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Introduction

I This presentation is about two types of frequently used
methods for Combinatorial Optimization Problems, namely
Lagrangian relaxation and Branch and Bound (BnB).

I In addition, we discuss the computation and use of tolerances.

I The example problems are the Asymmetric Traveling
Salesman Problem (ATSP) for BnB and the
Degree-Constrained Minimum Spanning Tree Problem
(DCMSTP) for Lagrangian relaxation.

I Based on the papers [14], [8] and a paper in progress.



The graph-theoretical notation

In order to formally define tolerances, the ATSP and AP are
considered within the framework of the following combinatorial
minimization problem; see [10]. (E ,C ,D, fC ) is the problem of
finding

S∗ ∈ arg min{fC (S) | S ∈ D},

where C : E → < is the given instance of the problem with a
ground set E satisfying |E| = m (m ≥ 1), D ⊆ 2E is the set of
feasible solutions, and fC : 2E → < is the objective function of
the problem. By D∗ = arg min{fC (S) | S ∈ D} the set of optimal
solutions is denoted.



The Asymmetric Traveling Salesman Problem

For the ATSP, we use the undirected graph G = (V ,A,C ) with set
of vertices V , set of arcs A and cost matrix C .
The Asymmetric Traveling Salesman Problem (ATSP) is the
problem of constructing a tour through n locations such that every
location is visited exactly once.
It is asymmetric in the sense that the distance from i to j may not
be equal to the distance from j to i .



The Assignment Problem relaxation

The Assignment Problem (AP) is also defined on the graph
G = (V ,A,C ).
The AP is the problem of assigning each job j to worker i such
that each worker performs one job.
A feasible solution is a set of subcycles in G .
The AP can be solved in O(n3) time with the Hungarian algorithm.



The Degree-Constrained Minimum Spanning Tree

Given a directed graph G = (V ,E ,C ).
The Degree-Constrained Minimum Spanning Tree Problem
(DCMSTP) is the problem of connecting a set of n nodes or
vertices in a network with edges in E and edge weights given in C .
The number of edges adjacent to some or all vertices, the vertex
degrees, are limited.
Relaxation: the Minimum Spanning Tree Problem (MSTP).



The Degree-Constrained Minimum Spanning Tree

Given a directed graph G = (V ,E ,C ).
The Minimum Spanning Tree Problem (MSTP) is the problem of
connecting a set of n nodes or vertices in a network with edges in
E and edge weights given in C .
The MSTP can be solved in O(n2) time with Prim’s algorithm.



Tolerances

I The tolerances with respect to an optimal solution are,
roughly spoken, the change in solution value if an element is
included or excluded from a solution.

I Tolerances are used in sensitivity analysis to obtain the
sensitivity of the optimal solution at hand to changes in
parameter values.

I For now, we consider minimization problems.

I An upper tolerance value is the increase in an element’s cost
value before the optimal solution changes.

I Likewise, a lower tolerance value is the largest decrease in an
element’s cost value before the optimal solution changes.



Definition of tolerances (MSTP)

The following formal definition of upper tolerances is taken from
[9] and adapted to the MSTP. For any graph G = (V ,E ,C ), we
define T ∗ as the set of MSTs on the graph G .

Definition
Let Cε be the cost matrix of the MSTP such that cε(e) = c(e) for
e ∈ E \ {e} and cε(e) = c(e) + ε. Then the upper tolerance value
of e with respect to any T ∗ ∈ T ∗ is defined by and denoted as
uT∗(e) = sup{ε ∈ < : T ∗ is an optimal solution of the MSTP on
(V ,E ,Cε)}.



Computing upper and lower tolerances

Define T ∗−(e) as the set of optimal solutions to the MSTP on the
graph G = (V ,E \ {e},C ).
Computation of the upper tolerances: the upper tolerance value
uT∗(e) of any edge e ∈ T ∗ equals uT∗(e) = fC [T ∗−(e)]− fC [T ∗]
for each T ∗−(e) ∈ T ∗−(e).
A lower tolerance value is computed with the solution with the
edge e.
The same holds for the AP.



Computing upper and lower tolerances (2)

I For the MSTP, an upper tolerance value of an edge e in T ∗

can be computed by removing the edge from the tree and
finding and adding the minimum cost edge between the two
components.

I A lower tolerance value of an edge e outside T ∗ can be
computed by adding the edge and finding and removing the
maximum weight edge in the resulting cycle (minus e).

I For the AP, an upper and lower tolerance value can be
computed with an additional step of the Hungarian algorithm.

I There are results for both the AP [16] and the MSTP [5] that
show that multiple tolerance values can be computed fast.



Solving the ATSP

Effective methods for solving the ATSP are:

I The Concorde Solver for the STSP.

I The Branch and Bound algorithm by [3].

I Tolerance-based BnB algorithms.

Branch and Bound methods have been effective for the ATSP, but
also for many other COPs.



Branch and Bound

I Branch and Bound is a methodology for (generally) NP-hard
Combinatorial Optimization Problems.

I A BnB algorithm solves an easily solvable version of the
problem, a relaxation, first.

I If the relaxation solution is infeasible for the original problem,
divide the problem up into new subproblems.

I Continue solving all subproblems until there are no more left.



Ingredients of Branch and Bound

For a minimization problem, the elements of BnB are:

I A lower bound to all solutions of a subproblems;

I An upper bound, usually the best solution found so far;

I The search strategy: the order in which the open subproblems
are searched through;

I The branching rule, specifying how the current subproblem
should be divided into new subproblems.



Upper bounds

An upper bound is usually the value of the best solution found so
far.
Such a value is e.g. the solution value of a solved subproblem, or it
can be determined with a heuristic.



Lower bounds

A lower bound indicates what the minimum value of any solution
of a (sub-)problem is.
If the lower bound value is higher than or equal to the upper
bound value, we can fathom the (sub-)problem.



The branching rule

If a subproblem is not solved or fathomed, it is divided into
mutually disjoint subproblems.
These subproblems are added to the list of open subproblems.
For the AP, one often takes the shortest cycle in the AP solution
and remove each of the arcs in the solution.
First, select an arc e1 from the cycle and remove it, then remove
arc e2 and include e1, etc.
This is the branching rule from [4].



The search strategy

The search strategy determines the order in which the open
subproblems are solved.
The best first search (BFS) strategy solves the most promising
open subproblem first, i.e., the subproblem with the largest lower
bound value.
The depth first strategy (DFS) solves the most recently generated
subproblem first.
Then the question is: how to order the new subproblems generated
in a branching step?



The role of upper tolerances in BnB

Upper tolerances can both be used in a branching rule and in a
lower bound.
In DFS algorithms, it is important to decide on which arcs to
branch on correctly.
Most BnB strategies select the arc with the highest cost first for
exclusion.
We suggest to select the lowest upper tolerance value for exclusion.
Claim: the upper tolerance value is a more likely indicator of
whether an arc belongs to an optimal ATSP solution than its cost.



A lower bound for the ATSP

Christofides lower bound: use reduced costs and shrink the cycles
into vertices, determine the costs of connecting the cycles. ([6])

1

3

2

5

6

4

1

1

4
1

1

0

0
1

0

1

0

2

00

Figure: AP solution (light color)



Bottleneck upper tolerances

In the picture, at least one arc must be removed from each cycle.
Check that the upper tolerance in the left hand cycle (3,2,1) is 3
for each arc.
Then breaking the cycle costs at least 3.
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The role of upper tolerances: Lower Bound

The upper tolerance value of each arc in the AP solution is 3.
The current AP solution has value 0.
At least one arc needs to be removed from the cycle, which makes
the AP solution 3 units more expensive.
Claim: the lower bound to a solution, based on upper tolerances, is
3.



Lower tolerances

In the picture, cycles can be reversed or connected.
Check that the lower tolerances of arcs reversing the orientation of
the cycles is 3.
Check that the lower tolerance values of both arcs between the
cycles are 10.
Claim: connecting the cycles costs at least 10.
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The use of upper and lower tolerances

The use of upper tolerances only [14], both for lower bounds and
branching rules.
The use of lower tolerances in addition [8], only for lower bounds.
We find that it leads to improvements in DFS BnB methods.
There are similar uses in Linear Programming (strong branching)
and in heuristics (e.g. the modified Lin-Kernighan heuristic).



Lagrangian relaxation

I Lagrangian relaxation is a solution method that is often used
for determining lower bounds.

I Some constraints are penalized in the objective function and
the remaining problem is solved.

I Then update the penalty values until a sufficiently good /
optimal value is obtained.

I The application problem is the Degree Constrained Minimum
Spanning Tree Problem (DCMSTP).



Lagrangian relaxation in general

A problem:
min f (x) s.t. g(x) ≤ b

is represented as:

max
λ

min
x

f (x) + λ× (g(x)− b)

where λ is a vector of penalty parameters.
Optimality conditions are:

i g(x) ≤ b (1)

ii λi (gi (x)− bi ) = 0 ∀i (2)

(3)



Applications of Lagrangian relaxation

Lagrangian relaxation has been applied in:

I Held-Karp algorithm for the Symmetric Traveling Salesman
Problem;

I Several location problems;

I Capacitated MSTPs.



Performing Lagrangian relaxation

I The decision variables in Lagrangian Relaxation are the
Lagrangian multipliers λ.

I Try to set them in such a way that the optimality conditions
hold.

I Start at some value λ0 and adapt the multipliers in an
iterative process.

I Reference: [7].



Lagrangian relaxation for Linear Programming Problems

Take the following LP problem:

min cT x (4)

s.t. A1x ≤ b1 (5)

A2x ≤ b2 (6)

(7)

Solve it as the following Lagrangian relaxation problem:

max
λ

min
x

cT x + λ(b2 − A2x) (8)

s.t. A1x ≤ b1 (9)

(10)

One of the exercises is to show that the optimality conditions
correspond to complementary slackness.



Lagrangian relaxation: numerical example

min 10x + 10y (11)

s.t. x ≥ 10 (12)

x , y ≥ 0 (13)

Becomes:

max
λ

min
x ,y

10x + 10y + λ(10− x) (14)

x , y ≥ 0 (15)



Lagrangian relaxation: numerical example (2)

max
λ

min
x ,y

10x + 10y + λ(10− x) = (16)

max
λ

min
x ,y

(10− λ)x + 10y + 10λ (17)

Solution for: λ = 0→ (x , y) = (0, 0)
Value 0.



Lagrangian relaxation: numerical example (3)

max
λ

min
x ,y

10x + 10y + λ(10− x) = (18)

max
λ

min
x ,y

(10− λ)x + 10y + 10λ (19)

Optimal solution for: λ = 5→ (x , y) = (0, 0)
Value 50.



Lagrangian relaxation: numerical example (4)

max
λ

min
x ,y

10x + 10y + λ(10− x) = (20)

max
λ

min
x ,y

(10− λ)x + 10y + 10λ (21)

Optimal solution for: λ = 12→ (x , y) = (∞, 0)
Value −∞.



Lagrangian relaxation: numerical example (5)

max
λ

min
x ,y

10x + 10y + λ(10− x) = (22)

max
λ

min
x ,y

(10− λ)x + 10y + 10λ (23)

Optimal solution for: λ = 10→ (x , y) = (?, 0) and value 100.
Note that the optimality conditions are satisfied if (x , y) = (10, 0).



The Degree Constrained Minimum Spanning Tree Problem
(DCMSTP)

The DCMSTP is frequently ecountered in network design problems.
Solution approaches are:

I Meta-heuristics, such as VNS [12].

I Branch and Bound, Branch and Cut [2, 13].

I Lagrangian relaxation [1, 15].

Lagrangian relaxation is often used to generate lower bounds in
other algorithms.



Lagrangian relaxation and the DCMSTP

The DCMSTP is formulated as:

min
∑

e∈E cexe (24)

s.t (25)

x(E ) = |V | − 1 (26)

x(S) ≤ |S | − 1, S ⊂ V ,S 6= ∅ (27)

x(δ(i)) ≤ bi , ∀i ∈ V (28)

xe ≥ 0 (29)

Here, x(δ(i)) denotes the number of edges adjacent to vertex i in
the solution.
We bring the following constraints into the objective function:
x(δ(i)) ≤ bi , ∀i ∈ V .



The Lagrangian relaxation problem

LRP(λ) = max
λ

∑
(i ,j)∈E

(cij + λi + λj)xij −
∑
i∈V

λi × bi ; (30)

where x should correspond to an MST.
A solution is optimal if 1) the solution is an MST; 2) the
degree-constraints are non-violated; 3) the Lagrangian multiplier
value λv of a vertex v ∈ V is only positive if the degree of v is
equal to the maximum degree.
We modify the penalty values or Lagrangian multipliers λv in order
to achieve or approach optimality.



Updating of Lagrangian multiplier values

I The Lagrangian multipliers are updated in an iterative
process, so we have λ1

v , λ
2
v , . . . for each v ∈ V .

I In existing approaches (e.g. subgradient method by [11]),
penalty values are found by a converging series of steps.

I For the DCMSTP, the penalty value depends on a quantity tk

in step k of the process, converging to 0 according to the
relation tk+1 − 2tk + tk−1 = 0.

I Part of the step size depends on the amount of degree
violation in step k .



Lagrangian multipliers and tolerances

By how much can we increase each λv , while guaranteeing at least
bv adjacent edges in the resulting tree?
Upper tolerance values can be used to estimate Lagrangian
multiplier values with the following theorem.

Theorem
For a given MST T ∗ on the graph G = (V ,E ,C ), we set λv ≥ 0
for each v ∈ V and create the cost matrix C ′ with
c ′(v ,w) = c(v ,w) + λv + λw .
For each (v ,w) ∈ E with uT∗(v ,w) > λv + λw , it holds that
(v ,w) ∈ T ′λ, where T ′λ is an MST for the cost matrix C ′.



Possible increase of λ

The example shows an MST with upper tolerance values on the
edges.
We assume that bv = 2 for each vertex v . Take a single ’isolated’
violating vertex, e.g. vertex 2, and note that the values of λw of all
its neighboring vertices in the tree remain 0.
An exercise in the seminar is to set λ2.



Possible increase of λ (2)



Results of upper tolerance-based multiplier setting

We find that the use of upper tolerances for setting initial
Lagrangian multiplier values lead to much tighter lower bounds, in
particular after a small number of iterations in the subsequent
Lagrangian relaxation approach.



Conclusions

I We have discussed the example problems were the ATSP and
the DCMSTP.

I We have discussed upper and lower tolerance computations.

I We have discussed Branch and Bound and Lagrangian
relaxation and applied them to the example problems.

I We have explained how upper tolerances can play a role
within the methods.

I The seminar will contain exercises on these topics.
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