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Abstract

This paper explores how to best sequence sales in the presence of network effects.

A monopolist sets a price for its product and also chooses whether to serve some

consumers before others through its choice of sales scheme. We show that a firm with

imperfect control over sequencing should serve consumers as sequentially as possible,

with consumers in smaller groups served first, and that the optimal sales scheme is

fully sequential. Under a fully sequential scheme, each consumer observes previous

sales before choosing whether to buy himself, and independent-minded consumers can

act as opinion leaders for those who follow.
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1 Introduction

A wide variety of products exhibit network effects, where a consumer’s benefit from buying

is increasing in total sales. Network effects can arise through the presence of complementary

products. For example, consumers who buy the Apple iPhone or Sony PlayStation will

benefit if others do the same, since high sales will lead to more apps and game titles being

released. They can also arise due to technological compatibility, for example with computer

operating systems, such as Windows, Apple OS, and Google’s Chrome OS, and with business

solutions such as Microsoft Office 365 and Google Apps for Work. Yet another reason for

network effects is consumer social concerns, for products with a fashion component or in

settings where consumption is a social experience.1 Regardless of their source, network

effects push consumers to buy products they expect to be popular, and imply that the

existing network of users can impact product adoption.

Previous research has looked at how firms can exploit network effects through pricing,

advertising, seeding strategy, and release of limited-time or lower-quality versions of their

products (freemium). But almost no attention has been paid to the sequencing of sales.

That is, should a firm release its product simultaneously to all consumers, or instead follow

a sequential strategy, serving some consumers before others? And if the firm does use

sequential sales, which consumers should it serve first?

Intuition suggests that sequencing can be critical for sales dynamics. If a firm follows

a sequential strategy, i.e. consumers observe the decisions of previous buyers, and initial

sales are high, then success may breed success. Consumers who observe high initial sales will

increase their own demand, both directly due to the observed installed base, and indirectly

1Customers may prefer attending nightclubs or watching movies alongside others, and purchasing clothes,

books or music may associate the owner with the ‘in thing’, facilitating social interactions. For products such

as multiplayer online games (from PlayStation, Xbox and others) these social interactions can be crucial in

determining consumer payoffs.
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as they expect high sales in the future. But by the same token, the risk of sequential sales

is that failure can also breed failure, where low initial sales dissuade other consumers from

buying. For this reason, it is not a priori clear how to best sequence sales in the presence of

network effects, which is the question we explore in this paper.

Our key modelling assumption is that firms have at least some control over sequencing.

This assumption is broadly plausible in a variety of settings. For example, in many business-

to-business transactions, firms have almost complete control over how to sequence sales.

Microsoft can release Office 365 simultaneously across the market, offer the product to one

business before approaching another, or follow an intermediate strategy by first offering the

product to businesses in specific sectors. The same is true for Google, which can offer its

new Chromebook laptop to different school districts sequentially or simultaneously. Firms

selling mass-market products may be unable to choose the precise order of sales, but they

can still decide whether to release products simultaneously or sequentially across different

markets. For example Sony’s European Marketing director said the following regarding the

launch of its gaming console:

“We will launch [the PlayStation 4] this year. Exactly what regions, what timing,

is being worked through. Which regions in 2013 - is it all of them, is it some of

them? Is there some degree of phasing? We’ll reveal that in more detail later,

but we can’t yet.”2

Even firms with little direct control over sequencing can decide whether to make infor-

mation on previous sales available to later consumers. For example, a restaurant can select

a layout that makes it difficult for potential customers to see how many people are already

inside. Doing so effectively makes decisions simultaneous by forcing customers to decide

whether to enter the restaurant before observing how busy it is. A nightclub can place a

conspicuous queue outside its entrance, to provide passers by with information about the

2See “PlayStation 4 launch in ‘at least’ one country in 2013”, digitalspy.co.uk, February 22, 2013.
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number of earlier arrivals, effectively making decisions sequential. In a similar spirit, when

Apple launched the iPhone 5, it publicized pre-order sales figures prior to the official release,

so that consumers looking to buy would know how many others had bought as well.3

Formally, we consider a setting where a firm sells a homogeneous good, and where each

consumer’s payoff from buying is the sum of two terms: an intrinsic payoff, and a network

payoff that is increasing in total sales. Both a consumer’s intrinsic payoff from buying and

the weight he places on the network payoff are private information. The firm sets a price and

chooses a sales scheme, which is a partition of consumers into different cohorts. Consumers

in each cohort buy simultaneously, without observing one another’s decisions, but consumers

in different cohorts buy sequentially, having observed sales from all previous cohorts. The

set of all potential sales schemes represents all possible ways of sequencing sales, from fully

sequential (one consumer per cohort), to fully simultaneous (all consumers in one cohort).

We show which sales scheme is optimal, and more broadly, rank a wide variety of schemes in

terms of their expected profits. This ranking is relevant for situations where a firm’s control

over sequencing may be incomplete, so where it can only choose from a strict subset of all

potential schemes.

Our first set of results considers simultaneous versus sequential sales. We show that for

a firm with complete control over sequencing, the optimal scheme is fully sequential, with

a single consumer per cohort. If a firm has incomplete control over sequencing, so that

certain potential schemes are infeasible, it is best to choose a scheme that is as sequential

as possible. That is, moving from any particular sales scheme to another that is more

sequential, in a way that we make precise, will always increase expected profits. The former

result suggests that a firm engaging in business-to-business transactions may benefit by

approaching potential clients one by one. The latter suggests that a sequential product

launch will tend to outperform a simultaneous launch in multiple markets, and that a firm

3See “iPhone 5 Pre-Orders Top Two Million in First 24 Hours”, Apple.com, September 17, 2012.
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in a given market may benefit from making available as much information about consumers’

purchases as possible.

These results on sequential sales hold regardless of whether a firm is able to commit to

its choice of sales scheme, so even if it can change to a different scheme after observing early

sales. With the benefit of hindsight, a firm with low early sales may realize that a fully

simultaneous scheme would have led to higher realized profits. But from then on, it will still

prefer to serve the remaining consumers with a scheme that is as sequential as possible.

The economic mechanism supporting sequential sales relies crucially on consumers being

rational and forward looking. Even before any sales are realized, a sequential scheme changes

consumer expectations of later purchase behavior. An early consumer realizes that those in

later cohorts will observe her purchase decision, and therefore takes into account how her

own purchase will encourage others to buy themselves. This expectation of high later sales

increase the consumer’s own expected payoff from buying. Thus, while early failure can

encourage later failure under a sequential scheme, the use of this scheme itself makes early

failure less likely by encouraging early consumers to buy. The important point is not just

that consumers are observed but that being observed makes consumers behave differently.

Our second set of results looks specifically at how to order sales, and does so in two

different ways. Given a group of sales schemes that are equally sequential, in the sense of

having the same total number of cohorts, and the same number of cohorts of each different

size, the most profitable scheme will serve consumers in smaller cohorts first. That is, for a

firm looking to launch its product across different markets, not only is it is best to release

the product sequentially, but to start with smaller markets before moving on to larger ones.

We also extend the analysis by assuming the firm can partially distinguish between different

consumers, specifically when the weight consumers place on the network payoff is public

information. The optimal sales scheme then serves consumers sequentially in increasing

order of these weights, so that independent-minded consumers make purchase decisions first
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and can serve as opinion leaders for those who follow.

We then draw a parallel between sequential sales and consumer communication. The

mechanism driving sequential sales relies on consumers learning about a product’s popularity

by observing previous sales, which will be less important if consumers can directly learn about

one another’s preferences via online forums and discussion boards. We establish a novel result

showing that if consumers can exchange messages about their respective valuations before

making purchases, then truthful communication can be incentive compatible, even if the firm

may exploit this information to raise the price. Truthful communication is possible precisely

because of network effects, even though they would seem to push consumers to exaggerate

so as to convince others to buy. The practical implication is that the sequencing of sales will

be less important for products about which consumers regularly communicate. The caveat

is that consumer concern that the firm is monitoring their messages can potentially derail

successful communication.

The vast literature on network goods, starting from seminal papers by Katz and Shapiro

(1985) and Farrell and Saloner (1985, 1986), has largely assumed that the order of consumer

entry is predetermined or endogenously chosen by consumers. These models often exhibit

multiple equilibria, as consumer have self-fulfilling beliefs on how many others are going

to enter (see, e.g. Dybvig and Splatt (1983), Cabral et al. (1999)). Our paper is the first

to focus on firm’s control over the timing of sales in a setting with network effects and

rational, forward-looking consumers, and to examine the relative merits of different schemes.

Although the main strategic concern of this paper has been pointed out in the literature4,

this is the first paper to examine how a monopolist can exploit this concern by sequencing

sales. We avoid a problem of multiple equilibria by assuming that (i) the monopolist has

4“A dynamic adoption process, however, introduces a strategic consideration that is absent in the static

game. Individuals who chose to enter early may influence the entry decisions of others who have not yet

entered. This creates the possibility that early entrants may launch a domino chain reaction of widespread

adoption”, – Ochs and Park (2010).
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control over the timing of potential entry and (ii) there are “extreme” types, whose decisions

do not depend on their beliefs about other consumers’ purchase behavior. Dou et al. (2011)

consider a monopolist that can divide consumers into different segments and release the

product to one segment after the other, but they assume consumers are myopic. Consumers’

expectations therefore play no role in their analysis, whereas rational expectations lie at the

heart of our mechanism supporting sequential sales.5

More broadly, earlier research has looked at a variety of ways that a firm can exploit

network effects by adjusting different marketing variables. These include price and adver-

tising (Kalish (1985), Dhebar and Oren (1985), Dockner and Jorgensen (1988), Xie and

Sirbu (1995)), introduction of complementary goods (Basu et al., 2003), and release of clone

products (Sun et al., 2004). Certain results in Padmanabhan et al. (1997) touch on se-

quencing, showing that a firm may want to first release a product to experts followed by a

lower quality version for novices. However, their analysis focuses on how sequential quality

provision can help the firm signal private information about the strength of network effects,

something which plays no role in our setting. Our results add to this literature by showing

more generally how a firm can exploit network effects through the sequencing of sales.

There is a small literature on optimal sequencing where consumers have private informa-

tion about product quality, which superficially shares features with our work: a firm serves

consumers simultaneously or sequentially, consumers can learn from observing previous sales,

and they make one-off purchase decisions. But since this literature does not consider con-

sumption externalities, it provides no insight into how to sequence sales in the presence of

network effects.6 In terms of results, Sgroi (2002) shows that simultaneously serving a group

5The focus of Dou et al. (2011) on optimal seeding with price discrimination, is also different from ours.

Moreover, they assume that consumers always buy sequentially, even within each segment, which does not

allow for a comparison between simultaneous and sequential sales.
6The economic mechanism at work with network effects also differs greatly from the case where consumers

have private information about quality. There, it does not matter whether consumers are forward looking,

and consumers have no incentive to influence one another.
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of ‘guinea pigs’ can prevent an information cascade where all later consumers refrain from

buying. Liu and Schiraldi (2012) show that the optimal scheme is often fully simultaneous

when prior beliefs are low. Bhalla (2013) suggests instead using simultaneous sales when

the firm’s updated beliefs about quality are high, if it can adjust its price over time. Aoyagi

(2010) argues that a seller should use sequential sales as a means to implement dynamic

pricing.7 These rather mixed conclusions contrast with our clear result supporting sequen-

tial sales, suggesting the importance of identifying the cause of interdependencies between

consumers (e.g. quality uncertainty or network effects) in any particular setting.

The literature on dynamic platform competition (see recent papers by Cabral (2011),

Halaburda et al. (2015)) looks at strategic considerations faced by firms in the presence of

network effects, and generally focuses on pricing. Veiga (2015) considers a monopolistic plat-

form in continuous time and, as the aforementioned papers, examines the trade-off between

attracting new consumers and exploiting existing ones. Although this literature looks at the

dynamic sales problem in the presence of network effects, as our paper does, to the best

of our knowledge no earlier work considers firm control over the timing of sales. Thus, our

paper adds the timing or sequencing dimension to the well-know price dimension from the

analysis of dynamic platforms.

Aoyagi (2010) is the closest to our paper in terms of results, showing the optimality of

sequential sales and targeting more independent consumers first. His results, however, apply

in a very different setting, and are due to a very different economic mechanism.8 There,

the payoff from buying depends directly on the signals received by other consumers, but not

on their actual purchase decisions. Thus, what matters is the quality of the good, not any

7These papers relate to a broader literature on how firms can influence social learning, through means

such as pricing or product testing (see, e.g., Ottaviani and Prat (2001), Bar-Isaac (2003), Bose et al. (2006),

Bose et al. (2008), Gill and Sgroi (2008), Gill and Sgroi (2012)).
8Our analysis also differs from Aoyagi (2010) in suggesting what sales scheme to use when a firm has

incomplete control over sequencing, in particular whether to serve smaller or larger cohorts first, and in

making the link with consumer communication.
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network effect. Consumers there are essentially backwards looking: they observe the behavior

of previous consumers, and use this information to attempt to infer these consumers’ signals.

In contrast, the payoff from buying in our paper does not depend directly on how much other

consumers value the product, but instead on how many consumers chose to buy. The crucial

point is that consumers are forward looking, and network effects give then an incentive to

influence each others’ behavior. Finally, unlike in Aoyagi (2010), dynamic pricing is not

essential for obtaining the optimality of sequential sales in our setting.

The rest of the paper is organized as follows. Section 2 presents the model. Section

3 contains the main analysis, looking in turn at simultaneous versus sequential schemes,

the ordering of sales, and the connection with direct consumer communication. Section 4

discusses issues of robustness, and Section 5 then concludes. Proofs of all Propositions and

of technical lemmas can be found in the appendix.

2 Model

A seller of a network good faces a market of n consumers who each have unit demand.

Consumers differ in their type (θ, λ), where subscript i denotes the type of consumer i. Both

dimensions of type are drawn independently, θi from a uniform distribution U ∼ [θ, θ] and

λi from a distribution F on (0, λ), with λ ≡ θ − v0. We assume for the main analysis that

both dimensions of type are private information, but later relax this assumption to explore

the situation where values of λ are publicly known.

If consumer i buys a unit of the good, then his payoff consists of an intrinsic and a

network component,

θi +
λi

n− 1

∑
j 6=i

xj − p, (1)

where xj = 1 if consumer j buys and xj = 0 if he does not, and where p is the price.

The consumer’s intrinsic payoff from buying is θi, and his network payoff from buying is
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proportional to the number of other consumers who buy. Thus, λi captures the weight

consumer i places on this network effect, or equivalently his sensitivity to other consumers’

purchases. If consumer i does not buy, then he obtains payoff v0 from his outside option,

where v0 < θ. This constraint on v0 implies that consumers with a sufficiently high intrinsic

payoff will always choose to buy if the seller sets a sufficiently low price. We assume that

consumers’ purchase decisions are irreversible. An interpretation of irreversibility is that a

consumer has an urgent need for the good or for a suitable alternative. The consumer either

buys the good from the seller or exits the market by purchasing a default option, which

gives a payoff of v0, without the possibility to reenter the market in the short run. Another

interpretation is that irreversible purchase decisions may be supported by an “exploding

offers” strategy employed by firms (see, Armstrong and Zhou (2015)).9

The seller sets a price and selects a sales scheme, which determines the extent to which

consumers buy simultaneously or sequentially. Specifically, at t = 0, the seller chooses a

number of cohorts m ≤ n and how to partition the n consumers between the m different

cohorts, I = {I1, . . . , Im}. We do not restrict a priori the set of all possible sales schemes.

However, because type is unobservable, the seller cannot distinguish between different con-

sumers. This means that the seller’s choice of sales scheme I is effectively a choice of m (the

number of cohorts) and the cardinality of I1, . . . , Im (the size of each cohort).

We assume that the seller commits to its choice of sales scheme. Moreover, for the main

analysis, we assume static pricing, where the seller fixes p ≥ 0 at t = 0.10 We also show that

our conclusions remain unchanged if the seller is unable to commit, and that the mechanism

driving our results will continue to function with dynamic pricing.

9This assumption is consistent with our desire to model situations where the seller has at least some control

sequencing. Making the alternative assumption that purchase decisions are reversible would potentially

expose us to the problem of multiple equilibria, as in Ochs and Park (2010), which would significantly

complicate our analysis (see the discussion following Proposition 1).
10One possible reason for static pricing is consumer fairness concerns, in the sense that consumers may

consider price changes to be unfair. For further discussion, see Dou et al. (2013) and the references therein.
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Consumers make their purchase decisions as follows. At t = 1, all consumers in cohort

I1 simultaneously decide whether to buy a unit of the good. Similarly, for any period t

with 2 ≤ t ≤ m, all consumers in cohort It simultaneously decide whether to buy, having

observed the choice of consumers in all previous cohorts It′ for t′ ≤ t − 1. The game ends

after consumers in cohort Im make their purchase decisions.

For consumer i ∈ It, the relevant history is the number of consumers in cohorts I1, . . . , It−1

who bought the good. Denote this number by Kt. For a given sales scheme I such that i ∈ It,

and a given price p, the strategy of consumer i is a decision rule that, for any Kt, specifies

whether or not to buy, xi = 0 or xi = 1. The seller’s strategy is a choice of p and I.

We look for a perfect bayesian equilibrium where the strategy of consumer i maxi-

mizes his expected payoff, for any history Kt. All expectations follow from Bayes’ rule

and other consumers’ equilibrium strategies.11 The seller’s strategy maximizes expected

profits, p
∑

1≤i≤n E(xi), where we focus on ranking different sales schemes and solving for

the optimal I. We assume θ+ 1 < v0 < θ to guarantee interior solutions as described below.

3 Analysis

To begin the analysis, we take some preliminary steps to describe consumers’ incentives.

Consider some consumer i who must decide whether or not to buy after observing sales from

previous cohorts. Suppose that consumer i is in cohort It, that he observes Kt previous

sales, and that the price is p. Let Nt denote the number of consumers who will buy in his

own cohort It, and let Nt′ denote the number of consumers who will buy in a later cohort It′ .

Neither Nt nor Nt′ are known to consumer i, so his purchase decision will depend on how he

expects other consumers to behave. Consumer i will find it optimal to buy himself if

11After any particular history, seller and consumer beliefs about the type of consumers who have yet to

act are always given by the prior. Thus, our solution will closely resemble a subgame perfect equilibrium,

where the role of unobservable type is to generate demand uncertainty.
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θi +
λi

n− 1

(
Kt + E(Nt − xi|Kt) +

∑
t+1≤t′≤m

E(Nt′ |Kt, xi = 1)

)
− p ≥ v0. (2)

The left-hand-side of (2) gives consumer i’s expected payoff from buying, which follows

from (1). It consists of the intrinsic payoff from buying, θi, minus the price, plus the expected

network payoff, which depends on three components: previous sales, Kt, expected sales

from the current cohort, and expected sales from later cohorts. Consumer i’s observation of

previous sales will affect both his own behavior and the number of other consumers he expects

to buy. By the same reasoning, all consumers in later cohorts will also observe whether

consumer i chose to buy before making their own choice, which means that consumer i’s

action can influence their behavior. This is why the final expectation in (2) is conditional on

consumer i’s decision to buy, xi = 1. Consumer i will find buying optimal if the left-hand-side

of (2) exceeds v0, the payoff from his outside option.

Expression (2) shows that the incentive for any consumer i to buy is increasing in his

intrinsic payoff from buying. Substituting expected demand from each cohort into this

expression and rearranging, the best response of consumer i ∈ It after history Kt is to buy

if and only if θ ∈ [θ∗i , θ], where

θ∗i (λi) = v0 + p− λi
n− 1

Kt +
∑

j∈It\{i}

E(xj|Kt) +
∑
t′≥t+1

∑
j∈I′t

E(xj|Kt, xi = 1)

 . (3)

Consumer i uses a cut-off strategy, in the sense that he buys if θ exceeds a threshold value

given by the right-hand-side of (3). This cutoff depends on the particular history he observes

and on his value of λ. The consumer with θ = θ∗i (λi) earns exactly v0 from buying which

leaves him indifferent with his outside option.

The probability that consumer i will buy after history Kt, from the perspective of those

who observe the history but are uncertain about his type, is

E(xi|Kt) =
θ − θ∗i
θ − θ

, (4)
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where θ∗i ≡ Eλ(θ∗i (λ)) is the expectation of (3) taken with respect to λ. We now verify

that 0 < E(xi|Kt) < 1. This means that we have interior solutions where the probability of

buying is always strictly positive but also strictly less than one. The parameter assumptions

θ+1 < v0 < θ combined with (3) directly ensure that E(xi|Kt) < 1. To see that E(xi|Kt) > 0,

the firm’s optimal choice of p is bounded above by the price it would charge a consumer

following the best possible history, where all other consumers have bought, who therefore

has the highest possible willingness to pay. From (3) and (4), expected profits from this

consumer are
(
θ−v0−p+E(λ)

θ−θ

)
p, yielding optimal price p∗ = θ−v0+E(λ)

2
, where λ < λ implies

p∗ < θ − v0. The optimal price after any other history therefore satisfies p ≤ p∗ < θ − v0,

where (3) and (4) then yield E(xi|Kt) > 0.

From θ∗i ≡ Eλ(θ∗i (λ)) and (3), write

θ∗i = u0 −
E(λ)

n− 1

Kt +
∑

j∈It\{i}

E(xj|Kt) +
∑
t′≥t+1

∑
j∈I′t

E(xj|Kt, xi = 1)

 , (5)

where u0 ≡ v0 + p denotes a consumer’s effective outside option, taking into account the

price. Once again (4) and (5) imply 0 < E(xi|Kt) < 1.

From an ex ante perspective, the overall probability that consumer i will buy depends

on his probability of buying after a particular history Kt and on the ex ante probability dis-

tribution over all possible histories. Our assumption that θ is uniformly distributed reduces

the problem from analysing the whole distribution of relevant histories to just the expected

number of consumers who will buy, E(Kt). This assumption makes the analysis tractable,

and combined with λi ≤ λ, allows us to establish equilibrium existence and uniqueness.

Proposition 1. For any sales scheme I, the game has a unique perfect bayesian equilibrium.

That is, for any consumer i ∈ It and history Kt, the cut-off function θ∗i (λi) is uniquely

defined.

The fact that every seller strategy yields a unique value for expected profits is useful when

addressing what scheme it should use. Since the equilibrium strategy profile of consumers
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is unique, given any choice of price and sales scheme, the seller can unambiguously rank dif-

ferent schemes based on these expected profits. If there were multiple equilibrium consumer

strategy profiles consistent with a single scheme, then there would also be multiple values of

expected profits consistent with that scheme. The ranking of different schemes could then be

ambiguous and depend on factors outside of the formal modeling framework, which would

prevent us from providing advice about the best way to sequence sales.

3.1 Sequential versus simultaneous sales

Given uniqueness, we are now in a position to examine whether the seller should employ

simultaneous or sequential sales. In order to do so we make the following definition.

Definition 1. A sales scheme I’ = {I1′ , . . . , It′ , . . . , Im′} is more sequential than another

scheme I = {I1, . . . , It, . . . , Im} 6= I’ if any two consumers in the same cohort under I’ are

also in the same cohort under I: i ∈ It′ and j ∈ It′ implies i ∈ It and j ∈ It, for some

t ∈ {1, . . . ,m}.

We say that a second sales scheme is more sequential than a first if all consumers who were

served sequentially and at least some who were served simultaneously in the first scheme are

served sequentially in the second. This is equivalent to saying that the first scheme can be

transformed into the second by repeatedly breaking up cohorts, taking groups of consumers

who were served simultaneously and instead serving some of these consumers before others.

Alternatively, the second scheme can be transformed into the first by repeatedly combining

together cohorts that, loosely put, lie next to one another.

Definition 1 allows us to make pairwise comparisons between many sales schemes in an

intuitive way. Applying the definition, every possible scheme is more sequential than a

scheme with all consumers in one cohort (fully simultaneous), and a scheme with a single

consumer per cohort (fully sequential) is more sequential than every other possible scheme.
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The following result says that the seller should use a sales scheme that is as sequential

as possible.

Proposition 2. Suppose that a sales scheme I’ is more sequential than another scheme I,

according to Definition 1. Then I’ delivers strictly higher expected profits.

This result supporting sequential sales is relevant for a variety of situations with imperfect

control over sequencing. For example, when a firm launches a product across M different

markets, it may be constrained to serve consumers simultaneously within each market. But

a firm can still choose whether to launch the product sequentially across markets. The set

of feasible schemes then corresponds to those partitions with M ′ ≤ M cohorts that place

all consumers in each market within the same cohort. Proposition 2 says that the most

profitable scheme has exactly M cohorts, each corresponding to a single market. Interpreted

in this way, a firm should follow a waterfall launch strategy, releasing the product across

markets sequentially. Proposition 2 holds regardless of whether the firm sets the optimal

price for each scheme or simply sets the same price for both schemes.

A sequential scheme provides consumers with increased information about each others’

purchases, essentially making their decisions visible to one another. This visibility can allow

success to breed success. High sales from consumers who are served first can then encourage

increased sales from consumers served later. The Proposition shows that sequential sales

increase expected profits despite the fact that failure can also breed failure, where low early

sales can depress sales from those who follow.

The intuition for the result is as follows. With sequential sales, consumers not only

observe earlier purchases, but they also realize their own purchases will be observed by later

consumers. The very fact of being observed makes buying more attractive, since consumers

who are served early understand that those who see them buy will become more likely to buy

themselves. The key formal point is that the expectations in (5) for consumers in cohorts

t′ ≥ t+ 1 all condition on the purchase of consumer i in cohort t. It follows that a sequential
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strategy will tend to yield high initial sales, precisely because consumers are rational and

forward looking, starting a virtuous cycle where early success is then compounded.

An immediate corollary of Proposition 2 is that a fully simultaneous scheme is the worst

possible choice. Every sales scheme is more sequential than a fully simultaneous scheme,

according to Definition 1, and will give strictly higher expected profits. Our mechanism

suggests that if a firm has any influence at all over sequencing, no matter how small, then it

should use this influence to ensure that at least some consumers are served before others.

Another consequence of Proposition 2 is that we can describe the optimal scheme.

Corollary 1. The sales scheme I that maximizes expected profits has a single consumer per

cohort.

The optimal sales scheme is purely sequential with one consumer served after another.

This result is relevant for a firm with perfect control over sequencing, for example one

engaged in business-to-business transactions that can choose the precise order to approach

potential clients. In this case, Corollary 1 says that the firm should approach clients one

by one. Unlike the literature on seeding, the firm does not attempt to kickstart product

adoption by giving away its product to some clients to strengthen network effects. The firm

instead tries to strengthen network effects and promote early sales by exploiting consumers’

strategic incentives to influence one another through their purchases.

Our results so far show that the ranking of sales schemes is independent of the exact dis-

tribution of λ, the weight consumers place on the network payoff. However, the distribution

of λ does have a quantitative impact on the strength of the link between sequential sales

and expected profits. Sequential sales help the seller by exploiting network effects between

consumers. The stronger these effects, the larger the impact we would tend to expect from

a sequential scheme. We now show simulation results that provide support for this idea. For

all i, we set λi = λ with probability one, and calculate expected profits under both a fully

simultaneous and a fully sequential scheme for different values of λ.
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Expected Profits as a Function of Network Effect Strength

Figure 1 plots expected profits as a function of λ under the two schemes, with the

simultaneous scheme represented in blue and the sequential scheme in red. As required by

Corollary 1, expected profits are higher under a sequential scheme for all values of λ >

0. Figure 1 also shows that the difference in expected profits between the two schemes is

increasing in λ. In particular, when λ = 1, a sequential scheme allows the seller to increase

expected profits by approximately 40%.12

A fully sequential sales scheme will always maximize expected profits, but intuition sug-

gests that it should also increase downside risk. Low early sales under a sequential scheme

can be self reinforcing because they are observed by later consumers. This possibility that

failure breeds failure might drive down realized profits if early consumers happen to have low

willingness to pay. Even though a sequential scheme performs best on average, this potential

for downside risk might concern a seller who is risk averse.

12The simulation uses parameter values n = 5, θ = 2, θ = 0, u0 = 1.85, and p = 1 under both schemes.
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Contrary to this intuition, we now present simulation results showing that a sequential

scheme may actually be less risky than a scheme that is fully simultaneous. In fact, Figure 2

shows that for certain parameter values, the distribution of profits under a sequential scheme

is unambiguously better for the seller than the distribution under a simultaneous scheme, in

the sense of first order stochastic dominance.

Figure 2
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Figure 2 plots the cumulative distribution function of total profits under the two different

schemes. The simultaneous scheme is represented in blue and the sequential scheme in red,

where the former CDF lies entirely above the latter.13 A sequential scheme here serves

the dual purpose of increasing expected profits while decreasing the probability of a poor

outcome where realized profits are very low. The positive incentive effect on early consumers

is so strong that it outweighs any increased risk that might arise from low early sales.

13The simulation uses parameter values n = 5, θ = 2, θ = 0, u0 = 1.85, p = 1, and λ = 1 under both

schemes.
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3.2 Ordering of sales

The analysis in Section 3.1 shows that a firm should use a sales scheme that is as sequential

as possible. But if not all feasible schemes are comparable in the sense of Definition 1,

then the question remains as to precisely which scheme is best. For example, Proposition 2

suggests that a firm should launch its product sequentially across markets, but markets may

well differ in their size. Should the firm then first release the product in smaller markets or

in larger ones? In our setting, this amounts to asking whether the firm should use a scheme

that serves smaller or larger cohorts first.

Proposition 3. Suppose E(λ) < v0− θ. Consider sales schemes I = {I1, . . . , It, It+1, . . . Im}

and I ′ = {I1, . . . , I ′t = It+1, I
′
t+1 = It, . . . Im} with |It| ≡ nt > nt+1 ≡ |It+1|. Then I ′ yields

strictly higher expected profits than I.

This result provides additional insights into how to sequence sales when certain potential

schemes are infeasible. An implication of Proposition 2 is that a firm should launch its

product in one market after another. Any such sequential launch will yield higher expected

profits than launching in different markets at the same time. Proposition 3 goes further by

saying that the firm should carry out this sequential launch in increasing order of market size.

The intuition behind this result is that if larger markets move later, more consumers possess

valuable information about the decisions of others. Early movers understand that their

actions influence the many consumers who follow and become more likely to buy themselves.

Moving to our second result about ordering, we will relax the assumption that consumer

type is private information. Intuitively, if a firm can observe certain consumer characteristics,

then it may well take this information into account when choosing its sales scheme. Corollary

1 showed that given complete control over sequencing, the optimal scheme is fully sequential.

We now explore whether this remains the case when the seller can distinguish between

different consumers, and in particular examine which consumers should be served first.

The literature on word-of-mouth communication in networks has examined a related
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question from the point of view of consumer influence. Typically in this literature, a firm

initially informs certain consumers about its product, these consumers pass this information

along to others, those consumers pass this information along in turn, and so on. The issue

for the firm is who to initially inform, in particular if it can distinguish between consumers

with different propensities to pass along information. This propensity captures the strength

of a consumer’s influence in the network.14

In our setting, all consumers are equally influential from an ex ante perspective, in the

sense that network effects depend on total sales but not on the identity of the consumers

who buy. Not all consumers however are equally easy to influence. Consumers with high

values of λ place a high weight on the network payoff which makes them more sensitive to the

purchase behavior of others. In contrast, consumers with low values of λ base their purchase

decisions mainly on their intrinsic payoff from buying. To explore the issue of ordering and

consumer influence, we now assume that each consumer’s value of λ is public information.

The following result shows that the optimal sales scheme then serves consumers in increasing

order of λ, so in decreasing order of their sensitivity to other consumers’ influence.

Proposition 4. Suppose the weight consumers place on the network payoff, λ, is observable.

Then the sales scheme I that maximizes expected profits has a single consumer per cohort,

increasingly ordered in λ, i.e. λ1 ≤ . . . ≤ λn.

The optimal sales scheme remains purely sequential, where the intuition for this result

echoes that from Proposition 2 and Corollary 1. There, we argued that the qualitative

advantage of a sequential scheme does not depend on the precise distribution of λ. In a

similar way, this qualitative advantage does not depend on the exact realized values of these

weights. As long as each consumer places a strictly positive weight on the network payoff,

14For example, Galeotti and Goyal (2009) suggest targeting influential consumers who will inform many

friends, whereas Campbell (2013) show this may be suboptimal if these influential consumers are likely to

already be informed via word of mouth.
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then a sequential scheme will increase expected profits by increasing visibility, pushing early

consumers to buy, and allowing success to breed success.

In addition, Proposition 4 derives the optimal ordering: consumers should be served in

increasing order of the weight they place on the network payoff. This result complements

those in the literature on word-of-mouth communication in networks stating that a firm

should first serve consumers with the most influence. This result also echoes the notion that

a firm launching a new product should target independent-minded consumers first, who can

serve as opinion leaders for those who follow. These innovators (low λ) will decide whether or

not to buy the product largely based on their own personal tastes. Their decision to buy can

then encourage imitators (high λ) who care about their actions to jump on the bandwagon.

When values of λ are observable, the seller faces a new trade off. Serving consumers in

increasing order of these weights means that later consumers (high λ) have a strong incentive

to follow those who buy. In principle, doing so reinforces the benefits when early consumers

buy and success breeds success. However, these benefits are limited by the fact that early

consumers (low λ) do not become much more likely to buy just because they expect others

to follow. Another way to understand the trade off is that consumers with high weights are

likely to set a good example, but they are also more likely to follow a good example once it

has been set. Proposition 4 shows that the second effect outweighs the first so the optimal

order is increasing in these weights. The mechanism behind sequential sales is based on

the idea that consumers want to influence one another, but the optimal scheme grants the

largest visibility to consumers who care the least about this influence.

One surprising feature of the optimal scheme is that the seller first serves consumers

believed to have the lowest willingness to pay. Another is that the optimal ordering’s impact

on expected profits can be non-monotonic in the difference between consumers’ values of λ.

To take a simple case, consider two consumers, with weights λ1 and λ2 > λ1. Proposition 4

says that serving consumer 1 before consumer 2 will maximize expected profits. But as λ1
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approaches λ2 from below, the consumers become increasingly similar, and expected profits

in the limit are the same regardless of who is served first. If λ1 instead approaches zero from

above, then consumer 1 cares little about consumer 2’s expected behavior, and expected

profits in the limit do not depend on the firm’s choice of sales scheme. The implication is

that ordering can matter most if consumers are neither too similar nor too different.

3.3 Consumer communication

Typically, models of sequential decision making with private information assume that con-

sumers cannot directly communicate, and all information transmission takes place indirectly

via observing each others’ purchases. For example, in the literature on quality uncertainty

and social learning, consumers cannot directly share the private signal they receive about

quality, and other consumers only update their beliefs about quality by observing the level

of previous sales. We make a similar assumption in our analysis by assuming that consumers

cannot directly communicate their willingness to pay. This assumption is reasonable in many

situations where market interactions are anonymous.

But for a variety of products, including books, films, mobile phones, and computers,

consumers do share information in online forums and communities (see, e.g., Godes et al.

(2005) and the references therein). This information sharing can pertain to new products

that consumers have purchased, but also to products that are unreleased. For example, there

are various online sites where consumers engage in heated debate about the perceived merits

of rumored Apple products that have yet to appear.15

Consumer communication is relevant in our setting because it may serve as a possible

substitute for sequential sales. The whole purpose of sequential sales is to help consumers

learn from one another about a product’s popularity. However, if consumers successfully

learn each others’ willingness to pay through communication, then there is little scope for

15See for example www.9to5mac.com and www.appleinsider.com
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future learning, and little need for the visibility of purchases provided by sequential sales.

Consumers who successfully communicate would be able to correctly predict the good’s

popularity regardless of the seller’s choice of sales scheme.

A crucial point for communication to be successful relates to credibility. If consumers read

certain comments or reviews about a product, should they actually believe what they read?

One concern here is the potential for firm manipulation. Previous work has explored how a

firm strategically post positive reviews about its own products to influence consumer beliefs;

if consumers realize this, it will naturally reduce the credibility of the information they receive

(Dellarocas (2006), Mayzlin et al. (2014)). In what follows we take an alternative approach

focusing more on consumers. Rather than looking at firm manipulation, we examine another

potential obstacle to credible communication: possible incentives for consumers to misreport.

Specifically, we consider two reasons why consumers might want to misrepresent their

willingness to pay to one another. Information that consumers share may be collected by

the firm and used to adjust the price (Chen and Xie, 2008). A consumer who understates

his willingness to pay may contribute to the impression that demand is low, leading the firm

to reduce its price. On the other hand, a consumer who overstates his willingness to pay

may convince other consumers to buy, resulting in a larger network payoff, which can also

help that consumer. This reasoning suggests that network effects might push consumers to

exaggerate whereas firm monitoring might generate countervailing incentives. We now show

that despite these potential obstacles, consumers may be able to communicate truthfully.

Formally, we assume again that type is private information, but allow consumers to

engage in cheap talk before making their purchase decisions. Consumers simultaneously

send one another a message about their type, where the seller observes the set of messages

with strictly positive probability. If the seller observes the messages then it can use this

information when setting its price. The details of this price-setting process are not crucial

for our results. The important point is just that the price be non-decreasing in the seller’s
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updated beliefs about consumer willingness to pay, conditional on observing the messages.

Proposition 5. Consider a simultaneous sales scheme, with all consumers in the same

cohort. Suppose that before buying, consumers can simultaneously send a message m ∈

[θ, θ] × (0, λ) about their type which all other consumers observe, and where the seller ob-

serves M = (m1, . . . ,mn) with probability q > 0. Furthermore suppose that the seller sets

price p∗ if it does not observe M , and sets price p(M) if it does, where p(M) is non-decreasing

in
∑n

i=1 E(xi|p∗,M). Then when q is sufficiently small, an equilibrium exists where commu-

nication is informative, in the sense that each consumer truthfully reveals to all others the

minimum level of total sales required for him to buy himself at price p∗. In the limit as q

tends to zero, consumer purchase decisions approach those in a setting where consumers all

observe each others’ type, (θi, λi) for all i = 1, . . . , n.

Proposition 5 shows that potential incentive problems need not rule out successful com-

munication, in that consumers may still truthfully reveal their planned purchase behavior

to one another. However, for such communication to occur, consumers must believe it suf-

ficiently unlikely that the seller is monitoring their messages. Curiously enough, successful

communication is possible precisely because of network effects, even though they seemingly

provide consumers with an incentive to exaggerate. If there were no network effects, and

the seller’s price was increasing in consumers’ messages, then consumers would all claim low

willingness to pay in the hopes of obtaining a price reduction.

Intuitively, a consumer who understates his willingness to pay can generate two effects.

The first effect is that other consumers infer demand may be relatively low, making them less

likely to buy themselves, which reduces aggregate demand at any given price. The resulting

reduction in the network payoff means that consumers who buy are left worse off. The

second effect of understating is that the seller may respond by charging a lower price. This

price reduction would leave consumers better off but can only occur if the seller observes the

messages. When the probability that the seller observes the messages is relatively small, the
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first effect dominates the second, and consumers have a strict incentive not to understate.

By a similar logic, overstating willingness to pay can lead to a higher price, but can also

convince more consumers to buy and increase aggregate demand. The latter effect will lead

to a larger network payoff for those who buy. However, the consumer who overstates will

only benefit from this network payoff if he has a genuine incentive to buy himself. And if he

has such a genuine incentive, then there was no reason to overstate willingness to pay.

The implication of Proposition 5 is that firms selling products where potential consumers

regularly communicate may need to focus less on a sequential product launch than firms

for which the opposite is true. Successful communication can reduce uncertainty and leave

consumers with relatively little to learn from one another through sequential sales. It may

be tempting to also conclude that firms should actively facilitate discussion and encourage

consumer communication about new products, for example through an official online forum

or discussion board. However, if the firm’s involvement in this process leads consumers to

suspect it is monitoring their messages, then this can derail successful communication, even

absent any concern that the firm is strategically manipulating messages.

4 Discussion and Robustness

Our analysis has assumed that the seller commits to its choice of sales scheme, solutions are

interior, and the intrinsic payoff θ is uniformly distributed. We now briefly comment on how

each of these assumptions relates to our results supporting sequential sales. We then relax

the assumption of static pricing, instead allowing the seller to adjust its price over time, and

present a result suggesting the mechanism supporting sequential sales will continue to apply.

The fact that the seller can commit to a sales scheme is unimportant for the results. The

analysis shows that for any cohort It with at least two consumers, given any history Kt, the

seller always benefits by having some of these consumers act before the others. This means

that a seller who chooses a sequential scheme at t = 0 has no incentive to change its mind
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after observing the actions of any number of consumers. If the first consumers do not buy,

then the seller may well regret ex post using this scheme, but it will still prefer the remaining

consumers to act sequentially.

Our assumption on parameter values ensures that after any history, the probability a

consumer will buy lies strictly between zero and one, so that the equilibrium of the consumer

game is interior and unique. Relaxing this assumption would mean that multiple values of

expected profits could be consistent with each scheme, as discussed following Proposition 1.

If network effects were sufficiently strong, then any sales scheme could generate both a good

equilibrium outcome where all consumers buy and a bad equilibrium outcome where nobody

buys. It would then be difficult to rank different schemes, but sequential sales might still be

useful in helping with equilibrium selection, if observing an early purchase can coordinate

the remaining consumers on the Pareto dominant outcome.

Assuming a uniform distribution of θ guarantees equilibrium existence and uniqueness,

as discussed prior to Proposition 1. It also has an effect that relates to the variance of early

sales. Intuitively, variance can be quite high under a sequential scheme, since consumers

can observe and imitate one another. This reasoning suggests that in comparison with

simultaneous sales, a sequential scheme may tend to generate more extreme histories.

The variance of early sales plays no role when θ is uniformly distributed. All that matters

about early sales is their expected value, which is maximized under a sequential scheme.

However, variance could potentially matter if θ followed a different distribution. For example,

if many consumers had low θ, and only a very good history would persuade them to buy,

then high variance could help by increasing the probability of such a history. If instead many

consumers had high θ, so only a very bad history would dissuade them from buying, then

high variance could hurt by the same reasoning. Our analysis would then underestimate the

benefit of sequential sales in the first case but overestimate it in the second case.

We now turn to dynamic pricing and address whether sequential sales will remain attrac-
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tive to a seller that can adjust its price over time. For example, the seller may increase the

price from its initial level if early sales are high or decrease the price if early sales are low.

A fully general analysis of dynamic pricing is complicated by the fact that the seller jointly

chooses a price schedule and a sales scheme, and the preferred prices will vary across different

schemes. For any given sales scheme, the analysis would involve considering all potential

prices to charge each cohort, for every possible history, and then comparing the resulting

profits across all possible schemes. An additional complication is that the optimal schedule

will depend on whether the seller can commit to future prices. Commitment means that

the seller fixes a price schedule at t = 0 so as to maximize expected profits from an ex ante

perspective. No commitment means that the seller effectively makes a sequence of pricing

decisions over time when facing each cohort, where the chosen price must maximize expected

profits from that particular cohort and all later consumers, given observed sales. We analyze

the former case in the following Proposition and leave the latter for further research.

Proposition 6. Suppose the seller can commit to a dynamic pricing schedule, with price

p(Kt) for cohort t conditional on previous sales Kt. Then a fully sequential sales scheme (a

single consumer per cohort), delivers higher expected profits than a fully simultaneous sales

scheme (all consumers in a single cohort).

Fully sequential sales remain more profitable than fully simultaneous sales under dynamic

pricing, just as under static pricing. Dynamic pricing actually increases the difference in ex-

pected profits between these schemes because sequential sales now offer additional flexibility,

allowing the seller to adjust the price depending on whether early sales were high or low.

With dynamic pricing, the seller can always earn the same profits as under static pricing by

maintaining its initial price, but can generally do better still by adjusting its price over time.
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5 Conclusion

In a setting with network effects, consumers looking to buy a product will naturally take

into account whether they expect others to buy as well. Consumers may be more willing

to buy mobile phones or video games, movies tickets or books, if they believe that sales

will be high. Firms may be more willing to adopt a new business solution or employ a new

operating system if they expect others to follow suit. Put another way, buying becomes more

attractive if the product in question will likely become a ‘hit’. We consider a setting where

consumers have precisely such concerns, and examine how a firm’s choice of sales scheme, in

particular between simultaneous and sequential sales, can help exploit network effects.

Our results show that a firm’s choice of sales scheme can matter a great deal. Broadly

speaking, the sequencing of sales affects how much information consumers receive about

each others’ behavior. The advantage of a sequential sales strategy is that success can breed

success, but the disadvantage is that failure can breed failutre.

Despite this apparent trade-off, we show that a firm can always increase its expected

profits by moving from one sales scheme to another that is more sequential. The key point

is that consumers are rational and forward looking, and a sequential scheme affects their

expectations about how others will behave in the future. A consumer knows that others who

observe his purchase will become more likely to buy, which increases the incentive to buy

himself. The use of a sequential scheme not only reveals to consumers whether or not the

product is a hit, it also makes a hit more likely in the first place.

From a practical perspective, these results provide support for a sequential product-

launch strategy, where a firm first releases its product in smaller markets before moving on

to larger ones. They also suggest that a firm with full control of sequencing should approach

potential clients in a way that is purely sequential, one after the other. Looking more closely

at the economic mechanism behind these results, we argue that sequencing will tend to be

less important if consumers can regularly communicate with each other, for example through
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online forums and discussion boards. We also present results showing that if possible, a

firm should first serve more independent-minded consumers who are less sensitive to other

consumers’ behavior. Doing so is consistent with firms’ targeting of opinion leaders whose

initial take-up of a product can help generate later success.

6 Appendix*

6.1 Technical Lemmas*

Lemma A.1. Suppose Kt consumers buy up until cohort It, and consider consumer j ∈ It′

with t′ ≥ t+ 1. Suppose a set of consumers M ⊆ ∪t′−1l=t Il choose to buy. Then

E(xj|Kt,M) =
θ − E(θ∗j |Kt,M)

θ − θ
,

where

E(θ∗j |Kt,M) = u0−
E(λ)

n− 1

Kt +
∑
t≤l≤t′

∑
i∈Il\{j}

E(xi|Kt,M) +
∑
l≥t′+1

∑
i∈Il

E(xi|Kt,M, xj = 1)

 .

Proof. By (5), for any Kt′ , the relevant cutoff for consumer j ∈ It′ is

θ∗j = u0 −
E(λ)

n− 1

Kt′ +
∑

i∈It′\{j}

E(xi|Kt′) +
∑
l≥t′+1

∑
i∈Il

E(xi|Kt′ , xj = 1)

 , (6)

so that

E(xj|Kt′) =
θ − θ∗j
θ − θ

. (7)

We now work with (6) and (7) to obtain E(xj|Kt,M). Let K be the set of all Kt′ consistent

with (Kt,M). For each Kt′ we multiply (6) with p(Kt′|Kt,M) and sum up over all Kt′ ∈ K.

Since
∑
K p(Kt′|Kt,M) = 1, we have that E(θ∗j |Kt,M) is equal to
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u0 −
E(λ)

n− 1

∑
K

Kt′p(Kt′ |Kt,M) +
∑

i∈It′\{j}

∑
K

p(Kt′ |Kt,M)E(xi|Kt′)+

∑
l≥t′+1

∑
i∈Il

∑
K

p(Kt′ |Kt,M)E(xi|Kt′ , xj = 1)

)
,

Note that

E(xj|Kt,M) =
∑
K

p(Kt′|Kt,M)E(xj|Kt′),

E(xi|Kt,M, xj = 1) =
∑
K

p(Kt′|Kt,M)E(xj|Kt′ , xj = 1),

and
∑
KKt′p(Kt′|Kt,M) = Kt +

∑
t≤l≤t′−1

∑
i∈Il E(xi|Kt,M). Therefore,

E(θ∗j |Kt,M) = u0−
E(λ)

n− 1

Kt +
∑
t≤l≤t′

∑
i∈Il\{j}

E(xi|Kt,M) +
∑
l≥t′+1

∑
i∈Il

E(xi|Kt,M, xj = 1)

 .

Lemma A.2. For any consumer i in cohort It with history Kt,

dE(xi|Kt)

dKt

> 0.

Proof. Write out E(xi|Kt) =
θ−θ∗i
θ−θ with

θ∗i = u0 −
E(λ)

n− 1

Kt +
∑

j∈It\{i}

E(xj|Kt) +
∑
t′≥t+1

∑
j∈It′

E(xj|Kt, xi = 1)

 .

By Lemma A.1, write out each term in the second summation as E(xj|Kt, xi = 1) =

θ−E(θ∗j |Kt,xi=1)

θ−θ with

E(θ∗j |Kt, xi = 1) = u0 −
E(λ)

n− 1

(
Kt + 1 +

∑
j′∈It\{i}

E(xj′|Kt)

+
∑

t+1≤l≤t′

∑
j′∈Il\{j}

E(xj′ |Kt, xi = 1) +
∑
l≥t′+1

∑
j′∈Il

E(xj′|Kt, xi = 1, xj = 1)

)
.
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Again by Lemma A.1, write out each term E(xj′ |Kt, xi = 1, xj = 1) in the last summation

as E(xj′|Kt, xi = 1, xj = 1) =
θ−E(θ∗

j′ |Kt,xi=1,xj=1)

θ−θ , and so on. Consider a player in a cohort

k > t+ 1. Let Mk be the subset of players such that (i) each player i ∈Mk decided to buy,

(ii) for i, j ∈ Mk, i ∈ Ini , j ∈ Inj ni 6= nj and ni > t. Let for l ≤ k M l
k ⊆ Mk : ∀i ∈ M l

k, i ∈

Ini ⇒ ni < l. Then

E(θ∗j |Kt, xi = 1,Mk) = u0 −
E(λ)

n− 1

(
Kt + 1 + #Mk +

∑
j′∈It\{i}

E(xj′|Kt)

+
∑

t+1≤l≤k

∑
j′∈Il\Mk

E(xj′ |Kt, xi = 1,M l
k) +

∑
l≥k+1

∑
j′∈Il

E(xj′|Kt, xi = 1,Mk, xj = 1)

)
.

Denoting the number of distinct equations for E(xj|Kt, xi = 1,Mk) by A, including terms

with zero coefficient on the right-hand side of each equation, gives a system of A equations

in A unknowns. As shown immediately after (4) in Section 3, consumers with θ sufficiently

close to θ have a dominant strategy to buy. This means any solution to this system must

give E(xi|Kt) > 0, for any Kt.

Differentiating each equation in the system with respect to Kt gives dE(xi|Kt)
dKt

=
θ− dθ∗i

dKt

θ−θ

with
dE(θ∗j |Kt, xi = 1,Mk)

dKt

= u0 −
E(λ)

n− 1

(
1 +

∑
j′∈It\{i}

dE(xj′ |Kt)

dKt

+
∑

t+1≤l≤k

∑
j′∈Il\Mk

dE(xj′|Kt, xi = 1,M l
k)

dKt

+
∑
l≥k+1

∑
j′∈Il

dE(xj′ |Kt, xi = 1,Mk, xj = 1)

dKt

)
.

This system of A linear equations in A unknowns is identical to the first one, except that

each conditional expectation is replaced by its derivative, and Kt has been set equal to 1.

The associated matrix for this system has diagonal entries of 1 and off-diagonal entries of

either 0 or −1
θ−θ

E(λ)
n−1 < 0, where the number of non-zero off-diagonal entries in each row cannot

exceed
∑

t′≥t
∑

i∈It′
ni− 1 ≤ n− 1. By E(λ) ≤ λ = θ− vo and θ+ 1 < vo < θ, the sum of the

absolute values of off-diagonal entries in each row is therefore strictly less than one. Hence,

this matrix is strictly diagonally dominant. By the Gershgorin theorem (1931), the system

then has a unique solution, with dE(xi|Kt)
dKt

> 0.

31



Lemma A.3. For any consumer j ∈ It′, with t′ ≥ t + 1, E(xj|Kt) is strictly increasing in∑
i∈It E(xi|Kt).

Proof. We proceed by induction. First, let t′ = t+ 1. By Lemma 1, for any xj ∈ It+1, write

out E(xj = 1|Kt) =
θ−E(θ∗j |Kt)

θ−θ with

E(θ∗j |Kt) = u0−
E(λ)

n− 1

[Kt +
∑
i∈It

E(xi|Kt)

]
+

∑
i∈It+1\{j}

E(xi|Kt) +
∑
l≥t+2

∑
i∈Il

E(xi|Kt, xj = 1)

 .

Again by Lemma A.1, write out each expectation E(xi|Kt, xj = 1) in the last summation,

and so on to generate a system of equations. Each of these equations will include the same

expression in square brackets.

We can identify the expression in square brackets with a constant Kt+1. A strict increase

in
∑

i∈It E(xi|Kt)) is then equivalent to a strict increase in Kt+1. Hence by Lemma A.2,

E(xj|Kt) must strictly increase.

Now let t′ ≥ t+ 2, and suppose the result holds for all cohorts t+ 1, . . . , t′− 1. We show

that the result also holds for t′. For a consumer j ∈ It′ , write

E(θ∗j |Kt) = u0 −
E(λ)

n− 1

([
Kt +

∑
t≤l≤t′−1

∑
i∈Il

E(xi|Kt)

]
+

∑
i∈Il\{j}

E(xi|Kt) +
∑
l≥t′+1

∑
i∈Il

E(xi|Kt, xj = 1)

 .

Once again using Lemma A.1, write out each expectation E(xi|Kt, xj = 1) in the last summa-

tion, and so on to generate a system of equations which all include the same term in square

brackets. By the induction hypothesis, the term in square brackets strictly increases, which

is again equivalent to an increase in Kt′ . By Lemma A.2, E(xj|Kt) must strictly increase.
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Lemma A.4. Let t′ ≤ t−1. Consider a history Kt′ and any consumer i ∈ Il with l ≥ t′. Let

Kt′ be a set of histories Kt consistent with Kt′, and let a ∈ R be some parameter of arbitrary

nature. Then if
d
∑
j∈It

E(xj |Kt)
da

> 0 for all Kt ∈ Kt′, then
E(xi|Kt′ )

da
> 0.

Proof. First let t′ = t− 1, and consider a consumer i ∈ It−1, given history Kt−1. By (4) and

(5), write E(xi|Kt−1) =
θ−θ∗i
θ−θ with

θ∗i = u0 −
E(λ)

n− 1

(
Kt−1 +

∑
j∈It−1\{i}

E(xj|Kt−1) +
∑

0≤K′≤#It−1−1

P(
∑

j∈It−1\{i}

xj = K ′|Kt−1)
∑
l≥t

∑
j∈Il

E(xj|Kt−1 + 1 +K ′)

 ,

explicitly writing out all the possible histories Kt consistent with Kt−1 and xi = 1. Each such

history corresponds to a value of
∑

j∈It−1\{i} xj = K ′, with K ′ = 0, . . . ,#It−1−1, representing

the possible purchase decisions of the #It−1 − 1 consumers in It−1 \ {i}. Equivalently,

consumer i will find it optimal to buy if and only if his expected payoff from buying,

θi +
λi

n− 1

Kt−1 +
∑

j∈It−1\{i}

E(xj|Kt−1) +

∑
0≤K′≤#It−1−1

P(
∑

j∈It−1\{i}

xj = K ′|Kt−1)
∑
l≥t

∑
j∈Il

E(xj|Kt−1 + 1 +K ′)

 ,

(8)

exceeds that from his effective outside option, u0.

Consider an increase in
∑

j∈It E(xj|Kt) for every history Kt consistent with Kt−1. This

implies an increase in
∑

j∈It E(xj|Kt−1+1+K ′) for all K ′ = 0, . . .#It−1−1. Then by Lemma

A.3,
∑

l≥t+1

∑
j∈Il E(xj|Kt−1+1+K ′) must increase as well, for all suchK ′. Since λ > 0 for all

consumers, the system of equations given by (8) defines a game with strategic complements

between all consumers i in cohort It−1 (increasing best-response functions). Therefore, if∑
l≥t
∑

j∈Il E(xj|Kt−1 + 1 + K ′) increases, then for each i ∈ It−1, E(xi|Kt−1) =
θ−θ∗i
θ−θ must

increase as well (see Vives (1990)). Given this increase in
∑

i∈It−1
E(xi|Kt−1), Lemma A.3

implies that E(xj|Kt−1) must also increase, for any consumer j in cohort l ≥ t.
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Proceeding by induction for cohorts t′ = t− 2, t− 3, . . . , 1 completes the proof.

6.2 Proofs of the Propositions*

Proposition 1. For any sales scheme I, the game has a unique perfect bayesian equilibrium.

That is, for any consumer i ∈ It and history Kt, the cut-off function θ∗i (λi) is uniquely

defined.

Proof. Consider a subgame starting with cohort It to act after a history summarized by Kt.

By (4) and (5), for each consumer i ∈ It, write out E(xi|Kt) =
θ−θ∗i
θ−θ , with

θ∗i = u0 −
E(λ)

n− 1

Kt +
∑

j∈It\{i}

E(xj|Kt) +
∑
t′≥t+1

∑
j∈It′

E(xj|Kt, xi = 1)

 .

By Lemma A.1, write out each term in the second summation as E(xj|Kt, xi = 1) =

θ−E(θ∗j |Kt,xi=1)

θ−θ , with

E(θ∗j |Kt, xi = 1) = u0 −
E(λ)

n− 1

(
Kt + 1 +

∑
j′∈It\{i}

E(xj′|Kt)

+
∑

t+1≤l≤t′

∑
j′∈Il\{j}

E(xj′ |Kt, xi = 1) +
∑
l≥t′+1

∑
j′∈Il

E(xj′|Kt, xi = 1, xj = 1)

)
.

Again by Lemma A.1, write out each term E(xj′ |Kt, xi = 1, xj = 1) in the last summation

as E(xj′ |Kt, xi = 1, xj = 1) =
θ−E(θ∗

j′ |Kt,xi=1,xj=1)

θ−θ , and so on. Consider a player in a cohort

k > t+ 1. Let Mk be the subset so players such that (i) each player i ∈Mk decided to buy,

(ii) for i, j ∈ Mk, i ∈ Ini , j ∈ Inj ni 6= nj and ni > t. Let for l ≤ k M l
k ⊆ Mk : ∀i ∈ M l

k, i ∈

Ini ⇒ ni < l. Then

E(θ∗j |Kt, xi = 1,Mk) = u0 −
E(λ)

n− 1

(
Kt + 1 + #Mk +

∑
j′∈It\{i}

E(xj′|Kt)

+
∑

t+1≤l≤k

∑
j′∈Il\Mk

E(xj′ |Kt, xi = 1,M l
k) +

∑
l≥k+1

∑
j′∈Il

E(xj′|Kt, xi = 1,Mk, xj = 1)

)
.
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Denoting the number of distinct equations for E(xj|Kt, xi = 1,Mk) by A, including terms

with zero coefficient on the right-hand side of each equation, gives a system of A equations

in A unknowns.

The associated matrix for this system has diagonal entries of 1 and off-diagonal entries

of either 0 or −1
θ−θ

E(λ)
n−1 < 0, where the number of non-zero off-diagonal entries in each row

cannot exceed
∑

t′≥t
∑

i∈It′
ni − 1 ≤ n − 1. By E(λ) ≤ λ = θ − vo and θ + 1 < vo < θ, the

sum of the absolute values of off-diagonal entries in each row is therefore strictly less than

one. Hence, this matrix is strictly diagonally dominant. By the Gershgorin theorem (1931),

the system then has a unique solution.

In particular, this unique solution implies that E(xj|Kt) for each consumer j 6= i in cohort

t, and E(xj|Kt, xi = 1) for each consumer j in cohort t′ ≥ t + 1, are all uniquely defined.

Hence, the cut-off function for consumer i,

θ∗i (λ) = u0 −
λi

n− 1

Kt +
∑

j∈It\{i}

E(xj|Kt) +
∑
t′≥t+1

∑
j∈It′

E(xj|Kt, xi = 1)

 ,

given by (3) is uniquely defined as well.

Proposition 2. Suppose that a sales scheme I’ is more sequential than another scheme I,

according to Definition 1. Then I’ delivers strictly higher expected profits.

Proof. We prove the following result, where repeated application given Definition 1 will

immediately imply Proposition 2: Consider sales schemes I = {I1, . . . , It−1, It, It+1, . . . Im}

and I’ = {I1, . . . , It−1, I ′t, I ′′t , It+1, . . . Im}, where It = I ′t ∪ I ′′t . Then I’ delivers strictly higher

expected profits.

Let p denote the optimal price under I. Suppose for now that the seller charges p under

both schemes, so that both I and I’ involve the same net outside option, u0 ≡ v0 + p.

Suppose that under I’, there are l consumers in cohort I ′t. Denote these consumers by

subscript i, for i = 1, . . . , l. Under I, these consumers are all members of cohort It ⊇ I ′t, and
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the probability that they will buy, given history Kt, is characterised by cut-off

θ∗i = u0 −
E(λ)

n− 1

Kt +
∑

j∈It\{i}

E(xj|Kt,θ) +
∑
t′≥t+1

∑
j∈It′

E(xj|Kt, xi = 1,θ)

 , (9)

where θ = {θ∗1, . . . , θ∗l } is the vector of cutoffs for these l consumers; E(·|Kt,θ) is the

expectation conditional on history Kt and the fact that these l consumers have cut-offs θ.

Due to Proposition 1, there exists a unique vector θ resulting from consumer optimizing

behavior, given Kt and I. In fact, (9) implies θ∗1 = . . . = θ∗l , but our notation allows for the

fact that cutoffs will differ if λ is observable, in which case λi will replace E(λ) in (9).

Now, under I’, It is split into two cohorts, I ′t and I ′′t . For the l consumers in cohort I ′t,

the probability that they will buy, given history Kt, is characterised by cut-off

θ∗
′

i = u0 −
E(λ)

n− 1

Kt +
∑

j∈It′\{i}

E(xj|Kt,θ
′) +

∑
j∈It′′

E(xj|Kt, xi = 1,θ′)+

∑
t′≥t+1

∑
j∈It′

E(xj|Kt, xi = 1,θ′)

 ,

(10)

where θ′ = {θ∗′1 , . . . , θ∗
′

l } is the vector of cutoffs for these l consumers; E(·|Kt,θ
′) is the

expectation conditional on history Kt and the fact that these l consumers have cut-offs

θ′. Again due to Proposition 1, there exists a unique vector θ resulting from consumer

optimizing behavior, given Kt and I’.

We now use the Jacobi iterative method to show that θ′ < θ; that is to say θ∗i ′ < θ∗i for

i = 1, . . . , l. This method consists of plugging an initial approximation for θ′ into the system

of equations determining the cutoffs under I’, solving for the cutoffs θ′
1 that are then implied

by these equations, where θ′
1 may well differ from θ′

0, and repeating the process with θ′
1,

θ′
2, . . . . Recall from the proof of Proposition 1 that the system of equations determining the

cutoffs is strictly diagonally dominant, which implies that given any initial approximation

θ′
0, the iterations must converge to the unique fixed point θ′ of the system (see, e.g., Varga

(1962)). Hence, to show θ′ < θ, it is sufficient to find θ′
0 such that θ′

n < θ holds for every

iteration n ≥ 1, and to show that the iterative process does not converge to exactly θ.
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For each consumer k in cohort I ′′t write E(xk|Kt, xi = 1,θ′) = θ−E(θk|Kt,xi=1,θ′)

θ−θ , where

E(θk|Kt, xi = 1,θ′) = u0 −
E(λ)

n− 1

[Kt + 1] +
∑

j∈I′t\{i}

E(xj|Kt,θ
′)+

∑
j∈I′′t \{k}

E(xj|Kt,θ
′, xi = 1) +

∑
t′≥t+1

∑
j∈It′

E(xj|Kt, xi = 1,θ′, xi = xk = 1)

 .

(11)

Let θ′
0 = θ. By assumption, the behavior of consumers i ∈ I ′t is then the same as under

I. From (11), the decision problem of consumers k ∈ I ′′t is the same as under I, but with

E(xi|Kt,θ) < 1 replaced by 1. Lemma A.2 and Lemma A.3 then imply E(xj|Kt, xi =

1,θ′
0) > E(xj|Kt,θ) for all consumers in cohorts I ′′t , . . . , Im. From (10), this in turn implies

θ′
1 ≡ R(θ′

0) < θ′
0, hence θ′

1 < θ. It follows that the iterative process cannot converge to

exactly θ, since that would require θ′
1 = θ.

Now assume θ′
n < θ for some iteration n ≥ 1, so that∑

j∈I′t\{i}

E(xj|Kt,θ
′
n) >

∑
j∈I′t\{i}

E(xj|Kt,θ).

From (11), the decision problem of consumers k ∈ I ′′t is the same as under I, but with

E(xi|Kt,θ) < 1 replaced by 1, and with
∑

j∈I′t\{i}
E(xj|Kt,θ) replaced by

∑
j∈I′t\{i}

E(xj|Kt,θ
′
n).

Lemma A.2 and Lemma A.3 then imply E(xj|Kt, xi = 1,θ′
n) > E(xj|Kt,θ) for all consumers

in cohorts I ′′t , . . . , Im. From (10), this in turn implies θ′
n+1 ≡ R(θ′

n) < θ. It follows by

induction that θ′
n < θ holds for every iteration n ≥ 1, as required.

The results so far show that conditional on any given history Kt, moving to I’ will

cause
∑

j∈I′t
E(xj|Kt) to increase. For each consumer k in cohort I ′′t write E(xk|Kt,θ

′) =

θ−E(θk|Kt,θ′)

θ−θ , where E(θk|Kt,θ
′) =

u0−
E(λ)

n− 1

[Kt +
∑
j∈I′t

E(xj|Kt,θ
′)] +

∑
j∈I′′t \{k}

E(xj|Kt,θ
′) +

∑
t′≥t+1

∑
j∈It′

E(xj|Kt,θ
′, xk = 1)

 .

(12)

Looking at the term in square brackets, moving to I’ is equivalent to replacing
∑

j∈I′t
E(xj|Kt,θ)

by the strictly larger
∑

j∈I′t
E(xj|Kt,θ

′). This is in turn equivalent to replacing history
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Kt +
∑

j∈I′t
E(xj|Kt,θ) by the strictly larger Kt +

∑
j∈I′t

E(xj|Kt,θ
′), so it follows from

Lemma A.2 and Lemma A.3 that
∑

j∈I′′t
E(xj|Kt) will increase.

Hence, for any history Kt, moving to I’ increases expected total sales from consumers pre-

viously in cohort t, from
∑

j∈It E(xj|Kt) to
∑

j∈I′t
E(xj|Kt) +

∑
j∈I′′t

E(xj|Kt). Thus Lemma

A.4 with t′ = 1 implies that E(xj) strictly increases for all consumers. Hence, ex ante ex-

pected profits, p
∑n

j=1 E(xj) are strictly higher under I’ than under I, given the assumption

that the seller charges price p under both schemes. Let p′ denote the optimal price under I’.

By the optimality of this price, ex ante expected profits under I’ at price p′ must be strictly

higher than expected profits under I at price p.

Proposition 3. Suppose E(λ) < v0− θ. Consider sales schemes I = {I1, . . . , It, It+1, . . . Im}

and I ′ = {I1, . . . , I ′t = It+1, I
′
t+1 = It, . . . Im} with |It| ≡ nt > nt+1 ≡ |It+1|. Then I ′ yields

strictly higher expected profits than I.

Proof. The proof is similar to that of Proposition 2. We first fix some history Kt and the

expected actions of consumers in cohorts It+2 and after. We then show that swapping It

and It+1 will strictly increase expected sales from these two cohorts, conditional on this

history. Finally, direct application of Lemmas A.4 with t′ = 1 implies that from an ex-ante

perspective, expected sales from all cohorts will strictly increase. Let p denote the optimal

price under I. Suppose for now that the seller charges p under both schemes, so that both I

and I ′ involve the same net outside option, u0 ≡ v0 + p.

Denote L = Kt + 1 +
∑

l≥t+2

∑
j∈Il E(xj|Kt). From the perspective of consumer i in

cohort t, following history Kt, L is the expected number of total sales, ignoring the behavior

of consumers in cohorts It and It+t. Its value will depend on the expected behavior of

others in cohorts It and It+1, but for now this dependence is left implicit. Then, holding

L constant, Lemma A.1 implies that the expected cut-off θt+1 for consumers in cohort It+1,
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from the perspective of consumer i in It who buys, is determined by:

θt+1 +
E(λ)

n− 1

(
L+ (nt − 1)E(xj|Kt) + (nt+1 − 1)E(xj|Kt, xi = 1)

)
= u0,

which can be rewritten as

θt+1 +
E(λ)

n− 1

(
L+ (nt − 1)

θ − θt
θ − θ

+ (nt+1 − 1)
θ − θt+1

θ − θ

)
= u0. (13)

Expression (13) shows that θt+1 depends on θt, which is the expected cut-off for a consumer

in cohort It, conditional on Kt. This cutoff θt is determined in turn by

θt +
E(λ)

n− 1

(
L− 1 + (nt − 1)

θ − θt
θ − θ

+ nt+1
θ − θt+1

θ − θ

)
= u0. (14)

From the perspective of the seller, expected sales from cohorts It and It, conditional on

history Kt, are then

S(nt, nt+1) = nt
θ − θt
θ − θ

+ nt+1

θ − θ′t+1

θ − θ
,

where Lemma A.1 implies that θ′t+1 is defined by

θ′t+1 +
E(λ)

n− 1

(
L− 1 + nt

θ − θt
θ − θ

+ (nt+1 − 1)
θ − θ′t+1

θ − θ

)
= u0. (15)

That is, θ′t+1 is the expected cutoff for consumers in cohort It+1, from the perspective of the

seller serving cohort It, conditional on history Kt. Solving the system (13)–(15) allows us to

determine the cut-offs and compute S(nt, nt+1). Let ∆ = S(nt, nt+1)− S(nt+1, nt). Then,

∆ =
(nt+1 − nt)(θ − θ)[(n− 1)(θ − θ) + E(λ)][(n− 1)(u0 − θ)− (L+ nt + nt+1 − 2)E(λ)]

1
ntnt+1(n−1)(E(λ))3G1 ·G2 ·G3 ·G4

.

where

G1 = (n− 1)(θ − θ)− (nt+1 − 1)E(λ),

G2 = (n− 1)(θ − θ)− (nt − 1)E(λ),

G3 = (n− 1)2(θ − θ)2 − (n− 1)(nt + nt+1 − 2)(θ − θ)E(λ)− (nt+1 − 1)(E(λ))2,

G4 = (n− 1)2(θ − θ)2 − (n− 1)(nt + nt+1 − 2)(θ − θ)E(λ)− (nt − 1)(E(λ))2.
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Due to E(λ) ≤ θ − v0 < θ − θ, G3 can be rewritten as

G3 = (n− 1)(θ − θ)
[
(n− 1)(θ − θ)− (nt + nt+1 − 2)E(λ)

]
− (nt+1 − 1)(E(λ))2 ≥

(θ − θ)2[(n− 1)(n− 1− nt − nt+1 + 2)− nt+1 + 1] ≥ (θ − θ)2(n− 1− nt + 1) > 0.

In a similar fashion G1, G2 and G4 are all positive. Note that as u0 − θ > v0 − θ > E(λ)

holds by assumption, and L − 1 + nt + nt+1 ≤ n, the last term in the numerator of ∆ is

always positive, which implies that ∆ > 0 whenever nt+1 > nt. Thus, compared with I, sales

scheme I ′ yields strictly higher expected sales from cohorts It and It+1, conditional on Kt.

Thus Lemma A.4 with t′ = 1 implies that the ex ante probability of buying, E(xj), strictly

increases for all consumers. Hence, ex ante expected profits, p
∑n

j=1 E(xj), are strictly higher

under I’ than under I, if the seller charges price p under both schemes. Let p′ denote the

optimal price under I’. By the optimality of this price, ex ante expected profits under I’ at

price p′ must be strictly higher than expected profits under I at price p.

Proposition 4. Suppose the weight consumers place on the network payoff, λ, is observable.

Then the sales scheme I that maximizes expected profits has a single consumer per cohort,

increasingly ordered in λ, i.e. λ1 ≤ . . . ≤ λn.

Proof. Notice first that all previous results continue to hold when λ is observable. Proofs

remain unchanged except that the relevant cutoff for any consumer i is now θ∗i (λi) given

by (3), rather than θ∗i ≡ Eλ(θ∗i (λi)) given by (5). That is, the only difference is that λi

replaces E(λ) in the expression for this cutoff. Hence, by Corollary 1, the sales scheme that

maximizes expected profits still has a single consumer per cohort.

For the optimal ordering of these consumers, we prove the result directly. Consider a

fully sequential partition with one consumer per cohort, and fix p at the optimal price for

this partition. Consider two subsequent consumers: i and i + 1. Suppose there where K
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consumers who bought before consumer i. Then

E(xi+1|K, xi = 1) =
θ − u0 + λi+1

n−1

(
K + 1 +

∑n
j=i+2 E(xj|K, xi = xi+1 = 1)

)
θ − θ

,

E(xi+1|K, xi = 0) =
θ − u0 + λi+1

n−1

(
K +

∑n
j=i+2 E(xj|K, xi = 0, xi+1 = 1)

)
θ − θ

.

Now we look at consumer i, where

E(xi|K) =
1

θ − θ

(
θ − u0 +

λi
n− 1

(
K +

P(xi+1 = 1|K, xi = 1)

(
1 +

n∑
j=i+2

E(xj|K, xi = xi+1 = 1)

)
+

P(xi+1 = 0|K, xi = 1)
n∑

j=i+2

E(xj|K, xi = 1, xi+1 = 0)

))
.

Clearly in our setting P(xi+1 = 1|K) = E(xi+1|K), for any history K. Now define:

S(λi, λi+1) ≡
n∑
j=i

E(xj|K) =

P(xi = 1|K)

(
P(xi+1 = 1|K, xi = 1)

(
2 +

n∑
j=i+2

E(xj|K, xi = xi+1 = 1)

)
+

P(xi+1 = 0|K, xi = 1)

(
1 +

n∑
j=i+2

E(xj|K, xi = 1, xi+1 = 0)

))
+

P(xi = 0|K)

(
P(xi+1 = 1|K, xi = 0)

(
1 +

n∑
j=i+2

E(xj|K, xi = 0, xi+1 = 1)

)
+

P(xi+1 = 0|K, xi = 0)
n∑

j=i+2

E(xj|K, xi = 0, xi+1 = 0)

)
.

We now use the fact that all expectations are linear in prior sales: E(xj|K, xi = 0, xi+1 =

1) = E(xj|K, xi = 1, xi+1 = 0) and 2E(xj|K, xi = 1, xi+1 = 0) = E(xj|K, xi = 0, xi+1 =

0) + E(xj|K, xi = xi+1 = 1). Thus

S(λi, λi+1)− S(λi+1, λi) = −(2 +Q2 −Q0)
3 (Q2 +K + 1)(λi − λi+1)λiλi+1

8(n− 1)3(θ − θ)3
, (16)
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where

Q2 ≡
n∑

j=i+2

E(xj|K, xi = xi+1 = 1),

Q0 ≡
n∑

j=i+2

E(xj|K, xi = xi+1 = 0).

Lemma A.2 implies that Q2 > Q0. Hence by (16), we have S(λi, λi+1)−S(λi+1, λi) > 0 if

and only if λi < λi+1. If λi > λi+1, then allowing consumer i+1 to act before consumer i will

strictly increase
∑n

j=i E(xj|K), for any history K. Hence, applying Lemma A.4 with t′ = 1,

allowing consumer i + 1 to act before consumer i will also strictly increase
∑

1≤i≤n E(xi).

It follows that ex ante expected profits, p
∑

1≤i≤n E(xi), are strictly higher under this new

ordering, where p was the optimal price under the original ordering. Let p′ denote the

optimal price under the new ordering. Thus, by optimality of this price, ex ante expected

profits under the new ordering at price p′ must be strictly higher than expected profits under

the original ordering at price p.

Proposition 5. Consider a simultaneous sales scheme, with all consumers in the same

cohort. Suppose that before buying, consumers can simultaneously send a message m ∈

[θ, θ] × (0, λ) about their type which all other consumers observe, and where the seller ob-

serves M = (m1, . . . ,mn) with probability q > 0. Furthermore suppose that the seller sets

price p∗ if it does not observe M , and sets price p(M) if it does, where p(M) is non-decreasing

in
∑n

i=1 E(xi|p∗,M). Then when q is sufficiently small, an equilibrium exists where commu-

nication is informative, in the sense that each consumer truthfully reveals to all others the

minimum level of total sales required for him to buy himself at price p∗. In the limit as q

tends to zero, consumer purchase decisions approach those in a setting where consumers all

observe each others’ type, (θi, λi) for all i = 1, . . . , n.
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Proof. For consumer i, define Ni as the smallest value of N for which

θi +
λi

n− 1
N − p∗ ≥ u0.

Ni is the minimum number of other consumers who must buy for consumer i to want to

buy himself, given price p∗. For each l = 0, 1, . . . , n− 1, let Bl denote the set of all (θ, λ) ∈

[θ, θ]× (0, λ) for which N = l. If n−1 consumers buying is insufficient to motivate consumer

i to buy, then we write Ni = n.

Any consumer i with θi = θ has a strictly dominant strategy not to buy (Ni = n),

regardless of the price. Let n′ denote the value of Ni for a consumer with θi = θ and λi = λ,

where n′ ≤ n−1 in any situation of interest. Notice that n′ = 0 if p∗ ∈ (θ−u0, θ−u0), since

then θi = θ implies a strictly dominant strategy to buy. Willingness to pay is increasing in

θ which has full support on [θ, θ]. Hence, from an ex ante perspective, for each consumer i,

there is a strictly positive probability that (θi, λi) ∈ Bl, for each l = n′, n′ + 1, . . . n.

Consider a candidate equilibrium where each consumer i plays a mixed strategy placing

strictly positive probability on all messages m ∈ BNi and zero probability on all m 6∈ BNi .

Conditional on receiving any m ∈ BN from consumer i, all other consumers then infer that

Ni = N . Notice that every m ∈ [θ, θ]× (0, λ) is on the equilibrium path, and corresponds to

some N ∈ {n′, n′ + 1, . . . , n}.

Define Xl as the number of messages m ∈ Bl in this candidate equilibrium, for each

l = n′, n′+1, . . . , n. Define Nmax as be the maximum value of j+1 such that
∑j

l=0Xl ≥ j+1;

if no such j + 1 exists, then define Nmax ≡ 0. Then given price p∗, consumer i’s strategy

in this candidate equilibrium has him buy if and only if (Nmax − 1Imi≤Nmax) ≥ Ni. Thus,

Nmax gives total sales at price p∗, conditional on messages M = {m1, . . . ,mn}. Since all

m ∈ [θ, θ] × (0, λ) are on the equilibrium path, there is a strictly positive probability that

Nmax takes on each value 0, n′ + 1, n′ + 2, . . . , n.

Given the messages of other consumers, any message mi ∈ BN leads to the same updated

beliefs about consumer i’s type, (θi, λi) ∈ BN , the same value of Nmax and the same purchase
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behavior at price p∗. Thus, any such message must also lead to the same price p and the same

purchase behavior if the seller observes the messages. This is the case for N = n′, n′+1, . . . , n.

It follows that for eachN , consumers are indifferent between all messagesm ∈ BN , so without

loss of generality we can write m ∈ {n′, n′+ 1, . . . , n). That is, each consumer i’s message is

effectively an integer N , where the candidate equilibrium prescribes mi = Ni. The incentive

to buy at a given price depends only on the number of other consumers expected to also

buy. Hence, if the seller sets price p∗, and each consumer i sends message mi ∈ Ni, then

consumers will make the same purchase decisions as if they all observed each others’ type.

To establish our result, we need to show that for q sufficiently close to zero, no consumer

has a profitable deviation. First consider the case where the seller does not observe the

messages so consumers face price p∗. By mi = Ni for all i = 1, . . . , n and the definition of

Nmax, each consumer who buys receives a payoff of at least u0. Each consumer who does

not buy would receive a payoff strictly less than u0 if he did buy. Hence, given price p∗, a

deviation from consumer i can only be profitable if it involves a change of message, to some

m′i = Nk 6= Ni. Let X ′l be the number of messages m = l following this deviation, for each

l = n′, n′+1, . . . , n. We have X ′Ni = XNi−1, X ′Nk = XNk +1, and X ′l = Xl for all l 6= Ni, Nk.

Define N ′max as the maximum value of j + 1 such that
∑j

l=0X
′
l ≥ j + 1; if no such j + 1

exists, then define N ′max ≡ 0.

Suppose Nk > Ni, with Ni ≤ n − 1, so consumer i understates his willingness to

pay. Then
∑j

l=0X
′
l =

∑j
l=0Xl for all j = 0, . . . , Ni−1 and for all j = Nk, . . . , n, whereas∑j

l=0X
′
l =

∑j
l=0Xl − 1 for all j = Ni, . . . , Nk−1. This implies N ′max − 1Im′i≤N ′max ≤ Nmax −

1Imi≤Nmax . Moreover, since all messages are on the equilibrium path, there is a strictly

positive probability that N ′max − 1Im′i≤N ′max < Nmax − 1Imi≤Nmax , for any realized value of

Nmax ∈ {0, n′ + 1, n′ + 2, . . . , n}. The payoff of reporting Ni is given by

(1−q)
(
P(Nmax − 1Imi≤Nmax < Ni)u0 + P(Nmax − 1Imi≤Nmax ≥ Ni)

(
θi + λi

E(Nmax)− 1

n− 1

))
+qU0,

where it understood that the term E(Nmax) is conditional on P(Nmax−1Imi≤Nmax ≥ Ni), and
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where U0 is the expected payoff if the seller observes the messages. Meanwhile the payoff

from deviating to Nk is

(1−q)
(
P(N ′max − 1Im′i≤N ′max < Ni)u0 + P(N ′max − 1Im′i≤N ′max ≥ Ni)

(
θi + λi

E(N ′max)− 1

n− 1

))
+qU1,

where it understood that the term E(N ′max) is conditional on P(N ′max−1Im′i≤N ′max ≥ Ni), and

where U1 is the expected payoff obtained by consumer i if the seller observes these messages

which include m′i. Taking the difference between the two payoffs and using the fact that

E(Nmax) > E(N ′max), the deviation is not profitable if:

∆P
(
θi + λi

E(N ′max)− 1

n− 1
− u0

)
>

q

1− q
(U1 − U0),

where ∆P ≡ P(Nmax − 1Imi≤Nmax ≥ Ni) − P(N ′max − 1Im′i≤N ′max ≥ Ni) > 0. This inequality

holds for sufficiently small q, thus underreporting willingness to pay is not profitable.

Now suppose Nk < Ni, with Ni ≥ 1, so consumer i overstates his willingness to pay.

Again consider the case where the seller does not observe messages, so consumers face price

p∗. Then
∑j

l=0X
′
l =

∑j
l=0Xl for all j ≥ Ni. Hence, N ′max ≥ Nmax holds, but N ′max > Nmax

can only hold if N ′max < Ni. The condition N ′max > Nmax is necessary for the deviation

to increase consumer i’s payoff, since the number of consumers other than i who buy must

increase. But N ′max < Ni implies that consumer i will not buy himself following the deviation,

so the deviation will not increase his payoff.

Continue to suppose Nk < Ni but consider the case where the seller does observe

messages. Then N ′max ≥ Nmax implies that the deviation leads to a weakly higher price:

p(M ′) ≥ p(M), where M denotes the equilibrium messages, and M ′ denotes messages given

the deviation. From (2), consumer best-response functions when simultaneously making pur-

chase decisions are upward-sloping (strategic complements), where a price increase reduces

the net payoff from buying. Thus, p(M ′) ≥ p(M) implies E(xj|M ′) ≤ E(xj|M) for each

consumer j (see Vives (1990)), so the deviation will not increase consumer i’s payoff. Hence,

overreporting willingness to pay is not profitable.
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Finally, note that as q approaches zero, the probability that the seller charges p∗ ap-

proaches 1, which together with informative communication guarantees that consumers al-

most surely make the same purchase decisions as if they observed each others’ types.

Proposition 5. Suppose the seller can commit to a dynamic pricing schedule, with price

p(Kt) for cohort t conditional on previous sales Kt. Then fully sequential sales (a single

consumer per cohort), delivers higher expected profits than fully simultaneous sales (all con-

sumers in a single cohort).

Proof. First consider a fully simultaneous scheme, with all consumers in a single cohort:

I = {I1}, with n1 = n. Then dynamic pricing is equivalent to static pricing; both simply

specify a single value of p. Let π(p∗|I) denote expected profits given the optimal static price

p∗ under this partition.

Now consider a fully sequential scheme, with a single consumer per cohort: I’ = {I ′1, . . . , I ′n},

with nt = 1 for all t = 1, . . . , n. For each t, the seller’s strategy specifies a price p(Kt), for

every possible value of previous sales Kt = 0, . . . , t − 1. With slight abuse of notation, let

π(p(Kt)|I’) denote expected profits given this pricing schedule under this partition.

Suppose that for each t = 1, . . . , n, the seller sets p(Kt) = p∗ for all Kt = 0, . . . , t − 1.

Expected profits are then π(p∗|I’). Let π(p(Kt)
∗|I’) denote expected profits given the optimal

dynamic pricing schedule p(Kt)
∗. Then optimality implies π(p(Kt)

∗|I’) ≥ π(p∗|I’). Corollary

1 shows that π(p∗|I’) > π(p∗|I), which in turn implies π(p(Kt)
∗|I’) > π(p∗|I).
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