Exact and approximation algorithms for
designing optical access networks

Ashwin Arulselvan
Department of Management Science
University of Strathclyde

Workshop on Clustering and Search techniques for large scale
networks, Oct 23-25, 2015



Outline

Competitive algorithm - Incremental Facility Location

» Problem definition and motivation
» Worst case example

» Algorithm, analysis and results

Joint work with Olaf Maurer and Martin Skutella
Branch-cut-and-price algorithm - Buy at Bulk FL

» Problem definition and MIP model
» Valid Inequalities

» Implementation and results

Joint work with Mohsen Rezapour and Wolfgang Welz



Problem definition

Input: Given an instance of uncapacitated facility location
problem:

» A set of F facilities

» A set of D customers

» Facility opening cost f : F — R
» Servicecost c: F x D — R,




Problem definition

Output:
» A sequence for opening facilities
» A sequence for serving customers along with their
assignments to an open facility within the partial sequence

» Think of a point in the sequence as an event happening
at a point of time



Problem Definition and Motivation

» Define a partial solution for serving first r customers from
a given sequence of facility and customer as SOL,

» Find a sequence of facility and customer with

min max 0L,
r=1...|D| OPT,

OPT, is the optimal value for serving any r customers

Why do we care?

» We have budget restrictions

» Network planning is deployed in phases



Worst case example

1 224 4 6
» The above example has a worst case ratio of 2.24

» We can extend the above idea to achieve 3 (for around
200 facilities)



Algorithm

» We assume we are provided with a base algorithm ‘A’
(black box)

» It has a 2-approximation
» SOL} is the solution from algorithm A for serving ¢
customers
» With slight abuse of notation
SOL} = f(SOL(F)}) + c(SOL(F, D)}
The framework ‘B’ works in two phases
» Reduction Phase

» Construct partial solutions that are competitive and save
them

» Incremental Phase
» Glue the saved partial solutions to construct a sequence



Algorithm

» Start: Approximately serve all customers
(t=0,S0L, = SOL|AD| = SOLIBD‘)
» Reduction Phase:(lteration { = |D| — 1 to 1)

» Remove the customer with the highest service cost
» Close a facility if it is not serving any customer
» Call this solution SOLE
» If 25017 < SOLE
> t=t+1
> SOL, = SOLA
> SOLE = SOLA
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SOL, SOL, SOLr_5 SOLt_y SOLy

Let SOLy = SOL,
Incremental phase:(lteration k =0to T — 1)

v

Let SOL, have r, customers

v

SOLy 1 has at least r 1 — r, customers not in SOL,

v

We will pick the cheapest r,; — ri customers from this
set SOLEH(rkH — rx) and the facilities serving them
SOL, (k1 — i) with cost SOLyi (1 — i)

W(F, R)k+1 = W(F, R)k U SOLkD+1(rk+1 — rk)
W(F);@rl = E(F)k U SOL£+1(rk+1 - I’k)
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Proof sketch of Claim

Claim: The algorithm is 8-competitive at each point of the
sequence.
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Proof sketch of Claim

Claim: The algorithm is 8-competitive at each point of the
sequence.

Look at a refinement point k: 250L7, < SOLE _ (ry)
2* optimal(rx) < cost of serving ry customers from a solution

obtained from optimal(ry1)

Let us add SOLyy1(rks1 — ri) (cost of the r. 1 — ry added in
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Remark:
» Thisistrueforall k=0to T —1



Analysis

2SOL2 + SOLk+1(rk+1 — I’k) S 2SOLA

rk+1
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Analysis

We would lose an additional factor 2 at intermediate points
between two refinement point giving an 8-competitive
algorithm!

Tighter analysis

2*Facility cost + service cost < 8*Optimal cost



Experiments

Size | # | Max gap (%) | Ave Gap (%) | Time[sec]
200 | 15 50-60 13-15 250-350
300 | 15 40-45 11-13 | 2050-2100

Table: Results of computational experiments from UFLib Library
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» Given a set of demand nodes in a weighted network

» Find a minimum cost routing network; and route every
client demand to a an open facility
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Typical Network Design
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» Given a set of demand nodes in a weighted network

» Find a minimum cost routing network; and route every
client demand to a an open facility

» Cost of routing demand on edge e depends on the total
demand (denoted by D) routed on that edge
» Steiner Tree: coste(De) = ce, for Do >0

» Buy-at-Bulk Network Design: coste(De) = ce - g(De),
where g is a concave cost function

> ..



Cable Model

» In practice costs arise due to discrete capacity cables:

» The capacity on a link can be purchased at

discrete units: w1 < up < ... < Uk

costs: o1 <0< ...< o0k

g1 02 oK
where T



Multiple-Sinks (Facilities) Buy-at-Bulk Network

Design
O
@]
» Given a set of candidate sinks F (called facilities) instead

of a single sink

» We may route demand to any facility, but incur a facility
cost

» Find a trade-off between facility opening and network
design costs



The problem

Input:

» undirected graph G = (V, E)

v

edge lengths ¢, € Z>g, e € E

v

potential F C V with opening costs p; € Z>o,
i€F
> D C V with demands d; € Z~, j € D

v

access cable types K with
» capacity uy € Z~g, k€ K
» setup cost (per unit length) o € Z>g, k € K

o1 <...<okand & > . > K
uy uk
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Solution:
» open facilities F C F

» forest A* C E containing one path, for each j, (called P;)
that connects client j to some open facility i; € F

» cable installation x : A* x K — Zx¢ of sufficient capacity,
e, ). ecP; di < D) UkXek

Goal:
min Z Wi+ Z Z Ok CeXe k

icF eCA* keK
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Compact Formulation

(IP-1) manp,,Z, + Z CeZO'nX"

i€EF ecE n=1
> fixi Vje D
eest(j)
o ofl= Z £l VieD,ve V\F,v#j
ecdt(v) ecd—(v)
Sl > fl<y vjeD,i€F
e€6—(i) e€st(i)
de(f(Jk,/) + fls) < D unxiy vkl e E
JjeD
X", fi,z non-negative integers
Where:
> z indicates if i is open or not

> x[ indicates if cable type n is installed on edge e

» fJ indicates if flow from j uses edge e



Compact Formulation

IP 1 mlnz,u,,z, + ZCeZO'nX

ieF ecE n=1

> fx1

eest(j)

> d- 3

ecst(v) e€s—(v)

> Aoy des

ecs—(i) ecs+(i)
de(f(Jk,/) + 'C(J/,k)) < Z UnXgp

n=1

Jjeb

X", fi,z non-negative integers

VjeD

VjeD,ve V\F,v#j

vjeD,icF

Vkl € E

Theorem. The integrality gap of (IP-1) can be arbitrarily large.



Approximate Solution

Modified routing cost:

D, D
’76-‘ OkCe < <Uk + De0k> e <2 ’76-‘ OkCe
Uk Uk Uk



Approximate Solution

Modified routing cost:

D, D
’79-‘ OkCe S (Uk + Deo-k) Ce S 2 ’Ve
Uk U Uk

(IP-2) mmZ,u,z,JrZachex +Zd Z

i€eF = ecE jeD k=1 EEE
K .
J
> 2 flz
ecst(j) k=1
K . K .
) J
Z Z ek Z ek
e€ét(v) k=1 e€d— (v) k=1
K K
J J
Z ek Z ek S 7
eest(i) k=1

VjeD

VjeD,veV\F,v#]

VjeD,icF

VieD,uweE,1<k<K



Approximate Solution
Modified routing cost:

D, D
’76—‘ OkCe S <(7k + Degk> Ce S 2 ’76—‘ OkCe
Uk Uk Uk

(IP-2) mlnz,u,,z,—l—Zochex +Zdz Zce

ieF k=1 ecE jeD k=1 eEE
> Z fle>1 VjeD
eest(j) k=1
K K )
D D >t Vi€ D,vEV\F,v#]
ecét(v) k=1 e€s—(v) k=1
K . K )
Do D fhk— Sofl,<z  VjeDieF
ecs— (i) k=1 e€st(i) k=1
Pkt Pl S xE VieD,uve E, 1< k<K

Theorem (Friggstad, Rezapour, Soto, Salavatipour)
The integrality gap of (IP-2) is at most O(K).



Cable Model

cost

capacity

» g(x) = min cost set of cables of total capacity at least x
(Integer Minimum Knapsack Problem)

» one can compute the optimal combination of cable types
for all flow levels on any edge using dynamic
programming



Path based Formulation

cost

Ce,4

Ce,3 —

Ce,2 { m——
Ce,1 &
Ue 1Ue 2 Ue 3

capacity

» We consider each piece of the step cost function as a
module: module 7 has a cost of c.; and a capacity of v,

=Xen € {0,1}



Path based Formulation

cost

Ce,4

Ce,3 —

Ce,2 { m——
Ce,1 &
Ue 1Ue 2 Ue 3

capacity

» We consider each piece of the step cost function as a
module: module 7 has a cost of c.; and a capacity of v,

=Xen € {0,1}

» We create a dummy root node r and connect all facilities
with the root node.

» Let P(j) denote the set of all possible paths starting from
client j and terminating at node r

=¥p €{0,1},p € P(j)



Path based Formulation

(IP-3) min Z wizi + Z Z Ce,n * Xe,n

i€F ecE neN,
S ow=1, VjeD
PEP())

> <z, Vi€ F,¥jeD

pEP():(isr)Ep

> > diye < D Uk,nXkd,n; vkl € E

JjeDb pEP(): neENy
{(k:1), (1K)} np#0
> X <1, Vkl € E
HENM

Yps Xe,n, Zj S {07 1}

Theorem
IP-3 is at least as strong as IP-2 in terms of the lower bounds.



Cut Inequalities

» Valid inequalities: B
For every client j, and S C V (containing j; not r), we
have:

Z Z Xk/,n+ZZi21

kl:keS nENy icS



Cut Inequalities

» Valid inequalities: ~
For every client j, and S C V (containing j; not r), we

have:
Z Z Xkl,n+zzi >1

kl:keS n€ENy icS

» Seperation:
» Given a fractional optimal solution (x*, y*, z*) to IP-3.
» Take the edge capacities to be: >\, X}, , for all
kl € E; and z! for all ir

» For every client j € D, solve the maximum flow problem
with source as j and sink as r. If the flow value is less
than 1, then we obtain the violated cut.



Cover Inequalities

» We define 0,y = (Dy, My) to be a cover if
(where Dy € D, My C Ny, and Uy = > e Ukln)

Z di + Z Uii.n > Ui

JEDg neMpy

» We say that a cover is minimal when just removing any
item either from Dy or M, results a non-cover

» If 6, is a minimal cover, then the following inequalities

are valid:
> Yo Yot > (L= xun) < [Mg| +|Dp| — 1=
JE€Dg PEP()): neMy

{(k,1), (1)} p#£D

Z Z Yp < ZXk/,n+|De|*1

J€Dg PEP()) neMy
{(k,),(1, k)}ﬁpﬂ)



Cover Inequalities

Separation:

» Given a fractional optimal solution (x*, y*, z*) to IP-3.
» For each j € D, we let

wi= > %

pEP()):
{(k,/),(/,k)}ﬂp;é(])

» A most violated cover inequality is obtained by solving the
following knapsack problem:

min ¥ = Y X X+ (1 — w)w;

neFy jeD
E diw; + § Ukl nXki,n = E ugn+1
JjebD nEFy neFy

xu,n € {0,1}, Vne€ Fy
w; € {0,1}, VjeD



Cover Inequalities

Separation:

» Given a fractional optimal solution (x*, y*, z*) to IP-3.
» For each j € D, we let

wi= > %

pEP()):
{(k,/),(/,k)}ﬂp;é(])

» A most violated cover inequality is obtained by solving the
following knapsack problem:

min ¥ = Y X X+ (1 — w)w;

neFy jeD
E diw; + § Ukl nXki,n = E ugn+1
JjebD nEFy neFy

xu,n € {0,1}, Vne€ Fy
w; € {0,1}, VjeD

» (x*,y*, z%) violates the following cover inequality if v < 1.

> > w< > X, + D' =1

JED peP()):(k,)Ep neF[ U{Nu\Fi}



Basic |dea of Solution Method

» Our formulation contains an exponential number of
variables!

Column Generation:
» We solve the LP to optimality using simplex with only a
subset of the variables—restricted master problem.

» We then ask if any variable that has been left out has
negative reduced cost; if so, that column is added—
pricing problem

» The optimal solution might not be integral!

Branch-and-Bound:
» We use branching to handle integrality.



Restricted Master Problem

» We consider only a subset P'(j) C P(j) of paths for each
J

» We enrich the restricted master problem by the routing
paths obtained by a few runs of the following algorithm.

Algorithm GreedyAlgorithm

1. Pick a random permutation of clients in D;
Let M = (j1,/2,.--,jip|) be the picked permutation.

2. Fori=1,2,---,|D| do
- Greedily route dj, units of demand from jj to root r via the cheapest
cost routing path, using the network constructed by the previous
i — 1 clients.




Restricted Master Problem

» We consider only a subset P'(j) C P(j) of paths for each

J
» We enrich the restricted master problem by the routing

paths obtained by a few runs of the following algorithm.

Algorithm GreedyAlgorithm

1. Pick a random permutation of clients in D;
Let M = (j1,/2, .-, jip|) be the picked permutation.
2. Fori=1,2,---,|D| do
- Greedily route dj, units of demand from j; to root r via the cheapest

cost routing path, using the network constructed by the previous
i — 1 clients.

Theorem (Charikar & Karagiozova; STOC 2005)

The (inflated) greedy algorithm achieves an approximation ratio of

O(log®(|D|)) for the single-sink non-uniform buy-at-bulk problem (with
unit demands).

holds for our problem as well.



Pricing Problem

» We only need to search for some column with negative
reduced cost

min  — | i+ dmg + Y 1P
peP()) Hi Z Tk Z i
pPEP()): ieF
{(k7/)7(’/¢k)}ﬂp7é0,

» This corresponds to solving a shortest path problem,
where we search for routes with a negative reduced cost

» we take the weight of an edge kI to be —djmyy, for all
kl € E and weights —v/, for all ir edges



Instances details

» Each instance corresponds to a region in Germany concerning
the potential client and facility locations.

» The street segment form the edges, while the street
intersections and traffic circles provide the nodes.
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Primal heuristics implementation

» A CPLEX based heuristic

» A LP based heuristics (similar to the previous one)

» A hybrid strategy that has parallel implementation

obj. value
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Computational Results

Inst. V] |E| |F| |D| # vars # cuts Ip-gap(%) root-gap(%) gap(%)
a 1,675 1,722 104 604 12,079 5,089 89.5 19.6 18.2
b 11,544 12,350 890 4,275 43,478 3,759 146.0 53.0 53.0
c 2,271 1,419 498 349 32,081 2,325 82.9 21.5 21.3
d 4,110 4,350 230 1,670 23,418 13,692 151.5 23.9 23.3
e 637 758 101 39 50,739 1,749 69.1 23.0 16.1
f 1,315 1,422 148 238 50,167 5,685 172.7 18.6 15.9
g 3,055 3,177 49 591 2,976 2,134 71.4 13.3 10.7
h 4,227 4,482 319 1,490 31,261 10,865 121.8 20.5 20.5
i 6,750 7,262 531 2,440 33,211 7,165 150.7 32.7 32.7

Table: Results of our algorithm on the real-world instances

» We report the results after a run time of 36 000 s (ten hours)

» We are able to solve large real world instances to roughly

20.0%




Summary

Incremental Facility location

» 8-competitive algorithm
» Improve LB (3) or UB (8) or both?

BCP for BuyatBulk FL
MIP model, Valid inequalities

Polyhedral results: Facet defining, separation problem

v

v

Resilience of the network

v

v

Incremental strategy

THANK YOU
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