap(%)
a 1,675 1,722 104 604 12,079 5,089 89.5 19.6 18.2
b 11,544 12,350 890 4,275 43,478 3,759 146.0 53.0 53.0
c 2,271 1,419 498 349 32,081 2,325 82.9 21.5 21.3
d 4,110 4,350 230 1,670 23,418 13,692 151.5 23.9 23.3
e 637 758 101 39 50,739 1,749 69.1 23.0 16.1
f 1,315 1,422 148 238 50,167 5,685 172.7 18.6 15.9
g 3,055 3,177 49 591 2,976 2,134 71.4 13.3 10.7
h 4,227 4,482 319 1,490 31,261 10,865 121.8 20.5 20.5
i 6,750 7,262 531 2,440 33,211 7,165 150.7 32.7 32.7

Table: Results of our algorithm on the real-world instances

I We report the results after a run time of 36 000 s (ten hours)

I We are able to solve large real world instances to roughly
20.0%



Summary

Incremental Facility location

I 8-competitive algorithm
I Improve LB (3) or UB (8) or both?

BCP for BuyatBulk FL

I MIP model, Valid inequalities
I Polyhedral results: Facet defining, separation problem
I Resilience of the network
I Incremental strategy

THANK YOU
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