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Introduction

Information Gathered

Sample/Data point

X ∈ <D

D = # of features

Data Space

S with dimension equal to number of features
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Introduction

Binary Classification

Classifying the samples of set S into two groups according to a
classification rule
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Introduction

High Dimensional Datasets

What are they?

High number of features
Relative small number of samples

Examples of high dimensional datasets

Dataset Reference
Customer Relationship Management data (Tseng and Huang, 2007)

Covariation information of stocks (Campbell and Lo, 1997)
Text datasets for classification (Hassell and Arpinar, 2006)
Data collected from Surveys (Belloni and Hansen, 2014)

Netflix dataset (Bennett and Lanning, 2007)
MRI data (Kampa et al., 2014)

Mass Spectroscopy data (Fenn and Pappu, 2012)
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Introduction

Difficulties with High Dimensional Datasets

Curse of dimensionality

Can cause model overfitting and estimation instability
Common classifiers fail

Clarke, R. et al. The properties of high-dimensional data spaces:
implications for exploring gene and protein expression data - Nature
Publishing Group (2008)
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Introduction

Difficulties with High Dimensional Datasets

Volume increases exponetially as dimensionality increases

Points tend to become equidistant
Metric functions fail

Beyer, K. and Goldstein, J. and Ramakrishnan, R. and Shaft, U. When is
nearest neighbor meaningful? - Springer Database Theory ICDT (1999)
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Introduction

Difficulties with High Dimensional Datasets

Estimation of class covariance matrix unreliable

Most statistical classifiers require knowing class covariances apriori
Statistical classifiers fail

How do we deal with the aforementioned issues?
Reducing the dimensionality of the dataset prior to classification

Feature Selection
Feature Extraction
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Introduction Feature Selection

Feature Selection

Select only a subset of relevant features to use for classification

Good for removing irrelevant data, increasing learning accuracy, and
improving result comprehensibility

Yu, Lei, and Huan Liu Feature selection for high-dimensional data: A fast
correlation-based filter solution - ICML (2003)
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Introduction Feature Selection

Feature Selection

Categories of feature selection techniques:

Filter methods
Wrapper methods
Embedded methods

Y. Saeys, I. Inza, & P. Larranaga. A review of feature selection techniques
in bioinformatics - Bioinformatics (2007)
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Introduction Feature Selection

Feature Selection

Filter methods
Access features during a separate process prior to classification
Variables are given a score according to a filtering function and are
ordered accordingly
Features with the lowest scores are discarded while the rest are used
from the classifier

Hypothesis testing, t-test
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Introduction Feature Selection

Feature Selection

Wrapper methods
Use the classifier structure itself to evaluate the importance of features
Based on the idea that the classifier can provide a better estimate of
accuracy than a separate independent process
Increased computational power is often required - the classification
process has to be repeated for each feature set considered

Metaheuristics
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Introduction Feature Selection

Feature Selection

Embedded methods
Perform feature selection in a way so that the classification algorithm is
executed while variables are evaluated and selected

Recursive feature elimination in SVMs

Random forests for feature evaluation
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Introduction Feature Extraction

Feature Extraction

Feature extraction techniques transform the input data into a set of
meta-features that extract the relevant information from the input
data for classification

Principal Component Analysis (PCA)

Rene Vidal,Yi Ma,S. Shankar Sastry Generalized Principal Component
Analysis - ERL, UC (2006)
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Introduction Feature Extraction

PCA

Removes redundancy by transforming the data from a higher
dimensional space into an orthogonal lower dimensional space

First principal component captures as much variation in the data as
possible - each succeeding component accounts for a decreasing
amount of variance

Number of retained principal components is less than or equal to the
number of original variables

Criteria: eigenvalue-one criterion, scree test, proportion of
variance accounted for
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Local Subspace Classifier (LSC)

Local Subspace Classifier

Local Subspace Classifier (LSC) utilizes PCA to perform classification

Training phase

A lower dimensional subspace is found for each class that approximates
the data

Testing phase

A new data point is classified by calculating the distance of the point
to each subspace and choosing the class with minimal distance

Laaksonen, Jorma Local subspace classifier - Artificial Neural Networks
ICANN (1997)
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Local Subspace Classifier (LSC)

Local Subspace Classifier

Consider a binary classification problem

Let the matrices X1 ∈ <p×m and X2 ∈ <p×l be given, whose columns
represent the training examples of two classes C1 and C2 respectively

LSC attempts to find two subspaces separately, one for each class
that best approximates the data

Laaksonen, Jorma Local subspace classifier - Artificial Neural Networks
ICANN (1997)
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Local Subspace Classifier (LSC)

Local Subspace Classifier

Let

U1 = [u(1)
1 ,u(1)

2 , . . . ,u(1)
k ]p×k (1)

and

U2 = [u(2)
1 ,u(2)

2 , . . . ,u(2)
k ]p×k (2)

represent orthonormal bases of two k-dimensional linear subspaces S1

and S2 that approximate classes C1 and C2 respectively

We assume the dimensionality of subspaces S1 and S2 to be the same
and equal to k
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Local Subspace Classifier (LSC)

Training Phase

S1 and S2 attempt to capture maximal variance in classes C1 and C2

respectively by solving the following optimization problems:

maximize
U1∈<p×k

tr(UT
1 X1XT

1 U1)

subject to UT
1 U1 = I k

(3)

The solution to (3) is given by the eigenvectors corresponding to k
largest eigenvalues of matrix X1XT

1

maximize
U2∈<p×k

tr(UT
2 X2XT

2 U2)

subject to UT
2 U2 = I k

(4)

Similarly the orthonormal basis U2 is obtained by choosing
eigenvectors corresponding to k largest eigenvalues of matrix X2XT

2

Panos M. Pardalos Constrained Subspace Classifier for HDD 19 / 52



Local Subspace Classifier (LSC)

Testing Phase

A new point x is classified by computing the distance from subspaces
S1 and S2:

dist(x ,Si ) = tr(UT
i xxTU i ) (5)

and the class of x is determined as:

class(x) = argmini∈{1,2}{dist(x ,Si )} (6)
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Motivating Example

Motivation

Though the subspaces S1 and S2 approximate the classes well, these
projections may not be ideal for classification tasks as each of them
are obtained without the knowledge of another class/subspace

In order to account for the presence of another subspace, we consider
the relative orientation of the subspaces
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Motivating Example

Motivating Example

Datasets are generated from two bivariate normal distributions
N1(µ1,Σ1) and N2(µ2,Σ2) representing classes C1 and C2. Each
class consists of 100 randomly generated points from N1 and N2

respectively

Datasets
N1 N2 LSC CSC

µ1 Σ1 µ2 Σ2 Acc(%) Angle(θ) Acc(%) Angle(θ)

Example 1

[
9

10

] [
4 1.1

1.1 4

] [
2
5

] [
4 0
0 3

]
74 0.54 92 0.99

Example 2

[
3
5

] [
4 −2
−2 6

] [
10
10

] [
5 2
2 5

]
87 0.92 97 0.16
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Motivating Example

Motivating Example

LSC and CSC are trained on the data with k = 1 and the
classification accuracies are obtained via 10-fold cross validation

Example 1:
LSC
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Motivating Example

Motivating Example

Example 1:

CSC

−5 0 5 10 15
−10

−5

0

5

10

15

20

 

 

class 1

class 2

subspace S1

subspace S2

Panos M. Pardalos Constrained Subspace Classifier for HDD 24 / 52



Motivating Example

Motivating Example

Example 2:

LSC
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Motivating Example

Example 2:

CSC

−5 0 5 10 15
−10

−5

0

5

10

15

20

 

 

class 1

class 2

subspace S1

subspace S2

These examples show that relative orientation of the subspaces should
also be considered in addition to capturing maximal variance in data
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Constrained Subspace Classifier (CSC)

Constrained Subspace Classifier (CSC)

Constrained subspace classifier (CSC) finds two subspaces
simultaneously, one for each class, such that each subspace accounts
for maximal variance in the data in the presence of the other
class/subspace
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Constrained Subspace Classifier (CSC)

Relative orientation in terms of principal angles

Definition 1: Let U1 ∈ <p×k and U2 ∈ <p×k be two orthonormal
matrices spanning subspaces S1 and S2. The principal angles
0 ≤ θ1 ≤ θ2 ≤ θ3 ≤ · · · ≤ θk ≤ π/2 between subspaces S1 and S2, are
defined recursively by:

cosθi = max
xm∈S1

max
yn∈S2

xᵀ
myn

subject to xᵀ
mxn = 1, yᵀ

myn = 1, for m = n

xᵀ
mxn = 0, yᵀ

myn = 0, for m 6= n

∀m, n = 1, 2, . . . , k

(7)

Hamm, Jihun and Lee, Daniel D Grassmann discriminant analysis: a
unifying view on subspace-based learning -ACM (2008)

Panos M. Pardalos Constrained Subspace Classifier for HDD 28 / 52



Constrained Subspace Classifier (CSC)

Finding the canonical correlations

Theorem 1: Let U1 ∈ <p×k and U2 ∈ <p×k be rectangular matrices
whose column vectors span the subspaces S1 ∈ <k and S2 ∈ <k

respectively. Let M = U>1 U2 ∈ <k×k , using SVD we can express M by:

M = YCZ> (8)

where Y>Y = Ik , Z>Z = Ik and C = diag(σ1, σ2, . . . , σk)

If we assume that σ1 ≥ σ2 ≥ · · · ≥ σk then the principal angles are
given by cos θk = σk(M) ∀i = 1, 2, . . . , k

Bjorck, Ake, and Gene H. Golub Numerical methods for computing angles
between linear subspaces -Mathematics of computation (1973)
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Constrained Subspace Classifier (CSC) Seeking a Distance Metric

Seeking a Distance Metric

We consider the metric that defines the relative orientation between the
two subspaces S1 and S2 spanned by U1 and U2 respectively to be the
projection F-norm defined by:

dpF (U1,U2) =
1√
2
‖U1U>1 −U2U>2 ‖F (9)

Edelman, Alan, Toms A. Arias, and Steven T. Smith The geometry of
algorithms with orthogonality constraints -SIAM journal on Matrix
Analysis and Applications (1998)
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Constrained Subspace Classifier (CSC) Seeking a Distance Metric

In terms of principal angles

‖U1U>1 −U2U>2 ‖2
F

= tr((U1U>1 −U2U>2 )>(U1U>1 −U2U>2 ))

= tr(U1U>1 U1U>1 −U1U>1 U2U>2 −U2U>2 U1U>1 + U2U>2 U2U>2 )

= tr(U1U>1 ) + tr(U2U>2 )− 2tr(U1U>1 U2U>2 )

= tr(U>1 U1) + tr(U>2 U2)− 2tr(U>2 U1U>1 U2)

= ‖U1‖2
F + ‖U2‖2

F − 2‖U>2 U1‖2
F

(10)
According to Theorem 1:

‖U>
2 U1‖2

F =
k∑

i=1

σ2
i =

k∑
i=1

cos2 θi (11)
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Constrained Subspace Classifier (CSC) Seeking a Distance Metric

In terms of principal angles

Using (11) on (10) becomes:

=
k∑

i=1

λi +
k∑

i=1

λi − 2
k∑

i=1

cos2 θi

= k + k − 2
k∑

i=1

cos2 θi

= 2

[
k −

k∑
i=1

cos2 θi

]
= 2

[
(1− cos2 θ1) + (1− cos2 θ2) + · · ·+ (1− cos2 θk)

]
= 2

k∑
i=1

sin2 θi

(12)
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Constrained Subspace Classifier (CSC) Seeking a Distance Metric

In terms of principal angles

Hence the projection F-norm becomes:

dpF (U1,U2) =
1√
2
‖U1U>1 −U2U>2 ‖F =

√√√√ k∑
i=1

sin2 θi (13)
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Constrained Subspace Classifier (CSC) Formulating CSC

Formulating CSC

The projection metric is utilized to incorporate the relative orientation
between subspaces in LSC

The formulation of LSC is modified as shown below to obtain the
Constrained Subspace Classifier (CSC):

maximize
U1,U2∈<p×k

tr(UT
1 X1XT

1 U1) + tr(UT
2 X2XT

2 U2)− C‖U1U>1 −U2U>2 ‖2
F

subject to UT
1 U1 = I k , UT

2 U2 = I k
(14)

where the parameter C controls the tradeoff between the relative
orientation of the subspaces and the approximation of the data
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Constrained Subspace Classifier (CSC) Formulating CSC

Formulating CSC

Using (11) and (12) :

‖U1U>1 −U2U>2 ‖2
F = 2k − 2tr(U>1 U2U>2 U1)

Hence the optimization problem becomes:

maximize
U1,U2∈<p×k

tr(UT
1 X1XT

1 U1) + tr(UT
2 X2XT

2 U2) + C tr(UT
1 U2UT

2 U1)

subject to UT
1 U1 = I k , UT

2 U2 = I k
(15)
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Algorithm Alternating Optimization Technique

Algorithm

We introduce an alternating optimization algorithm to solve (15)

For a fixed U2, (15) reduces to:

maximize
U1∈<p×k

tr(UT
1 (X1XT

1 + CU2UT
2 )U1)

subject to UT
1 U1 = I k

(16)

The solution to (16) is obtained by choosing eigenvectors
corresponding to k largest eigenvalues of symmetric matrix
X1XT

1 + CU2UT
2
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Algorithm Alternating Optimization Technique

Algorithm

Similarly, for a fixed U1, (15) reduces to:

maximize
U2∈<p×k

tr(UT
2 (X2XT

2 + CU1UT
1 )U2)

subject to UT
2 U2 = I k

(17)

where the solution to (17) is again obtained by choosing eigenvectors
corresponding to k largest eigenvalues of symmetric matrix
X2XT

2 + CU1UT
1
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Algorithm Alternating Optimization Technique

Termination Rules

We define the following three termination rules:

Maximum limit Z on the number of iterations,

Relative change in U1 and U2 at iteration m and m+1,

tolmU1
=
‖U(m+1)

1 −U(m)
1 ‖F√

q
, tolmU2

=
‖U(m+1)

2 −U(m)
2 ‖F√

q
(18)

where q = pk

Relative change in objective function value of (14) at iteration m and
m+1,

tolmf =
F (m+1) − F (m)

|F (m)|+ 1
(19)
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Algorithm Alternating Optimization Technique

CSC Algorithm

The algorithm for CSC can be summarized as follows:

Algorithm 1 CSC (X1,X2, k , C )

1. Initialize U1 and U2 such that UT
1 U1 = I k , UT

2 U2 = I k
2. Find eigenvectors corresponding to the k largest eigenvalues of symmetric
matrix X1XT

1 + CU2UT
2

3. Find eigenvectors corresponding to the k largest eigenvalues of symmetric
matrix X2XT

2 + CU1UT
1

4. Alternate between 2 and 3 until one of the termination rules is satisfied

Algorithm 1 converges. For proof of convergence see:

Panagopoulos, O. P., Pappu, V., Xanthopoulos, P., Pardalos, P. M.
Constrained subspace classifier for high dimensional datasets - Omega
(2015), http://dx.doi.org/10.1016/j.omega.2015.05.009
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Numerical Experiments

Numerical Experiments

The performance of CSC is evaluated on four high dimensional
publicly available datasets

CSC is also tested on two lower dimensional datasets

The performance of CSC is evaluated for different values of C , and
compared to that of LSC

The values of C are chosen in such a way that they vary uniformly

The classification performance is evaluated using leave-one-out cross
validation (LOOCV) technique

The value of k is chosen as {1, 3, 10}
Experiments are performed with a 2.60GHz Intel Core i5 CPU running
OS X with 8.0 GB of main memory
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Numerical Experiments

DLBCL

Diffuse large B-cell lymphoma DLBCL, the most common lymphoid
malignancy in adults, is curable in less than 50% of patients. The DLBCL
dataset consists of 77 samples with 5469 features. CSC was used to
identify cured versus fatal or refractory disease
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Numerical Experiments

Breast Cancer

Breast Cancer dataset consists of 77 samples of breast tumors. 4869
features describe each one of those tumors. CSC classified the tumors as
recurring or non-recurring
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Numerical Experiments

Colon

40 tumor and 22 normal colon tissue samples make up Colon dataset.
2000 features describe each one of those samples. CSC classified the
samples as tumorous or not
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Numerical Experiments

DBWorld

DBWorld dataset consists of 64 e-mails (samples) divided in two classes.
The first one consists of only subject lines, while the second consists of
only bodies. 4702 features describe each one of those samples. CSC
classified the samples as subjects or bodies
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Numerical Experiments

Mushroom

Mushroom dataset describes characteristics of gilled mushrooms. It
consists of 8124 samples with 126 features. CSC classified the samples
onto two categories, edible and non-edible
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Numerical Experiments

Spambase

Spambase dataset consists of 4601 samples(emails) with 57 features. CSC
was used to find weather an email is spam or not
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Numerical Experiments

Results

For DLBCL and Colon datasets, classification accuracy is improved by
reducing the relative angle between subspaces for k = 3, k = 10 and
k = 1, k = 3 respectively

In the case of Breast dataset, increasing the relative angle for k = 1
considerably improves the classification accuracy

The classification accuracy of CSC was almost identical to that of
LSC for the DBWorld dataset

With respect to the lower dimensional datasets, CSC performed at
least as good as LSC

In the case of Spambase dataset, CSC was able to slightly increase the
accuracy of classification for positive values of C
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Numerical Experiments

Comparative computational results

Dataset SVM PCA/SVM Naive Bayes CSC
DLBCL 94.8 97.5 75 97.4
Breast 68 68 62.5 63.6
Colon 75.9 92.1 71.4 90.3

DBWorld 88 88 57.1 89
Mushroom 100 100 88.1 98.9
Spambase 91 66 56.3 87.9

CSC demonstrates competitive behavior with respect to dataset
dimensionality

CSC remains robust
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Conclusion and Future Research

Conclusion

A new classification algorithm, CSC, was proposed and designed for
high dimensional datasets

CSC improves upon local subspace classifier

The improvement in classification accuracy shows the importance of
considering the relative angle between subspaces while approximating
the classes

The robust nature of CSC reveals that it can serve as a one-step
method for preprocessing-free classification
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Conclusion and Future Research

Future Research

A cost sensitive version for imbalanced classification problems

A stream mining version that will incrementally retrain as new
training data samples arrive in the form of a data stream

A robust optimization version for handling datasets that are inexact
or uncertain
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Conclusion and Future Research CSC Paper

Panagopoulos, O. P., Pappu, V., Xanthopoulos, P., Pardalos, P. M.
Constrained subspace classifier for high dimensional datasets - Omega
(2015), http://dx.doi.org/10.1016/j.omega.2015.05.009
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THANK YOU!
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