• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Книга
Integral Robot Technologies and Speech Behavior

Kharlamov A. A., Pantiukhin D., Borisov V. et al.

Newcastle upon Tyne: Cambridge Scholars Publishing, 2024.

Статья
On Trees with a Given Diameter and the Extremal Number of Distance-k Independent Sets

D. S. Taletskii.

Journal of Applied and Industrial Mathematics. 2023. Vol. 17. No. 3. P. 664-677.

Глава в книге
Uncertainty of Graph Clustering in Correlation Block Model

Artem Aroslankin, Valeriy Kalyagin.

In bk.: Mathematical Optimization Theory and Operations Research: Recent Trends. 22nd International Conference, MOTOR 2023, Ekaterinburg, Russia, July 2–8, 2023, Revised Selected Papers, vol 1881. Springer, 2023. P. 353-356.

Препринт
Independent sets versus 4-dominating sets in outerplanar graphs

Taletskii D.

math. arXiv. Cornell University, 2023

Applied Data Science with Python

2019/2020
Учебный год
ENG
Обучение ведется на английском языке
3
Кредиты

Преподаватель

Course Syllabus

Abstract

The study of this discipline is based on the following courses: • Block of mathematical disciplines; • Block of programming discipline. To master the discipline, students must possess the following knowledge and competencies: • Programming skills; • Calculus, Linear algebra, Probability and Statistics. The main provisions of the discipline can be used in their professional activities. As a result of mastering the discipline the student will be able to (results): - use Python for data forecasting with different regression models; - use Python for classification and clustering with different algorithms; - use Python for recommendation systems algorithms. https://www.coursera.org/learn/competitive-data-science
Learning Objectives

Learning Objectives

  • The purpose of the discipline is to get acquainted with programming tool Python for modern methods of data analysis and machine learning
Expected Learning Outcomes

Expected Learning Outcomes

  • Be able to choose the method of data processing and perform the data processing by the selected method
  • Be able to solve the problems of data analysis competitions
  • Be able to use Python for recommendation systems algorithms
Course Contents

Course Contents

  • Module 1 - Introduction to Machine Learning. Regression
    Applications of Machine Learning. Supervised vs Unsupervised Learning. Python libraries suitable for Machine Learning. Linear Regression. Non-linear Regression. Model evaluation methods.
  • Module 2 - Classification and clustering
    K-Nearest Neighbour. Decision Trees. Logistic Regression. Support Vector Machines. Model Evaluation. K-Means Clustering. Hierarchical Clustering. Density-Based Clustering.
  • Module 3 - Recommender Systems
    Content-based recommender systems. Collaborative Filtering
Assessment Elements

Assessment Elements

  • non-blocking On-line test
  • non-blocking Examen
    Экзамен проводится на платформах Zoom (https://zoom.us), MS Teams (https://teams.microsoft.com). Ссылка будет отправлена студентам за три дня до экзамена. Компьютер студента должен удовлетворять требованиям: наличие рабочей камеры и микрофона, поддержка Zoom и MS Teams. Для участия в экзамене студент обязан: поставить на аватар свою фотографию, явиться на экзамен согласно точному расписанию. Во время экзамена студентам запрещено: выключать камеру, пользоваться конспектами и подсказками. Кратковременным нарушением связи во время экзамена считается нарушение связи менее 5 минут. Долговременным нарушением связи во время экзамена считается нарушение 5 минут и более. При долговременном нарушении связи студент не может продолжить участие в экзамене. Процедура пересдачи аналогична процедуре сдачи.
Interim Assessment

Interim Assessment

  • Interim assessment (4 module)
    0.3 * Examen + 0.7 * On-line test
Bibliography

Bibliography

Recommended Core Bibliography

  • Muller, A. C., & Guido, S. (2017). Introduction to machine learning with Python: a guide for data scientists. O’Reilly Media. (HSE access: http://ebookcentral.proquest.com/lib/hselibrary-ebooks/detail.action?docID=4698164)

Recommended Additional Bibliography

  • Sarkar, D., Bali, R., & Sharma, T. (2018). Practical Machine Learning with Python : A Problem-Solver’s Guide to Building Real-World Intelligent Systems. [United States]: Apress. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=1667293