Exact and approximation algorithms for designing optical access networks

Ashwin Arulselvan
Department of Management Science University of Strathclyde

Workshop on Clustering and Search techniques for large scale networks, Oct 23-25, 2015

Outline

Competitive algorithm - Incremental Facility Location

- Problem definition and motivation
- Worst case example
- Algorithm, analysis and results

Joint work with Olaf Maurer and Martin Skutella
Branch-cut-and-price algorithm - Buy at Bulk FL

- Problem definition and MIP model
- Valid Inequalities
- Implementation and results

Joint work with Mohsen Rezapour and Wolfgang Welz

Problem definition

Input: Given an instance of uncapacitated facility location problem:

- A set of F facilities
- A set of D customers
- Facility opening cost $f: F \rightarrow \mathbb{R}_{+}$
- Service cost $c: F \times D \rightarrow \mathbb{R}_{+}$

Problem definition

Output:

- A sequence for opening facilities
- A sequence for serving customers along with their assignments to an open facility within the partial sequence
- Think of a point in the sequence as an event happening at a point of time

Problem Definition and Motivation

- Define a partial solution for serving first r customers from a given sequence of facility and customer as $S O L_{r}$
- Find a sequence of facility and customer with

$$
\min \max _{r=1 \ldots|D|} \frac{S O L_{r}}{O P T_{r}}
$$

$O P T_{r}$ is the optimal value for serving any r customers
Why do we care?

- We have budget restrictions
- Network planning is deployed in phases

Worst case example

- The above example has a worst case ratio of 2.24
- We can extend the above idea to achieve 3 (for around 200 facilities)

Algorithm

- We assume we are provided with a base algorithm ' A ' (black box)
- It has a 2-approximation
- $S O L_{\ell}^{A}$ is the solution from algorithm A for serving ℓ customers
- With slight abuse of notation
$S O L_{\ell}^{A}=f\left(S O L(F)_{\ell}^{A}\right)+c\left(S O L(F, D)_{\ell}^{A}\right)$
The framework ' B ' works in two phases
- Reduction Phase
- Construct partial solutions that are competitive and save them
- Incremental Phase
- Glue the saved partial solutions to construct a sequence

Algorithm

- Start: Approximately serve all customers $\left(t=0, S O L_{t}=S O L_{|D|}^{A}=S O L_{|D|}^{B}\right)$
- Reduction Phase:(Iteration $\ell=|D|-1$ to 1)
- Remove the customer with the highest service cost
- Close a facility if it is not serving any customer
- Call this solution $S O L_{\ell}^{B}$
- If $2 S O L_{\ell}^{A}<S O L_{\ell}^{B}$
- $t=t+1$
- $S O L_{t}=S O L_{\ell}^{A}$
- $S O L_{\ell}^{B}=S O L_{\ell}^{A}$

Algorithm

$\triangle \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta$

$$
S O L_{0}
$$

- Start: Approximately serve all customers $\left(t=0, S O L_{t}=S O L_{|D|}^{A}=S O L_{|D|}^{B}\right)$
- Reduction Phase:(Iteration $\ell=|D|-1$ to 1)
- Remove the customer with the highest service cost
- Close a facility if it is not serving any customer
- Call this solution $S O L_{\ell}^{B}$
- If $2 S O L_{\ell}^{A}<S O L_{\ell}^{B}$
- $t=t+1$
- $S O L_{t}=S O L_{\ell}^{A}$
- $S O L_{\ell}^{B}=S O L_{\ell}^{A}$

Algorithm

$\Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta$

- Start: Approximately serve all customers
$\left(t=0, S O L_{t}=S O L_{|D|}^{A}=S O L_{|D|}^{B}\right)$
- Reduction Phase:(Iteration $\ell=|D|-1$ to 1)
- Remove the customer with the highest service cost
- Close a facility if it is not serving any customer
- Call this solution $S O L_{\ell}^{B}$
- If $2 S O L_{\ell}^{A}<S O L_{\ell}^{B}$
- $t=t+1$
- $S O L_{t}=S O L_{\ell}^{A}$
- $S O L_{\ell}^{B}=S O L_{\ell}^{A}$

Algorithm

$\triangle \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta$

- Start: Approximately serve all customers
$\left(t=0, S O L_{t}=S O L_{|D|}^{A}=S O L_{|D|}^{B}\right)$
- Reduction Phase:(Iteration $\ell=|D|-1$ to 1)
- Remove the customer with the highest service cost
- Close a facility if it is not serving any customer
- Call this solution $S O L_{\ell}^{B}$
- If $2 S O L_{\ell}^{A}<S O L_{\ell}^{B}$
- $t=t+1$
- $S O L_{t}=S O L_{\ell}^{A}$
- $S O L_{\ell}^{B}=S O L_{\ell}^{A}$

Algorithm

- Start: Approximately serve all customers
$\left(t=0, S O L_{t}=S O L_{|D|}^{A}=S O L_{|D|}^{B}\right)$
- Reduction Phase:(Iteration $\ell=|D|-1$ to 1)
- Remove the customer with the highest service cost
- Close a facility if it is not serving any customer
- Call this solution $S O L_{\ell}^{B}$
- If $2 S O L_{\ell}^{A}<S O L_{\ell}^{B}$
- $t=t+1$
- $S O L_{t}=S O L_{\ell}^{A}$
- $S O L_{\ell}^{B}=S O L_{\ell}^{A}$

Algorithm

- Start: Approximately serve all customers
$\left(t=0, S O L_{t}=S O L_{|D|}^{A}=S O L_{|D|}^{B}\right)$
- Reduction Phase:(Iteration $\ell=|D|-1$ to 1)
- Remove the customer with the highest service cost
- Close a facility if it is not serving any customer
- Call this solution $S O L_{\ell}^{B}$
- If $2 S O L_{\ell}^{A}<S O L_{\ell}^{B}$
- $t=t+1$
- $S O L_{t}=S O L_{\ell}^{A}$
- $S O L_{\ell}^{B}=S O L_{\ell}^{A}$

Algorithm

Let $\overline{S O L}_{0}=S O L_{0}$
Incremental phase:(Iteration $k=0$ to $T-1$)

- Let $S O L_{k}$ have r_{k} customers
- $S O L_{k+1}$ has at least $r_{k+1}-r_{k}$ customers not in $\overline{S O L}_{k}$
- We will pick the cheapest $r_{k+1}-r_{k}$ customers from this set $S O L_{k+1}^{D}\left(r_{k+1}-r_{k}\right)$ and the facilities serving them $S O L_{k+1}^{F}\left(r_{k+1}-r_{k}\right)$ with cost $S O L_{k+1}\left(r_{k+1}-r_{k}\right)$
- $\overline{S O L}(F, R)_{k+1}=\overline{S O L}(F, R)_{k} \cup S O L_{k+1}^{D}\left(r_{k+1}-r_{k}\right)$
- $\overline{S O L}(F)_{k+1}=\overline{S O L}(F)_{k} \cup S O L_{k+1}^{F}\left(r_{k+1}-r_{k}\right)$

Algorithm

Let $\overline{S O L}_{0}=S O L_{0}$
Incremental phase:(Iteration $k=0$ to $T-1$)

- Let $S O L_{k}$ have r_{k} customers
- $S O L_{k+1}$ has at least $r_{k+1}-r_{k}$ customers not in $\overline{S O L}_{k}$
- We will pick the cheapest $r_{k+1}-r_{k}$ customers from this set $S O L_{k+1}^{D}\left(r_{k+1}-r_{k}\right)$ and the facilities serving them $S O L_{k+1}^{F}\left(r_{k+1}-r_{k}\right)$ with cost $S O L_{k+1}\left(r_{k+1}-r_{k}\right)$
- $\overline{S O L}(F, R)_{k+1}=\overline{S O L}(F, R)_{k} \cup S O L_{k+1}^{D}\left(r_{k+1}-r_{k}\right)$
- $\overline{S O L}(F)_{k+1}=\overline{S O L}(F)_{k} \cup S O L_{k+1}^{F}\left(r_{k+1}-r_{k}\right)$

Algorithm

$\Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta$

Let $\overline{S O L}_{0}=S O L_{0}$
Incremental phase:(Iteration $k=0$ to $T-1$)

- Let $S O L_{k}$ have r_{k} customers
- $S O L_{k+1}$ has at least $r_{k+1}-r_{k}$ customers not in $\overline{S O L}_{k}$
- We will pick the cheapest $r_{k+1}-r_{k}$ customers from this set $S O L_{k+1}^{D}\left(r_{k+1}-r_{k}\right)$ and the facilities serving them $S O L_{k+1}^{F}\left(r_{k+1}-r_{k}\right)$ with cost $S O L_{k+1}\left(r_{k+1}-r_{k}\right)$
- $\overline{S O L}(F, R)_{k+1}=\overline{S O L}(F, R)_{k} \cup S O L_{k+1}^{D}\left(r_{k+1}-r_{k}\right)$
- $\overline{S O L}(F)_{k+1}=\overline{S O L}(F)_{k} \cup S O L_{k+1}^{F}\left(r_{k+1}-r_{k}\right)$

Algorithm

Let $\overline{S O L}_{0}=S O L_{0}$
Incremental phase:(Iteration $k=0$ to $T-1$)

- Let $S O L_{k}$ have r_{k} customers
- $S O L_{k+1}$ has at least $r_{k+1}-r_{k}$ customers not in $\overline{S O L}_{k}$
- We will pick the cheapest $r_{k+1}-r_{k}$ customers from this set $S O L_{k+1}^{D}\left(r_{k+1}-r_{k}\right)$ and the facilities serving them $S O L_{k+1}^{F}\left(r_{k+1}-r_{k}\right)$ with cost $S O L_{k+1}\left(r_{k+1}-r_{k}\right)$
- $\overline{S O L}(F, R)_{k+1}=\overline{S O L}(F, R)_{k} \cup S O L_{k+1}^{D}\left(r_{k+1}-r_{k}\right)$
- $\overline{S O L}(F)_{k+1}=\overline{S O L}(F)_{k} \cup S O L_{k+1}^{F}\left(r_{k+1}-r_{k}\right)$

Algorithm

Let $\overline{S O L}_{0}=S O L_{0}$
Incremental phase:(Iteration $k=0$ to $T-1$)

- Let $S O L_{k}$ have r_{k} customers
- $S O L_{k+1}$ has at least $r_{k+1}-r_{k}$ customers not in $\overline{S O L}_{k}$
- We will pick the cheapest $r_{k+1}-r_{k}$ customers from this set $S O L_{k+1}^{D}\left(r_{k+1}-r_{k}\right)$ and the facilities serving them $S O L_{k+1}^{F}\left(r_{k+1}-r_{k}\right)$ with cost $S O L_{k+1}\left(r_{k+1}-r_{k}\right)$
- $\overline{S O L}(F, R)_{k+1}=\overline{S O L}(F, R)_{k} \cup S O L_{k+1}^{D}\left(r_{k+1}-r_{k}\right)$
- $\overline{S O L}(F)_{k+1}=\overline{S O L}(F)_{k} \cup S O L_{k+1}^{F}\left(r_{k+1}-r_{k}\right)$

Proof sketch of Claim

Claim: The algorithm is 8 -competitive at each point of the sequence.

Proof sketch of Claim

Claim: The algorithm is 8 -competitive at each point of the sequence.

Look at a refinement point $k: 2 S O L_{r_{k}}^{A}<S O L_{r_{k+1}}^{B}\left(r_{k}\right)$ 2* optimal $\left(r_{k}\right) \leq$ cost of serving r_{k} customers from a solution obtained from optimal $\left(r_{k+1}\right)$

Proof sketch of Claim

Claim: The algorithm is 8 -competitive at each point of the sequence.

Look at a refinement point $k: 2 S O L_{r_{k}}^{A}<S O L_{r_{k+1}}^{B}\left(r_{k}\right)$ 2^{*} optimal $\left(r_{k}\right) \leq$ cost of serving r_{k} customers from a solution obtained from optimal $\left(r_{k+1}\right)$
Let us add $S O L_{k+1}\left(r_{k+1}-r_{k}\right)$ (cost of the $r_{k+1}-r_{k}$ added in the incremental phase) to both sides

Proof sketch of Claim

Claim: The algorithm is 8-competitive at each point of the sequence.

Look at a refinement point $k: 2 S O L_{r_{k}}^{A}<S O L_{r_{k+1}}^{B}\left(r_{k}\right)$ 2^{*} optimal $\left(r_{k}\right) \leq$ cost of serving r_{k} customers from a solution obtained from optimal $\left(r_{k+1}\right)$
Let us add $S O L_{k+1}\left(r_{k+1}-r_{k}\right)$ (cost of the $r_{k+1}-r_{k}$ added in the incremental phase) to both sides

$$
\begin{aligned}
2 S O L_{r_{k}}^{A} & +S O L_{k+1}\left(r_{k+1}-r_{k}\right) \\
& <S O L_{r_{k+1}}^{B}\left(r_{k}\right)+S O L_{k+1}\left(r_{k+1}-r_{k}\right) \\
& \leq 2 S O L_{r_{k+1}}^{B}=2 S O L_{r_{k+1}}^{A}
\end{aligned}
$$

Proof sketch of Claim

Claim: The algorithm is 8-competitive at each point of the sequence.

Look at a refinement point $k: 2 S O L_{r_{k}}^{A}<S O L_{r_{k+1}}^{B}\left(r_{k}\right)$ 2^{*} optimal $\left(r_{k}\right) \leq$ cost of serving r_{k} customers from a solution obtained from optimal $\left(r_{k+1}\right)$

Let us add $S O L_{k+1}\left(r_{k+1}-r_{k}\right)$ (cost of the $r_{k+1}-r_{k}$ added in the incremental phase) to both sides

$$
\begin{aligned}
2 S O L_{r_{k}}^{A} & +S O L_{k+1}\left(r_{k+1}-r_{k}\right) \\
& <S O L_{r_{k+1}}^{B}\left(r_{k}\right)+S O L_{k+1}\left(r_{k+1}-r_{k}\right) \\
& \leq 2 S O L_{r_{k+1}}^{B}=2 S O L_{r_{k+1}}^{A}
\end{aligned}
$$

Remark:

- This is true for all $k=0$ to $T-1$

Analysis

$$
2 S O L_{r_{k}}^{A}+S O L_{k+1}\left(r_{k+1}-r_{k}\right) \leq 2 S O L_{r_{k+1}}^{A}
$$

Analysis

$$
2 S O L_{r_{k}}^{A}+S O L_{k+1}\left(r_{k+1}-r_{k}\right) \leq 2 S O L_{r_{k+1}}^{A}
$$

For any $k=1$ to T, we can add these terms from
$j=1$ to $k-1$ to get

Analysis

$$
2 S O L_{r_{k}}^{A}+S O L_{k+1}\left(r_{k+1}-r_{k}\right) \leq 2 S O L_{r_{k+1}}^{A}
$$

For any $k=1$ to T, we can add these terms from
$j=1$ to $k-1$ to get

$$
\begin{aligned}
2 S O L(F)_{0}^{B}+S O L(R)_{0}^{B} & +\sum_{j=0}^{k-1} S O L_{j+1}\left(r_{j+1}-r_{j}\right) \\
& =2 S O L_{r_{k}}^{A} \leq 4 O P T_{r_{k}}
\end{aligned}
$$

Analysis

$$
2 S O L_{r_{k}}^{A}+S O L_{k+1}\left(r_{k+1}-r_{k}\right) \leq 2 S O L_{r_{k+1}}^{A}
$$

For any $k=1$ to T, we can add these terms from
$j=1$ to $k-1$ to get

$$
\begin{aligned}
2 S O L(F)_{0}^{B}+S O L(R)_{0}^{B} & +\sum_{j=0}^{k-1} S O L_{j+1}\left(r_{j+1}-r_{j}\right) \\
& =2 S O L_{r_{k}}^{A} \leq 4 O P T_{r_{k}}
\end{aligned}
$$

Analysis

We would lose an additional factor 2 at intermediate points between two refinement point giving an 8-competitive algorithm!

Tighter analysis
$2 *$ Facility cost + service cost $\leq 8^{*}$ Optimal cost

Experiments

Size	$\#$	Max gap (\%)	Ave Gap (\%)	Time[sec]
200	15	$50-60$	$13-15$	$250-350$
300	15	$40-45$	$11-13$	$2050-2100$

Table: Results of computational experiments from UFLib Library

Typical Network Design

- Given a set of demand nodes in a weighted network
- Find a minimum cost routing network; and route every client demand to a an open facility

Typical Network Design

- Given a set of demand nodes in a weighted network
- Find a minimum cost routing network; and route every client demand to a an open facility

Typical Network Design

- Given a set of demand nodes in a weighted network
- Find a minimum cost routing network; and route every client demand to a an open facility
- Cost of routing demand on edge e depends on the total demand (denoted by D_{e}) routed on that edge

Typical Network Design

- Given a set of demand nodes in a weighted network
- Find a minimum cost routing network; and route every client demand to a an open facility
- Cost of routing demand on edge e depends on the total demand (denoted by D_{e}) routed on that edge
- Steiner Tree: $\operatorname{cost}_{e}\left(D_{e}\right)=c_{e}$, for $D_{e}>0$
- Buy-at-Bulk Network Design: $\operatorname{cost}_{e}\left(D_{e}\right)=c_{e} \cdot g\left(D_{e}\right)$, where \mathbf{g} is a concave cost function

Cable Model

- In practice costs arise due to discrete capacity cables:
- The capacity on a link can be purchased at discrete units: $u_{1}<u_{2}<\ldots<u_{K}$ costs: $\quad \sigma_{1}<\sigma_{2}<\ldots<\sigma_{K}$ where $\quad \frac{\sigma_{1}}{u_{1}}>\frac{\sigma_{2}}{u_{2}}>\ldots>\frac{\sigma_{K}}{u_{K}}$

Multiple-Sinks (Facilities) Buy-at-Bulk Network

 Design

- Given a set of candidate sinks F (called facilities) instead of a single sink
- We may route demand to any facility, but incur a facility cost
- Find a trade-off between facility opening and network design costs

The problem

Input:

- undirected graph $G=(V, E)$
- edge lengths $c_{e} \in \mathbb{Z}_{\geq 0}, e \in E$
- potential facilities $F \subseteq V$ with opening costs $\mu_{i} \in \mathbb{Z}_{\geq 0}$, $i \in F$
- clients $D \subseteq V$ with demands $d_{j} \in \mathbb{Z}_{>0}, j \in D$
- access cable types K with
- capacity $u_{k} \in \mathbb{Z}_{>0}, k \in K$
- setup cost (per unit length) $\sigma_{k} \in \mathbb{Z}_{\geq 0}, k \in K$

$$
\sigma_{1}<\ldots<\sigma_{K} \text { and } \frac{\sigma_{1}}{u_{1}}>\ldots>\frac{\sigma_{K}}{u_{K}}
$$

The problem

Solution:

- open facilities $\bar{F} \subseteq F$
- forest $A^{*} \subseteq E$ containing one path, for each j, (called P_{j}) that connects client j to some open facility $i_{j} \in \bar{F}$
- cable installation $x: A^{*} \times K \rightarrow \mathbb{Z}_{\geq 0}$ of sufficient capacity, i.e., $\sum_{j: ~ e \in P_{j}} d_{j} \leq \sum_{k} u_{k} x_{e, k}$

Goal:

$$
\min \sum_{i \in \bar{F}} \mu_{i}+\sum_{e \in A^{*}} \sum_{k \in K} \sigma_{k} c_{e} x_{e, k}
$$

The problem

Solution:

- open facilities $\bar{F} \subseteq F$
- forest $A^{*} \subseteq E$ containing one path, for each j, (called P_{j}) that connects client j to some open facility $i_{j} \in \bar{F}$
- cable installation $x: A^{*} \times K \rightarrow \mathbb{Z}_{\geq 0}$ of sufficient capacity, i.e., $\sum_{j: ~ e \in P_{j}} d_{j} \leq \sum_{k} u_{k} x_{e, k}$

Goal:

$$
\min \sum_{i \in \bar{F}} \mu_{i}+\sum_{e \in A^{*}} \sum_{k \in K} \sigma_{k} c_{e} x_{e, k}
$$

The problem

Solution:

- open facilities $\bar{F} \subseteq F$
- forest $A^{*} \subseteq E$ containing one path, for each j, (called P_{j}) that connects client j to some open facility $i_{j} \in \bar{F}$
- cable installation $x: A^{*} \times K \rightarrow \mathbb{Z}_{\geq 0}$ of sufficient capacity, i.e., $\sum_{j: ~ e \in P_{j}} d_{j} \leq \sum_{k} u_{k} x_{e, k}$

Goal:

$$
\min \sum_{i \in \bar{F}} \mu_{i}+\sum_{e \in A^{*}} \sum_{k \in K} \sigma_{k} c_{e} x_{e, k}
$$

The problem

Solution:

- open facilities $\bar{F} \subseteq F$
- forest $A^{*} \subseteq E$ containing one path, for each j, (called P_{j}) that connects client j to some open facility $i_{j} \in \bar{F}$
- cable installation $x: A^{*} \times K \rightarrow \mathbb{Z}_{\geq 0}$ of sufficient capacity, i.e., $\sum_{j: ~ e \in P_{j}} d_{j} \leq \sum_{k} u_{k} x_{e, k}$

Goal:

$$
\min \sum_{i \in \bar{F}} \mu_{i}+\sum_{e \in A^{*}} \sum_{k \in K} \sigma_{k} c_{e} x_{e, k}
$$

Compact Formulation

$$
\begin{array}{cl}
(\mathrm{IP}-1) & \\
\min \sum_{i \in F} \mu_{i} z_{i}+\sum_{e \in E} c_{e} \sum_{n=1}^{K} \sigma_{n} x_{e}^{n} & \\
\sum_{e \in \delta^{+}(j)} f_{e}^{j} \geq 1 & \forall j \in D \\
\sum_{e \in \delta^{+}(v)} f_{e}^{j}=\sum_{e \in \delta^{-}(v)} f_{e}^{j} & \forall j \in D, v \in V \backslash F, v \neq j \\
\sum_{e \in \delta^{-}(i)} f_{e}^{j}-\sum_{e \in \delta^{+}(i)} f_{e}^{j} \leq z_{i} & \forall j \in D, i \in F \\
\sum_{j \in D} d_{j}\left(f_{(k, l)}^{j}+f_{(I, k)}^{j}\right) \leq \sum_{n=1}^{K} u_{n} x_{k l}^{n} & \forall k I \in E \\
x_{e}^{n}, f_{e}^{j}, z_{i} & \text { non-negative integers }
\end{array}
$$

Where:

- z_{i} indicates if facility i is open or not
- x_{e}^{n} indicates if cable type n is installed on edge e
- f_{e}^{j} indicates if flow from client j uses edge e

Compact Formulation

$$
\begin{array}{cl}
(I P-1) & \min \sum_{i \in F} \mu_{i} z_{i}+\sum_{e \in E} c_{e} \sum_{n=1}^{K} \sigma_{n} x_{e}^{n} \\
\sum_{e \in \delta^{+}(j)} f_{e}^{j} \geq 1 & \forall j \in D \\
\sum_{e \in \delta^{+}(v)} f_{e}^{j}=\sum_{e \in \delta^{-}(v)} f_{e}^{j} & \forall j \in D, v \in V \backslash F, v \neq j \\
\sum_{e \in \delta^{-}(i)} f_{e}^{j}-\sum_{e \in \delta^{+}(i)} f_{e}^{j} \leq z_{i} & \forall j \in D, i \in F \\
\sum_{j \in D} d_{j}\left(f_{(k, l)}^{j}+f_{(I, k)}^{j}\right) \leq \sum_{n=1}^{K} u_{n} x_{k l}^{n} & \forall k I \in E \\
x_{e}^{n}, f_{e}^{j}, z_{i} & \\
\text { non-negative integers } &
\end{array}
$$

Theorem. The integrality gap of (IP-1) can be arbitrarily large.

Approximate Solution

Modified routing cost:

$$
\left\lceil\frac{D_{e}}{u_{k}}\right\rceil \sigma_{k} c_{e} \leq\left(\sigma_{k}+D_{e} \frac{\sigma_{k}}{u_{k}}\right) c_{e} \leq 2\left\lceil\frac{D_{e}}{u_{k}}\right\rceil \sigma_{k} c_{e}
$$

Approximate Solution

Modified routing cost:

$$
\begin{aligned}
& \left\lceil\frac{D_{e}}{u_{k}}\right\rceil \sigma_{k} c_{e} \leq\left(\sigma_{k}+D_{e} \frac{\sigma_{k}}{u_{k}}\right) c_{e} \leq 2\left\lceil\frac{D_{e}}{u_{k}}\right\rceil \sigma_{k} c_{e} \\
& \text { (IP-2) } \min \sum_{i \in F} \mu_{i} z_{i}+\sum_{k=1}^{K} \sigma_{k} \sum_{e \in E} c_{e} x_{e}^{K}+\sum_{j \in D} d_{j} \sum_{k=1}^{K} \frac{\sigma_{k}}{u_{k}} \sum_{e \in E} c_{e} f_{e ; k}^{j} \\
& \sum_{e \in \delta^{+}(j)} \sum_{k=1}^{K} f_{e ; k}^{j} \geq 1 \\
& \forall j \in D \\
& \sum_{e \in \delta^{+}(v)} \sum_{k=1}^{K} f_{e ; k}^{j}=\sum_{e \in \delta^{-}(v)} \sum_{k=1}^{K} f_{e ; k}^{j} \quad \forall j \in D, v \in V \backslash F, v \neq j \\
& \sum_{e \in \delta^{-}(i)} \sum_{k=1}^{K} f_{e ; k}^{j}-\sum_{e \in \delta^{+}(i)} \sum_{k=1}^{K} f_{e ; k}^{j} \leq z_{i} \quad \forall j \in D, i \in F \\
& f_{u v ; k}^{j}+f_{v u ; k}^{j} \leq x_{e}^{k} \quad \forall j \in D, u v \in E, 1 \leq k \leq K
\end{aligned}
$$

Approximate Solution

Modified routing cost:

$$
\left\lceil\frac{D_{e}}{u_{k}}\right\rceil \sigma_{k} c_{e} \leq\left(\sigma_{k}+D_{e} \frac{\sigma_{k}}{u_{k}}\right) c_{e} \leq 2\left\lceil\frac{D_{e}}{u_{k}}\right\rceil \sigma_{k} c_{e}
$$

$(\mathrm{IP}-2) \min \sum_{i \in F} \mu_{i} z_{i}+\sum_{k=1}^{K} \sigma_{k} \sum_{e \in E} c_{e} x_{e}^{k}+\sum_{j \in D} d_{j} \sum_{k=1}^{K} \frac{\sigma_{k}}{u_{k}} \sum_{e \in \vec{E}} c_{e} f_{e ; k}^{j}$

$$
\begin{array}{ll}
\sum_{e \in \delta^{+}(j)} \sum_{k=1}^{K} f_{e ; k}^{j} \geq 1 & \forall j \in D \\
\sum_{e \in \delta^{+}(v)} \sum_{k=1}^{K} f_{e ; k}^{j}=\sum_{e \in \delta^{-}(v)} \sum_{k=1}^{K} f_{e ; k}^{j} & \forall j \in D, v \in V \backslash F, v \neq j \\
\sum_{e \in \delta^{-}(i)} \sum_{k=1}^{K} f_{e ; k}^{j}-\sum_{e \in \delta^{+}(i)} \sum_{k=1}^{K} f_{e ; k}^{j} \leq z_{i} & \forall j \in D, i \in F \\
f_{u v ; k}^{j}+f_{v u ; k}^{j} \leq x_{e}^{k} & \forall j \in D, u v \in E, 1 \leq k \leq K
\end{array}
$$

Theorem (Friggstad, Rezapour, Soto, Salavatipour) The integrality gap of (IP-2) is at most $O(K)$.

Cable Model

- $g(x)=$ min cost set of cables of total capacity at least x (Integer Minimum Knapsack Problem)
- one can compute the optimal combination of cable types for all flow levels on any edge using dynamic programming

Path based Formulation

- We consider each piece of the step cost function as a module: module i has a cost of $c_{e, i}$ and a capacity of $u_{e, i}$

$$
\Rightarrow x_{e, n} \in\{0,1\}
$$

Path based Formulation

- We consider each piece of the step cost function as a module: module i has a cost of $c_{e, i}$ and a capacity of $u_{e, i}$

$$
\Rightarrow x_{e, n} \in\{0,1\}
$$

- We create a dummy root node r and connect all facilities with the root node.
- Let $P(j)$ denote the set of all possible paths starting from client j and terminating at node r

$$
\Rightarrow y_{p} \in\{0,1\}, p \in P(j)
$$

Path based Formulation

$$
\begin{array}{cr}
\text { (IP-3) } \min \sum_{i \in F} \mu_{i} z_{i}+\sum_{e \in E} \sum_{n \in \mathcal{N}_{e}} c_{e, n} \cdot x_{e, n} & \\
\sum_{p \in P(j)} y_{p}=1, & \forall j \in D \\
\sum_{p \in P(j):(i, r) \in p} y_{p} \leq z_{i}, & \forall i \in F, \forall j \in D \\
\sum_{j \in D} \sum_{\substack{p \in P(j): \\
\{(k, l),(l, k)\} \cap p \neq \emptyset}} d_{j} y_{p} \leq \sum_{n \in \mathcal{N}_{k l}} u_{k l, n} x_{k l, n}, & \forall k I \in E \\
\sum_{n \in \mathcal{N}_{k l}} x_{k l, n} \leq 1, & \forall k I \in E
\end{array}
$$

Theorem
IP-3 is at least as strong as IP-2 in terms of the lower bounds.

Cut Inequalities

- Valid inequalities:

For every client j, and $\bar{S} \subset V$ (containing j; not r), we have:

$$
\sum_{k l: k \in \bar{S}} \sum_{n \in \mathcal{N}_{k l}} x_{k l, n}+\sum_{i \in \bar{S}} z_{i} \geq 1
$$

Cut Inequalities

- Valid inequalities:

For every client j, and $\bar{S} \subset V$ (containing j; not r), we have:

$$
\sum_{k l: k \in \bar{S}} \sum_{n \in \mathcal{N}_{k l}} x_{k l, n}+\sum_{i \in \bar{S}} z_{i} \geq 1
$$

- Seperation:
- Given a fractional optimal solution $\left(x^{*}, y^{*}, z^{*}\right)$ to IP-3.
- Take the edge capacities to be: $\sum_{n \in \mathcal{N}_{k l}} x_{k l, n}^{*}$ for all $k l \in E$; and z_{i}^{*} for all ir
- For every client $j \in D$, solve the maximum flow problem with source as j and sink as r. If the flow value is less than 1 , then we obtain the violated cut.

Cover Inequalities

- We define $\theta_{k l}=\left(D_{\theta}, M_{\theta}\right)$ to be a cover if (where $D_{\theta} \subseteq D, M_{\theta} \subseteq \mathcal{N}_{k l}$, and $U_{k l}=\sum_{n \in \mathcal{N}_{k l}} u_{k l, n}$)

$$
\sum_{j \in D_{\theta}} d_{j}+\sum_{n \in M_{\theta}} u_{k l, n}>U_{k l}
$$

- We say that a cover is minimal when just removing any item either from D_{θ} or M_{θ} results a non-cover
- If $\theta_{k l}$ is a minimal cover, then the following inequalities are valid:

$$
\begin{aligned}
\sum_{j \in D_{\theta}} & \sum_{\substack{p \in P(j): \\
\{(k, l),(l, k)\} \cap p \neq \emptyset}} y_{p}+\sum_{n \in M_{\theta}}\left(1-x_{k l, n}\right) \leq\left|M_{\theta}\right|+\left|D_{\theta}\right|-1 \Longleftrightarrow \\
& \sum_{j \in D_{\theta}} \sum_{\substack{p \in P(j): \\
\{(k, l),(l, k)\} \cap p \neq \emptyset}} y_{p} \leq \sum_{n \in M_{\theta}} x_{k l, n}+\left|D_{\theta}\right|-1
\end{aligned}
$$

Cover Inequalities

Separation:

- Given a fractional optimal solution $\left(x^{*}, y^{*}, z^{*}\right)$ to IP-3.
- For each $j \in D$, we let

$$
w_{j}^{*}=\sum_{\substack{p \in P(j): \\\{(k, l),(l, k)\} \cap p \neq \emptyset}} y_{p}^{*}
$$

- A most violated cover inequality is obtained by solving the following knapsack problem:

$$
\begin{aligned}
\min \gamma=\sum_{n \in F_{k l}} x_{k l, n}^{*} x_{k l, n} & +\sum_{j \in D}\left(1-w_{j}^{*}\right) w_{j} \\
\sum_{j \in D} d_{j} w_{j}+\sum_{n \in F_{k l}} u_{k l, n} x_{k l, n} & \geq \sum_{n \in F_{k l}} u_{k l, n}+1 \\
x_{k l, n} & \in\{0,1\}, \quad \forall n \in F_{k l} \\
w_{j} & \in\{0,1\}, \quad \forall j \in D
\end{aligned}
$$

Cover Inequalities

Separation:

- Given a fractional optimal solution $\left(x^{*}, y^{*}, z^{*}\right)$ to IP-3.
- For each $j \in D$, we let

$$
w_{j}^{*}=\sum_{\substack{p \in P(j): \\\{(k, l),(l, k)\} \cap p \neq \emptyset}} y_{p}^{*}
$$

- A most violated cover inequality is obtained by solving the following knapsack problem:

$$
\begin{aligned}
\min \gamma=\sum_{n \in F_{k l}} x_{k l, n}^{*} x_{k l, n} & +\sum_{j \in D}\left(1-w_{j}^{*}\right) w_{j} \\
\sum_{j \in D} d_{j} w_{j}+\sum_{n \in F_{k l}} u_{k l, n} x_{k l, n} & \geq \sum_{n \in F_{k l}} u_{k l, n}+1 \\
x_{k l, n} & \in\{0,1\}, \quad \forall n \in F_{k l} \\
w_{j} & \in\{0,1\}, \quad \forall j \in D
\end{aligned}
$$

- $\left(x^{*}, y^{*}, z^{*}\right)$ violates the following cover inequality if $\gamma<1$.

$$
\sum_{j \in D^{\prime}} \sum_{p \in P(j):(k, l) \in p} y_{p} \leq \sum_{n \in F_{k \mid}^{\prime} \cup\left\{N_{k \mid} \backslash F_{k \mid}\right\}} x_{k l, n}+\left|D^{\prime}\right|-1
$$

Basic Idea of Solution Method

- Our formulation contains an exponential number of variables!

Column Generation:

- We solve the LP to optimality using simplex with only a subset of the variables-restricted master problem.
- We then ask if any variable that has been left out has negative reduced cost; if so, that column is addedpricing problem
- The optimal solution might not be integral!

Branch-and-Bound:

- We use branching to handle integrality.

Restricted Master Problem

- We consider only a subset $P^{\prime}(j) \subseteq P(j)$ of paths for each j
- We enrich the restricted master problem by the routing paths obtained by a few runs of the following algorithm.

Algorithm GreedyAlgorithm

1. Pick a random permutation of clients in D;

Let $\Pi=\left(j_{1}, j_{2}, \ldots, j_{|D|}\right)$ be the picked permutation.
2. For $i=1,2, \cdots,|D|$ do

- Greedily route $d_{j i}$ units of demand from j_{i} to root r via the cheapest cost routing path, using the network constructed by the previous i-1 clients.

Restricted Master Problem

- We consider only a subset $P^{\prime}(j) \subseteq P(j)$ of paths for each j
- We enrich the restricted master problem by the routing paths obtained by a few runs of the following algorithm.

Algorithm GreedyAlgorithm

1. Pick a random permutation of clients in D;

Let $\Pi=\left(j_{1}, j_{2}, \ldots, j_{|D|}\right)$ be the picked permutation.
2. For $i=1,2, \cdots,|D|$ do

- Greedily route $d_{j_{i}}$ units of demand from j_{i} to root r via the cheapest cost routing path, using the network constructed by the previous i-1 clients.

Theorem (Charikar \& Karagiozova; STOC 2005)

The (inflated) greedy algorithm achieves an approximation ratio of $O\left(\log ^{2}(|D|)\right)$ for the single-sink non-uniform buy-at-bulk problem (with unit demands).
holds for our problem as well.

Pricing Problem

- We only need to search for some column with negative reduced cost

$$
\min _{p \in P(j)}-\left(\mu_{j}+\sum_{\substack{p \in P(j): \\\{(k, l),(l, k)\} \cap p \neq \emptyset, l \neq r}} d_{j} \pi_{k l}+\sum_{i \in F} \mathbb{I}_{i}^{p} \gamma_{i}^{j}\right)
$$

- This corresponds to solving a shortest path problem, where we search for routes with a negative reduced cost
- we take the weight of an edge $k l$ to be $-d_{j} \pi_{k l}$, for all $k l \in E$ and weights $-\gamma_{i}^{j}$, for all ir edges

Instances details

- Each instance corresponds to a region in Germany concerning the potential client and facility locations.
- The street segment form the edges, while the street intersections and traffic circles provide the nodes.

Primal heuristics implementation

- A CPLEX based heuristic
- A LP based heuristics (similar to the previous one)
- A hybrid strategy that has parallel implementation

Computational Results

Inst.	$\|V\|$	$\|E\|$	$\|F\|$	$\|D\|$	\# vars	\# cuts	lp-gap(\%)	root-gap(\%)	gap(\%)
a	1,675	1,722	104	604	12,079	5,089	89.5	19.6	18.2
b	11,544	12,350	890	4,275	43,478	3,759	146.0	53.0	53.0
c	2,271	1,419	498	349	32,081	2,325	82.9	21.5	21.3
d	4,110	4,350	230	1,670	23,418	13,692	151.5	23.9	23.3
e	637	758	101	39	50,739	1,749	69.1	23.0	16.1
f	1,315	1,422	148	238	50,167	5,685	172.7	18.6	15.9
g	3,055	3,177	49	591	2,976	2,134	71.4	13.3	10.7
h	4,227	4,482	319	1,490	31,261	10,865	121.8	20.5	20.5
i	6,750	7,262	531	2,440	33,211	7,165	150.7	32.7	32.7

Table: Results of our algorithm on the real-world instances

- We report the results after a run time of 36000 s (ten hours)
- We are able to solve large real world instances to roughly 20.0\%

Summary

Incremental Facility location

- 8-competitive algorithm
- Improve LB (3) or UB (8) or both?

BCP for BuyatBulk FL

- MIP model, Valid inequalities
- Polyhedral results: Facet defining, separation problem
- Resilience of the network
- Incremental strategy

