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Random variables network

Nodes are random variables.

Weights of edges are given by some measure of association (similarity,
dependance, ...).

Random variable network is a pair (X , γ):

X = (X1, . . . ,XN)−random vector,

γ−measure of association.

Network structures identification problem: identify a network structure
(subgraph) by observations.
We consider the threshold graph identification problem.
Motivation:

identification of the market graph in market network.

model selection in Gaussian graphical model.
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Threshold graph

Random variable network (X , γ) : X = (X1, . . . ,XN), γ−measure of
association.

Threshold graph (TG) is constructed by removing all edges with
γi ,j := γ(Xi ,Xj) ≤ γ0 (γ0- threshold). γi ,j - measure of association
between nodes i and j .

Popular network:=Pearson network: γPi ,j = ρi ,j =
E(Xi−E(Xi ))(Xj−E(Xj ))

σiσj
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Threshold graph identification problem

Let X (t), t = 1, 2, . . . , n be a sample from the distribution of the random
vector X . X (t) = (X1(t), . . . ,XN(t))

Problem: for a given threshold γ0 identify the threshold graph from
observations X (t), t = 1, . . . , n.

Identification statistical procedure: map from the sample space RN×n to
the decision space G, where
G - set of N × N symmetric matrices G = (gi ,j); gi ,j ∈ {0, 1},
i , j = 1, 2, . . . ,N, gi ,i = 0, i = 1, 2, . . . ,N.
G ∈ G - adjacency matrices of all simple undirected graphs with N
vertices. Total number of matrices in G is L = 2M with M = N(N − 1)/2.
This is a multiple decision problem. Possible solution - multiple testing
statistical procedures
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Multiple testing statistical procedures.

Individual edge hypotheses:

hij : γij ≤ γ0 vs kij : γij > γ0.

Individual tests:

ϕij(X ) =

{
1, tij(X ) > cij
0, tij(X ) ≤ cij

Multiple testing statistical procedure: statistical procedure, based on
statistics of individual tests.

Single step procedures (Bonferroni and others)

Stepwise procedures (Holm, Hochberg and their modifications)
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Pearson network

Individual hypotheses (Pearson measure):
hij : ρi ,j ≤ ρ0 vs kij : ρi ,j > ρ0;

ϕP
i ,j(xi , xj) =

{
1, zi ,j > ci ,j
0, zi ,j ≤ ci ,j

where zi ,j =
√
n
(

1
2 ln

(
1+ri,j
1−ri,j

)
− 1

2 ln
(

1+ρ0
1−ρ0

))
,

ci ,j is (1− αij)-quantile of standart normal distribution N(0, 1) αi ,j is
the given significance level for individual edge i , j test,

ri ,j =

∑n
t=1(xi (t)− xi )(xj(t)− xj)√∑n

t=1(xi (t)− xi )2
∑n

t=1(xj(t)− xj)2
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Pearson network

Multiple testing single step (Bonferroni type) procedure:

δP(x) =


1, ϕP

1,2(x), . . . , ϕP
1,N(x)

ϕP
2,1(x), 1, . . . , ϕP

2,N(x)

. . . . . . . . . . . .
ϕP
N,1(x), ϕP

N,2(x), . . . , 1

 .

Holm, Hochberg procedures with the use of statistics zi ,j
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Quality of statistical procedures.

Let S = (si ,j), Q = (qi ,j), S ,Q ∈ G - set of all adjacency matrices.

HS -hypothesis that threshold graph has adjacency matrix S , S ∈ G.

dQ-decision, that threshold graph has adjacency matrix Q,Q ∈ G.

w(HS ; dQ) = w(S ,Q) - loss from the decision dQ when the
hypothesis HS is true, w(S , S) = 0,S ∈ G.

Risk function of statistical procedure δ(x) is defined by

Risk(S ; δ) =
∑
Q∈G

w(S ,Q)P(δ(x) = dQ/HS), S ∈ G

P(δ(x) = dQ/HS) - the probability that decision dQ is taken while
the true decision is dS . Risk function reflects a quality of statistical
procedure δ(x).
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Quality of statistical procedures. Unbiasedness.

Decision function δ(x) is said to be w -unbiased if for all θ, θ′

Eθw(θ′, δ(X )) ≥ Eθw(θ, δ(X ))

”δ is unbiased if on the average δ(X ) comes closer to the correct decision
than to any wrong one” (Lehmann, Romano, 2005)
In our case it can be written as

∑
Q∈G

w(S ,Q)P(δ(x) = dQ/HS) ≤
∑
Q∈G

w(S ′,Q)P(δ(x) = dQ/HS),

∀S , S ′ ∈ G
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Loss function (Lehmann)

For threshold graph identification problem it is natural to consider loss
functions which are additive.
ai ,j - individual loss from false inclusion of edge (i , j) in threshold graph.
bi ,j - individual loss from false non inclusion of the edge (i , j).
Let

li ,j(S ,Q) =


ai ,j , if si ,j = 0, qi ,j = 1,
bi ,j , if si ,j = 1, qi ,j = 0,
0, else

For additive loss function one has:

w(S ,Q) =
N∑
i=1

N∑
j=1

li ,j =
∑

{i ,j :si,j=0;qi,j=1}

ai ,j +
∑

{i ,j :si,j=1;qi,j=0}

bi ,j

Then

Risk(S ; δ) =
N∑
i=1

N∑
j=1

risk(si ,j , ϕ
δ
i ,j(x))
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Optimality of δP

Theorem 1: Let loss function w be additive, individual test statistics ti ,j
depends only on observations Xi (t),Xj(t) and vector X = (X1, . . . ,XN)
has a multivariate normal distribution. Then for single step statistical
procedure δP for threshold graph identification in Pearson correlation
network one has Risk(S , δP) ≤ Risk(S , δ) for any adjacency matrix S and
any w−unbiased δ.
Optimality is proved in Koldanov A.P., Koldanov P.A., Kalyagin V.A.,
Pardalos P.M. Statistical Procedures for the Market Graph Construction,
Computational Statistics and Data Analysis, v.68, pp.17-29 (2013).
Individual hypotheses

hi ,j : γPi ,j ≤ γP0 , vs ki ,j : γPi ,j > γP0

Assumption of normality can not be removed.
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Sensitivity to distribution. Robustness.

Market network. Normality is not all time observed. Heavy tails
distributions. Multivariate Student distribution: an example of heavy tails
distributions. Does δP work for threshold graph identification?
Numerical experiments:

1 We consider the real-world data from USA stock market.

2 We calculate correlation matrix Σ by this data and consider the
matrix Σ as true matrix.

3 We simulate n observation using the mixture distribution. The
mixture distribution is constructed as follow - random vector
R = (R1, . . . ,RN) takes value from N(0,Σ) with probability ν and
from t3(0,Σ) with probability 1− ν.

4 We estimate the matrix Σ using estimations of Pearson correlations
ρ̂i ,j .

5 We construct the sample market (threshold) graph and compare it to
the true market graph.
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Sensitivity to distribution. Robustness.

The model is the mixture distribution consisting of multivariate normal
distribution and multivariate Student distribution with 3 degree of freedom.
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Figure: Risk function for threshold graph, ρ0 = 0.64, n = 400, star line - δP

Valery Kalyagin (NRU HSE) Robust identification HSE, October 23, 2015 14 / 21



Sign similarity network

Sign similarity network: measure of association is
γSgi ,j = pi ,j = P((Xi − E (Xi ))(Xj − E (Xj) > 0).
Individual tests

Individual hypotheses: hij : pi ,j ≤ p0 vs kij : pi ,j > p0

ϕSg
i ,j =

{
0, vi ,j ≤ ci ,j
1, vi ,j > ci ,j

,

vi ,j =
∑n

t=1 u
i ,j(t),

ui ,j(t) =

{
1, sign(xi (t)) = sign(xj(t))
0, else

ci ,j is defined from equation:
∑n

k=ci,j
n!

k!(n−k)! (p0)k(1− p0)n−k ≤ α
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Sign similarity network

Multiple decision single step (Bonferroni type) procedure

δSg (x) =


1, ϕSg

1,2(x), . . . , ϕSg
1,N(x)

ϕSg
2,1(x), 1, . . . , ϕSg

2,N(x)

. . . . . . . . . . . .

ϕSg
N,1(x), ϕSg

N,2(x), . . . , 1

 .

Holm, Hochberg procedures with the use of statistics vi ,j
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Optimality of δSg

Theorem 2: Let loss function w be additive, individual test statistics ti ,j
depends only on ui ,j(t), E (Xi ) = 0,∀i = 1, . . . ,N and distribution of
vector X = (X1, . . . ,XN) satisfy the symmetry condition below.
Then for single step statistical procedure δSg for threshold graph
identification in sign similarity network one has Risk(S , δSg ) ≤ Risk(S , δ)
for any adjacency matrix S and any w−unbiased δ.
Symmetry condition:

pij11 = pij00, pij10 = pij01, ∀i , j

where pij11 = P(Xi > 0,Xj > 0); pij00 = P(Xi ≤ 0,Xj ≤ 0)

pij01 = P(Xi ≤ 0,Xj > 0); pij10 = P(Xi > 0,Xj ≤ 0)
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Robustness of δSg

Symmetry conditions are satisfied for the class of elliptically contoured
distributions (ECD). Density function for ECD:

f (x) = |Λ|−
1
2 g{(x − µ)′Λ−1(x − µ)}

where Λ is positive definite matrix, g(x) ≥ 0, and∫∞
−∞ . . .

∫∞
−∞ g(y ′y)dy1 . . . dyN = 1.

Theorem 3: Let loss function w be additive and r.v. X = (X1, . . . ,XN) has
a multivariate ECD with µ = 0. Then conditional risk of single step
statistical procedure δSg for threshold graph identification in sign similarity
network does not depend on g .
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Role of measure of association

Good news: we have a distribution free (robust) multiple testing statistical
procedure in sign similarity network.
Question: can we do it in Pearson correlation network?
Answer is ”‘YES”
Theorem 4: If X = (X1, . . . ,XN) has a multivariate ECD with µ = 0 then
there is one to one correspondence between threshold graphs in Pearson
correlation and sign similarity networks given by

pi ,j =
2

π
arcsin ρi ,j

,
ρi ,j = sin

π

2
pi ,j
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Large scale networks

New phenomenons are observed. Properties of multiple testing
statistical procedures for threshold graph identification depend on
concentration of correlations

Quality of Holm and Hochberg procedures in Pearson correlations
network essentially depend on distribution.

Holm and Hochberg procedures, based on statistics vi ,j (sign
similarity network) are distribution free statistical procedures for
threshold graph identification.

Valery Kalyagin (NRU HSE) Robust identification HSE, October 23, 2015 20 / 21



THANK YOU FOR YOUR ATTENTION!

Valery Kalyagin (NRU HSE) Robust identification HSE, October 23, 2015 21 / 21


	Random variables network
	Threshold graph
	Multiple decision framework
	Pearson correlations network
	Quality of statistical procedures
	Sign similarity network
	Elliptically contoured distributions 
	Role of measure of association
	Large scale networks

