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Patrolling Game on a Graph 

Graph: Q=(N,E)    

Nodes: N ={1,2,…,n}   

Edges: E 
 

T = time horizon of the game 

t = 1,…,T 

 

Players 

Attacker: picks a node i and time t to perform the attack and needs m 
uninterrupted periods at the node for the attack to be successful 

 

Patroller: picks a walk w on the graph that lasts T time periods and is 
successful if the walk intercepts the Attacker during the attack. 

 

Pure Strategies  Mixed Strategies: 

Attacker: (i, t)    Playing (i, t) with probability p(i, t)  

Patroller: w   Playing w with probability p(w) 

1 3 

2 4 

5 

We assume: 



Patrolling Game on a Graph 
Space-time Network:  

n=5, T=8, m=4 

 

patroller picks:  w = 1-2-4-1-2-2-5-5 

attacker picks: (i, t) =(5,2) 

 

 

 

 

 

 

 

 

Since the patroller’s walk does not intercept the attacker the attack is 

successful. 
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Patrolling Game on a Graph 
Space-time Network:  

n=5, T=8, m=4 

 

patroller picks:  w = 1-2-4-5-2-2-5-5 

attacker picks: (i, t) =(5,2) 

 

 

 

 

 

 

 

 

Since the patroller’s walk intercepts the attacker the attack is  

not successful. 
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Patrolling Game on a Graph 

The game is a zero-sum game with the following payoff: 

 

        1   if (i, t) is intercepted by w 

Payoff to the patroller = 

        0   otherwise 

 

Value of the game = probability that the attack is intercepted 

 

 

 

 

 

We denote the value of the game V or V(Q, T, m). 

 

0 1 

attacker patroller 



Assumptions 

We make some simplifying assumptions: 

 

• The attacker will attack during the time interval: 

 By patrolling as if an attack will take place, the patroller deters the 
attack on this network and gives an incentive to the attacker to 
attack another network. 

 

• The nodes have equal values:  

 Nodes with different values can be easily modelled in the 
mathematical programming formulations of the game. All games that 
can be solved computationally, can also be solved using different 
valued nodes. 

 

• The nodes on the network are equidistant:  

  This can also be modelled in the mathematical programming 
formulations. 

 



Applications 

 

• Security guards patrolling a museum or art gallery. 

 

• Antiterrorist officers patrolling an airport or shopping mall. 

 

• Patrolling a virtual network for malware. 

 

• Police forces patrolling a city containing a number of potential 
targets for theft, such as jewellery stores. 

 

• Soldiers patrolling a military territory. 

 

• Air marshals patrolling an airline network. 

 

• Inspectors patrolling a container yard or cargo warehouse. 

 

 



Types of Games 

• Patrolling a Gallery: 

 T = fixed shift  

           (e.g. one working day) 

 We call this the one-off game 
and denote it Go with value Vo. 

 

 

• Patrolling an Airport : 

 continuous patrolling 

 

 We call this the periodic game 

 and we let T be the period. 

 We denote it with Gp, Vp. 
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one-off game: 
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periodic game: 

attacker can only start attack at nodes 1,2,3. 

patroller must return to starting node. 



Results for all Graphs 

1. The Value of the game is non-decreasing in m: 

 

 

• the longer the attacker takes to complete the attack, the higher 
the probability of the attack being intercepted. 

 

2. The Value of the game is non-decreasing in the number of edges |E|: 

 

 

 

• with more edges there are more patrolling paths and thus better 
for the patroller 

 

 

 

Monotonicity Results 



Results for all Graphs 

3. The Value of the periodic game is less than or equal to the value 

of the one-off game: 

 

 

 

• the one-off game has more patroller strategies and less 

attacker strategies, so it is better for the patroller 

 

 

 

 

 

Monotonicity Results 



Results for all Graphs 

 C4, m=2 

The Value of the periodic game comes closer to the one-off game  

as T goes to infinity: 

4. The Value of the one-off game 

is non-increasing in T: 

Monotonicity Results 



Results for all Graphs 

 

 

 

 

 

 

 

 

 

5. If Q’ is obtained from Q by node identification, then 

 

 

 since any patrol on Q that intercepts an attack, has a 
corresponding patrol on Q’ that intercepts the same attack, thus 
Q’ is at least as good as Q for the patroller 

Node Identification 

one node 

Q 

Q’ 



Results for all Graphs 

6. We have: 

 

 

The patroller can guarantee the lower bound by: 

• picking a node equiprobably and  

• waiting there 

 

The attacker can guarantee the upper bound by: 

• fixing an attack time interval and  

• attacking at a node equiprobably during that interval; 

• out of these n pure attacker strategies, the patroller can intercept at 
most m of them, in a time interval of length m 

 

The lower bound can be achieved for the disconnected graph        with n nodes: 

 

 

 

Bounds on Value 



Results for all Graphs 

 

7. For the special case where         is the complete graph with n 
nodes, Ruckle (1983) has shown that: 

 

           

  

 Hence, 

 

 

 

          Result: For m=1:  

 

  

 Henceforth we assume  

 

Game with m=1 



Strategy Reduction Techniques 

 

 

 

Symmetrization 

Adjacency preserving bijections on Q: 

•  Nodes 2 and 3 are equivalent 

•  There exists an optimal attack strategy  

    that attacks nodes 2 and 3 equiprobably 

For the periodic game,  

 

• the time shifted patrols are equivalent   

• the attack intervals on the same node are   

  equivalent under some rotation of the time 

  cycle. 

•  we only need to consider the attack node 

   not the attack interval. 

Time symmetrization: 

Graph symmetrization: 
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Symmetrical Strategies:  mixed strategies which give equal probability 

to equivalent strategies  
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Strategy Reduction Techniques 

 

 

 

Dominance 

5 3 

2 4 

1 

Walks w1, w2 same except on (t-1, t, t+1). 

• walk w2 dominates w1: 

  If w1 intercepts an attack (i, t) then w2 also  

intercepts (i, t) and at least one more at node i+1 

 

Let 1 be a leaf node connected to node 2: 

We call node 2 a penultimate node. 

• the attacker should not attack at penultimate nodes. 

 

From above, walk w does not duel at a node for 3 

consecutive periods.  

 

If (2, t) wins against a patrol then (1, t) will also win but 

(1, t) also wins against patrols that pass only through 2. 

 

For              : 

For                : 



Strategy Reduction Techniques 

 

 

 

Decomposition 

 

 

Decomposition Result: We have                                         ,  

 

 

which holds with equality if the        are disjoint in      . 



Proof Techniques: example 

Kite Graph 

 

 

Periodic game on Q, with T=3 and m=3: 

From dominance, we know that attacker 

would never attack at penultimate node 4, 

since it is always better to attack at the  

adjacent leaf node 5. 

 

No feasible patroller strategy that visits 

both node 5 and any one of 1,2 or 3. 

 

Without node 4 the graph decomposes 

into two graphs Q1 and Q2 shown below. 

From decomposition we have: 
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Generic Strategies 
Uniform Attacker Strategy 

 

 Attacker’s Diametrical Strategy 

The attacker attacks equiprobably over all time intervals and over all nodes. 

This guarantees the attacker the upper bound of m/n. 

d(i,j) = minimum number of edges between nodes i and j 

d = diameter of Q = maximum d(i,j) for all pairs i, j. 

The attacker picks random attack time t and  attacks equiprobably nodes i and j  

that have distance d. 

We have: 

The diametrical strategy guarantees the above upper bound: 

 

• If m, T are large as compared to d, the best the patroller can do against the 

  diametrical strategy is to go back and forth across the graph diameter (m/2d) 

 

• If d is large as compared to m, T, the best the patroller can do against the 

diametrical strategy is to stay at the diametrical nodes and win half the time (1/2). 



Generic Strategies 

Independent strategies 

 

 

Independent set: set of nodes where no simultaneous attacks at any two nodes 

of the set can be covered by the same patrol during any fixed time interval  

(of length m). 

Independence number I : the size of the maximal independent set.  

Independent attack strategy: attack equiprobably nodes in the maximal 

independence set. 

Periodic Game for Kite Graph with T=3, m=3. 

Independent Sets: {2,3} {1,5}  {2,3,5} 

(since the patrol needs to return to the initial node) 1 

2 

3 

4 5 



Generic Strategies 

 

 

Covering set of Q: a set of intercepting patrols such that every node of Q is  

contained in at least one of the patrols. 

Covering strategies 

Intercepting Patrol: a patrol w that intercepts every attack on a node that it contains. 

Covering number J: the size of the minimal covering set. 

Covering patrol strategy: choose equiprobably from the minimal set of covering 

patrols. 

Intercepting patrols: 1-1-2-1 

                                 1-3-4-1 

                                 4-5-5-4  

Periodic Game for Kite Graph with T=3, m=3. 
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covering set 



Generic Strategies 

Independent and Covering strategies 

 

 

Upper bound: independent attack strategy 

Lower bound: covering patrol strategy 

When I = J we can determine the value of the game: 

1 

2 

3 

4 5 

Periodic Game for Kite Graph with T=3, m=3. 

Maximal Independent Set = {2,3,5} 

Minimal Covering Set = {1-1-2-1, 1-3-4-1, 4-5-5-4} 

 

We have I = J = 3:  

 

V(Q) = 1/3 



Independent attack  

strategy 

Independence/Covering strategies 

m=3, L7 (n=7) 

5 

6 

7 

1 

2 

3 

4 

Maximum Independence set 

= {1,4,7} 

I = 3                V ≤ 1/3 

m+1 

Patroller 

cannot  

intercept  

more than 1 

Example: The line 

Minimum covering set of walks: 

 

J = 4                V ≥ 1/4 

1/4 ≤ V ≤ 1/3 

patroller  

can do better 
optimal 



Solutions for Special Graphs 

Hamiltonian Graph 

 

 

Any graph with a Hamiltonian cycle: 

 

• Value (of Vo) is  

 

• Patroller - Random Hamiltonian patrol: 

 pick a node at random and follow the 
Hamiltonian cycle in a fixed direction 

 

     For any attack interval, the nodes visited 
by the patroller form an m-arc of the 
Hamiltonian cycle, which contains attack 
node i with probability m/n. 

 

• Attacker - uniform attacking strategy, 
attack equiprobably over time and nodes 

 



Solutions for Special Graphs 

Hamiltonian Graphs: example 

 

 

Periodic game on Q, T=10, m=4: 

Q 

 

 

 

          has a Hamiltonian cycle and T=10 is a multiple of n=10: 

 



Solutions for Special Graphs 

Bipartite Graphs 

 

 

A B 

•   

We assume: 

Attacker can guarantee             , if he fixes the attack interval and attacks  

equiprobably on each node of the larger set B. 

 

 

 

When Q is complete bipartite and a=b, there exists a Hamiltonian cycle and 

the value is achieved;         can be obtained from          by node identification. 



Solutions for Special Graphs 

Bipartite Graphs: The Star Graph 

 

 

            : star graph with n nodes 

 

            : cycle graph with 2(n-1) nodes 

 

a = 1,  b = n-1  

T is a multiple of 2(n-1) 

By node identification: 

Since         is bipartite: Thus,  

• attack leaf nodes equiprobably 

• patrols leaf nodes every second period 



Mathematical Programming 

LP Formulation Let A be the set of attacker strategies for G(Q,T,m) 

Patroller’s game: 

Num. of attacker strategies: n     (periodic game) 

(constraints)    n(T-m+1)    (one-off game) 

Num. of patroller strategies: number of circuits of length T  (periodic game) 

(variables)    number of paths of length T  (one-off game) 



Flow formulation 

Case: Periodic game, Q bipartite, m=2, T even 

 

 

Thus, we can count the number of attacks intercepted: 

 

• each visit at a node will intercept exactly two attacks 

 

• the attacks intercepted from visits to different nodes are disjoint 

 

i 

attacks intercepted from the  

visit of walk w to node i and not 

intercepted by any other visit of w 

w 

Proposition: A walk that dwells at a node for more than one period is dominated 

walks that do not dwell at a node. 



Flow formulation 

Case: Periodic game, Q bipartite, m=2, T even kite graph, T=5 

t=0 t=1 t=2 t=3 t=4 

Split space-time network QS: 

• introduce split arcs 

• no arc joining the same node 

  in consecutive time periods 

• i nodes in Q 

• e arc of QS: 

 = number of visits of walk w to node i during the time horizon 

 = number of attacks at node i intercepted by walk w 

 Probability attack at node i is intercepted by w = 



Flow formulation 

Case: Periodic game, Q bipartite, m=2, T even 

size of x: no. of walks 

x gives probability of each walk 

x is a flow on each walk 

• Substitute: Bx with z 

• Then z(e) is the probability flow on arc e. 

• Using flow conservation constraints: 

  we can guarantee that the flow z forms walks 

 

 

flow value 

equals 1 



Flow formulation 

Case: Periodic game, Q bipartite, m=2, T even 

num. of variables:   (2E+n)T + 1 

num of constraints: 2nT+n+1 

 

Linear in the problem parameters. 

 

We can solve games with large n and T. 

 

Further, it is easy to introduce different 

attack values at each node. 



Flow formulation 

Case: Periodic game, Q bipartite, m=2, T even 

Multi-valued Nodes 

d = vector of node values 

D = diagonal matrix with d on the diagonal 

Reverse the payoff: 

0 when attack is intercepted 

d(i) when attack at node i is successful 



Flow formulation 

NAB 

Z 

PH S 

LIB 

C A 

H D 

LSE network, m=2, T=20. 

Optimal Attacker strategy:  

attack red nodes equiprobably  

with probability 1/5 

 

Game Value = 4/5  

(1 is best for attacker) 

Single-valued Nodes: (value = 0 attack intercepted) 



Flow formulation 

LSE network, m=2, T=20. 

Optimal Attacker strategy:  

• attack NAB, D with prob. 2/10 

• attack A, LIB with prob. 3/10 

 

Game Value = 1.8  

(0 is best for patroller) 

NAB 

Z 

PH S 

LIB 

C A 

H D 

3 

1 

1 

1 

2 

1 

2 

1 

3 

Multi-valued Nodes (value = 0 attack intercepted) 



The discrete line - results 

We concentrate on the one-off game. The value for the periodic game is the same 

when either T goes to infinity, or when T is the appropriate multiple otherwise this is 

just an upper bound. 

n small compared to m 

n similar compared to m 

n large compared to m 



The discrete line – Case A 

n small compared to m 

 

 
1 2 3 

• d = diameter = n-1 

  The diametrical attacker strategy guarantees the upper bound for the attacker 

The Hamiltonian patrol on the cycle graph is equivalent to walking up and down 

the line graph (oscillation strategy).   

• We use node identification, to show that  

  the upper bound is achieved: 



The discrete line – Case A 

Consider        the line graph with n=3. Let m=2. 

n small compared to m:  

1 2 3 

Attacker can guarantee ½ by attacking at the endpoints equiprobably:  

no walk can intercept both.   

Patroller can guarantee ½ by playing equiprobably the following oscillations:  

every attack is intercepted by at least one oscillation. 



The discrete line – Case A 
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3 
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5 

6 

1 2 3 4 5 5 5 4 3 2 1 

1 2 3 4 5 5 5 4 3 2 1 

Attack begins 

 
k attacks are intercepted if 

the patroller passes from a  

node labeled k 

k 

n=6, m = 7 Time-dependent attacker strategies 



The discrete line – Case B 
n similar compared to m: n=m+2 and both even 

V= 1/2 

Patrols:  

w1 oscillate between 1 and n/2 

w2 oscillate between n/2+1 and n 

w1, w2 are intercepting patrols 

{w1,w2} is a covering set 

J ≤ 2 and thus V ≥1/2 

Attacks: 

nodes {1,n} are an independent set 

I ≥ 2 and thus V ≤ 1/2 
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w1 

w2 

Example: n=8, m=6 



The discrete line – Case C 

Patroller Strategy – Lower bound 

Example: m=3, L7 

5 

6 

7 

1 

2 

3 

4 

Pr( interception at end node) =  + = 

Pr( interception at nodes 3-5) =  = 

Pr( interception at nodes 2 and 6) ≥ Pr( interception at end node)  

V ≥  V ≥ 1/3  

n large compared to m 



The discrete line – Case C 

Attacker Strategies – Upper bound 

Cases for attacker strategies: 

1.  r = 0. 

2.  r > 0 and k odd. 

3.  r > 0 and k even, m odd 

4.  r > 0 and k even , m even and k > m+2. 

5.  r > 0 and k even , m even and k = m+2. 
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m+1 = 4 

k =5 
m+1 

r = 1 



Independent attack  

strategy 

The discrete line – Case C1 
n large compared to m: 

Example with r = 0: 

n = 7, m=3 
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4 

Maximal Independence set 

= {1,4,7} 

I = 3                V ≤ 1/3 

m+1 

Attacker plays Independent strategy: 

Attack at equiprobably at nodes  

{1, m+1, 2m+1,…,qm+1=n}. 

Patroller can intercept at most 1 out 

of q+1 attacks, where q = (n-1)/m : 

 



The discrete line – Case C2 

n large compared to m 

 

 

Example with r > 0 and k odd: 

m=3, L8  
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1 2 3 2 1 

1 2 3 2 1 

1 2 3 2 1 

1 1 1 

Patroller cannot intercept more 

than 3 out of 3(3)+1 = 10 attacks. 

 

Attacker can guarantee: 

Value ≤ 3/10 

m+1 

k odd Patroller can guarantee: 

 

Value ≥                      =  3/10 

Number of attacks = n + m - 1  



The discrete line – Case C2 

n large compared to m 

 

 

Example with r > 0 and k odd: 

m=4, L11 (n=11) 

Can we place n+m-1 attacks such  

that only m are intercepted by a 

single patrol? 

Divide n-1 by m: 

quotient q, remainder d. 

 

• attack at nodes {1,m+1, …,(q-1)m+1,n} 

  m times with attacks shifted  

  by 1 time step 

 

• attack at node in the middle of the odd 

  interval 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

1 2 3 4 3 2 1 

1 2 3 4 3 2 1 

1 2 3 4 3 2 1 

1 2 2 2 1 

k odd 

m+1 



The discrete line – Case C3 
n large compared to m 

Example with r > 0 and k even,  

m odd:  n = 13, m = 5 

Thus, q = 2 and r = 2, k = 8. 

Can we place n+m-1 attacks such  

that only m are intercepted by a 

single patrol? 
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m+1 

k = 8 

External attacks: at nodes {1,6,13} 

at time periods {1,2,3,4,5} 

 

Internal attacks: nodes {9,10} at  

time period 3. 

 



The discrete line – 

Case C4 

n large compared to m 

Example with r > 0 and k even,  

m even, k > m+2:   

n = 12, m = 4, k = 8. 
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12 

1 1 2 2 1 1 

1 

2 2 4 4 2 2 

1 1 1 1 One attack 

Two attacks 

k attacks are intercepted  
If the patroller passes  
from a node labeled k 

k 



The discrete line – 

Case C5 

n large compared to m 

Example with r > 0 and k even,  

m even, k = m+2:   

n = 10, m = 4, k = 6. 

One attack 

Two attacks 

k attacks are intercepted  
If the patroller passes  
from a node labeled k 

k 
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1 1 2 2 1 1 
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1 

1 1 1 1 

1 1 2 2 1 1 



The continuous line 

The game is played on the unit interval [0,1] over a time horizon T. 

 

Patroller: patrols at unit speed, picks a walk w: t       [0,1] 

 

Attacker: picks a point x in [0,1] and a time t, and stays there for time r. 

Thus the attack interval is [t, t + r]. 

The attack is intercepted if w(t) = x for some t in [t, t + r]. 

Value of the game is 1 is the attack is intercepted, otherwise it is 0. 

We assume 0 ≤ r ≤ 2, otherwise the patroller can always intercept the  

attacker by going up and down the unit interval. 



The continuous line 

the attacker: 

the patroller:  picks a point at random and a random direction 

and oscillates from one endpoint to the other 

Diametrical strategy: pick a point y in the [0,1] time interval 

and attack equiprobably between the two endpoints during  

attack time interval [y,y+r]. 

r  

r 

0 

1 

1 

1 2 

2 time 

unit 

interval 



The continuous line 

the patroller 

strategy 

r/2 

r/2 

r 

r 

0 

1 

1/(1+r) r/2(1+r) 



The continuous line 

the r-attack 

strategy 

0 

1 

r 2r 

r 2r 

r 2r 

r 

(r+r)/2=k/2 

(r+r)/2=k/2 
(r-r)/2 r 

r 

(r-r)/2 r 

r 

r 

r 

1 – k/2 

r/(1+r) 

r/(1+r) 

r/(1+r) 

r/(1+r) 



The continuous line 

the r-attack 

strategy 

0 

1 

r 2r 

r 2r 

r 2r 

r/(1+r) 

(r-r)/2 r (r-r)/2 r 

r/(1+r) 

r/(1+r) 

r/(1+r) 

r 

1 – k/2 



Current and Future Work 

 

 

Current work:  Other graphs: Trees. 

Computational work: 

Show that the problem is its general form is NP-complete: Hamiltonian 

graphs can have optimal strategies that do not use the Hamiltonian cycle. 

  

For m=2, the game can be formulated as a network flow problem for 

cases where dwelling at a node is a dominated strategy:                           

G bipartite and T even. 
 

Constraint generation methods where the most violated constraints are 

generated: 

• mixed integer programming is used to find the most violated 

constraint   

• a heuristic to find a violated constraint 

Extended Patrolling Games: 

Multiple patrollers/attackers. 

Version with in-game observation: uniformed patroller 

 



The End 

Thank you. 


