• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Книга
Integral Robot Technologies and Speech Behavior

Kharlamov A. A., Pantiukhin D., Borisov V. et al.

Newcastle upon Tyne: Cambridge Scholars Publishing, 2024.

Статья
Clique detection with a given reliability

Semenov D., Koldanov A. P., Koldanov P. et al.

Annals of Mathematics and Artificial Intelligence. 2024.

Глава в книге
Neural Networks for Speech Synthesis of Voice Assistants and Singing Machines

Pantiukhin D.

In bk.: Integral Robot Technologies and Speech Behavior. Newcastle upon Tyne: Cambridge Scholars Publishing, 2024. Ch. 9. P. 281-296.

Препринт
DAREL: Data Reduction with Losses for Training Acceleration of Real and Hypercomplex Neural Networks

Demidovskij A., Трутнев А. И., Тугарев А. М. et al.

NeurIPS 2023 Workshop. ZmuLcqwzkl. OpenReview, 2023

Методы анализа сетевых структур

2022/2023
Учебный год
RUS
Обучение ведется на русском языке
6
Кредиты

Преподаватель

Программа дисциплины

Аннотация

Как отличить сеть развившуюся естественным образом от сети построенную искусственно; определить критические и наиболее важные элементы в сети; выделить сообщества в сетях; предсказать появления ребра; предсказать как сеть будет развиваться с течением времени – всё это вы узнаете в рамках данного курса.
Цель освоения дисциплины

Цель освоения дисциплины

  • Владеть методами кластеризации
  • Значить основные модели случайных графов
  • Владеть методами поиска наиболее важных элементов в сети
Планируемые результаты обучения

Планируемые результаты обучения

  • Знаем модели графов со свойствами "тесного мира". Может запрограммировать.
  • Знает концепцию DHT и принцип работы Chord протокола.
  • Знает основные характеристики графов
  • Понимает Page Rank алгоритм. Понимает модель случайного блуждателя
  • Понимает метод вложения графов в векторное пространство graph2vec
  • Понимает метод спектральной кластеризации. Может запрограммировать.
  • Понимает модель Клайнберга.
  • Понимает модель. Умеет вычислять вероятность возникновения фиксированной структуры,.
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Основные характеристики графов
  • Google’s PageRank, HITS
  • Случайные графы.
  • Модели графов со свойствами "тесного мира"
  • Алгоритмы кластеризации в сетях
  • Модели навигационных тесных миров
  • Методы вложения графов в векторные пространства.
Элементы контроля

Элементы контроля

  • неблокирующий Лабораторная работа-1
    Учащиеся пишут программный код задач. Решение отправляется онлайн в систему тестирования. Задача засчитывается после того, как программа успешно проходит все тесты.
  • неблокирующий Лабораторная работа-2
  • неблокирующий Лабораторная работа-3
  • неблокирующий Лабораторная работа-4
Промежуточная аттестация

Промежуточная аттестация

  • 2022/2023 учебный год 1 модуль
    0.25 * Лабораторная работа-3 + 0.25 * Лабораторная работа-2 + 0.25 * Лабораторная работа-4 + 0.25 * Лабораторная работа-1
Список литературы

Список литературы

Рекомендуемая основная литература

  • Ming-Yang Kao. Encyclopedia of Algorithms. Springer, New York, NY, 2016

Рекомендуемая дополнительная литература

  • Panos M. Pardalos, Ding-Zhu Du, Ronald L. Graham. Handbook of Combinatorial Optimization. Springer Science+Business Media, New York, 2013.
  • Комбинаторика и теория вероятностей, учебное пособие, 99 с., Райгородский, А. М., 2013