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What is optimization

Mathematical optimization studies the problem of selecting a
best element from a set X of available / feasible alternatives with
regard to a criterion/ cost/ objective function f which is written as

maximize f (x)

subject to x ∈ X
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Three examples

Queen Dido’s problem.

Carthage City
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Three examples

Queen Dido’s problem.
Find a territory bounded by a line which has the maximum area for
a given perimeter.

⇒ the solution is the circle.
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Three examples

Queen Dido’s problem.
Find a territory bounded by a line which has the maximum area for
a given perimeter.

⇒ the solution is the circle.
However, as it is inconceivable of a city touching the sea without
seashore, the queen Dido set another objective for her territory to
have a maximum seashore.

⇒ a half-circle ”partially” meets her two objectives.
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Three examples

House purchase problem.
Three houses A, B and C ( of the same price that fits our budget).
Three criteria to evaluate: appearance, comfort and environment.
Here is the table of our evaluation (score from 0 to 5):

A B C
Appearance 3 3 5
Comfort 4 4 4
Environment 5 4 3

The offer B is elliminated

A and C are not comparable.
At this stage, it is impossible to say which one is the best with
regard to the three criteria.
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Three examples

Power economic dispatch problem.
This problem involves allocation of generations to different thermal
units to
- minimize the cost of generation

f1 =
k∑

i=1

(aiP
2
i + biPi + ci )

Pi is the generation of the ith generator

ai , bi , ci are coefficients of the cost curve of the ith generator

k is the number of the generators.
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Three examples

- minimize the emission of gazes (sulfur dioxide and nitrogen
oxides) causing atmospheric hazards

f2 =
k∑

i=1

[10−2(αiP
2
i + βiPi + γi ) + ξiexp(ζiPi )]

where αi , βi , γi , ξi , ζi are coefficients emission characteristics.
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Three examples

- minimize the emission of gazes (sulfur dioxide and nitrogen
oxides) causing atmospheric hazards

f2 =
k∑

i=1

[10−2(αiP
2
i + βiPi + γi ) + ξiexp(ζiPi )]

where αi , βi , γi , ξi , ζi are coefficients emission characteristics.
- under constraints∑k

i=1 Pi = PD + Ploss

( PD - the total demand, Ploss - the real power loss in the
transmission lines).

Pmin
i ≤ Pi ≤ Pmax

i (the limits on the loading of the ith
generator).
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How to make a choice

F.Y. Edgeworth (1845-1926), Irish economist
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How to make a choice

F.Y. Edgeworth (1845-1926), Irish economist

Optimum for the multiutility problem within the context of two
consumers, A and B:
”Find a point (x , y) such that in whatever direction we take an
infinitely small step, A and B do not increase together but that,
while one increases, the other decreases.”
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How to make a choice

V. Pareto (1848 - 1923), Italian economist
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How to make a choice

V. Pareto (1848 - 1923), Italian economist

Pareto optimum: ”The optimum allocation of the resources of a
society is not attained so long as it is possible to make at least one
individual better off in his own estimation while keeping others as
well off as before in their own estimation.”
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Partial order

Definition
Let R be a binary relation on E , that is R is a subset of E × E . It
is said to be a partial order on E if it is

reflexive: (x , x) ∈ R ∀ x ∈ E ;

transitive: (x , y), (y , z) ∈ R ⇒ (x , z) ∈ R.

antisymmetric: (x , y), (y , x) ∈ R ⇒ x = y .
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Partial order

Definition
Let R be a binary relation on E , that is R is a subset of E × E . It
is said to be a partial order on E if it is

reflexive: (x , x) ∈ R ∀ x ∈ E ;

transitive: (x , y), (y , z) ∈ R ⇒ (x , z) ∈ R.

antisymmetric: (x , y), (y , x) ∈ R ⇒ x = y .

If E is a vector space, a partial order R is said to be compatible
with the linear structure of the space if
(x , y) ∈ R ⇒ (x + z , y + z), (tx , ty) ∈ R ∀ z ∈ E , t > 0.
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Partial order

Cone representation of partial orders:

Theorem

If a partial order R ⊆ E × E is compatible with the linear
structure, then the set

C := {x ∈ E : (x , 0) ∈ R}
is a pointed convex cone in E .
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Partial order

Cone representation of partial orders:

Theorem

If a partial order R ⊆ E × E is compatible with the linear
structure, then the set

C := {x ∈ E : (x , 0) ∈ R}
is a pointed convex cone in E .
Conversely, if C is a pointed convex cone in E , then the relation R
defined by

(x , y) ∈ R[x ≥C y ]⇔ x − y ∈ C
is a partial order compatible with the linear structure in E .
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Partial orders: examples

The Pareto cone Rk
+ ( the positive octant of Rk).

This cone is convex, closed and pointed.

The Pareto order: x ≥Rk
+
y ⇐⇒ xi ≥ yi , i = 1, · · · , k .
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Partial orders:examples

The ε-extended Pareto cone.

Rk
+ε = {x ∈ Rk : (εe + e i )xT ≥ 0, i = 1, ..., k}

where e = (1, ..., 1) and e i is the ith unit vector.

The corresponding order: x ≥Rk
+ε

y ⇔
min{xi − yi : i = 1, ..., k}+ ε

∑k
i=1(xi − yi ) ≥ 0.
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Partial order

The lexicographic cone:

Clex = { vectors whose first nonzero component is strictly positive}.

The lexicographic order: x ≥Lex y ⇔
∃j ∈ {0, 1, ..., k} : xi = yi ∀i = 1, ..., j and xj+1 > yj+1.
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Partial order

The ubiquitous cone:

Ub = { vectors whose last nonzero component is strictly positive}.

The ubiquitous order: x ≥Ub y ⇔
∃ j ∈ {0, 1, ..., k} such that xj > yj and xi = yi for i = j + 1, ..., k .
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Partial order

Conic extended cone. The ε-conic neighborhood of a cone C :

Cε = {x ∈ Rk : d(x ,C ) ≤ ε‖x‖},

where d(x ,C ) is the distance from x to C .
The order generated by Cε is called the ε-conic extended order of
the order ” ≥C ”.
In R2, the δ-conic extended order of the Pareto cone R2

+ coincides

with the ε-extended Pareto order, where δ = ε/
√
ε2 + (1 + ε)2).
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Partial order

Correct cones: We say that a cone C in Rk is correct if
clC + C \ `(C ) ⊆ C or equivalently clC + C \ `(C ) ⊆ C \ `(C ).
Here `(C ) = C ∩ (−C ).

Every closed and convex cone is correct;

If C \ `(C ) is open, then C is correct;

If C consists of the origin and an intersection of half-spaces
that are either open or closed, then C is correct.

Dinh The Luc Vector Optimization: basic concepts and numerical methods
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Partial order

The Positive polar cone:

C ′ = {ξ ∈ E ′ : 〈ξ, x〉 ≥ 0∀x ∈ C}

The strictly positive polar cone:

C+ = {ξ ∈ E ′ : 〈ξ, x〉 > 0∀x ∈ C , x 6= 0}
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Increasing sequence

Definition. A sequence {x i}i≥1 of elements in Rk is said to be
increasing if x i+1 ≥C x i for every i = 1, 2, ... and it is strictly
increasing if the above inequality is strict.
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Increasing sequence

Definition. A sequence {x i}i≥1 of elements in Rk is said to be
increasing if x i+1 ≥C x i for every i = 1, 2, ... and it is strictly
increasing if the above inequality is strict.

Theorem

Assume that the order ” ≥C ” is correct. Then the limit of a
convergent strictly increasing sequence strictly dominates the
terms of the sequence.
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Monotone functions

Definition. g : Rk → R is increasing w.r. to ”≥C” if

a >C b ⇒ g(a) > g(b).

g is weakly increasing if it is increasing w.r. to ”≥C 0”, where
C 0 = {0} ∪ int(C ).
Linear functions: g is linear increasing / weakly increasing
⇔ g(x) = 〈ξ, .〉 for some ξ ∈ C+ / ξ ∈ C ′ \ {0}.
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Monotone functions

Definition. g : Rk → R is increasing w.r. to ”≥C” if

a >C b ⇒ g(a) > g(b).

g is weakly increasing if it is increasing w.r. to ”≥C 0”, where
C 0 = {0} ∪ int(C ).
Biggest weakly increasing functions: for a ∈ Rk , v ∈ int (C ),

ha,v (x) = sup{t ∈ R : x ∈ a + tv + C}

is weakly increasing, and for every weakly increasing function g with
g(a) = 0, we have inclusion of lower level sets

levg (a) ⊆ levha,v (a)

where levg (a) := {x ∈ Rk : g(x) ≤ g(a)}.
Dinh The Luc Vector Optimization: basic concepts and numerical methods
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Pareto maximality

Definition

Let A ⊆ Rk be a nonempty set.

a ∈ A is an ideal/utopia maximal point of A if

a ≥C x ∀x ∈ A.

a ∈ A is a maximal (or Pareto maximal/ efficient/
nondominated) point of A if

x ∈ A, x ≥C a⇒ a ≥C x .

Dinh The Luc Vector Optimization: basic concepts and numerical methods
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Pareto maximality

Definition

Let A ⊆ Rk be a nonempty set.

a ∈ A is an ideal/utopia maximal point of A if

a ≥C x ∀x ∈ A.
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Pareto maximality

Definition

Let A ⊆ Rk be a nonempty set.

a ∈ A is an ideal/utopia maximal point of A if

a ≥C x ∀x ∈ A.

a ∈ A is a maximal (or Pareto maximal/ efficient/
nondominated) point of A if

x ∈ A, x ≥C a⇒ a ≥C x .

Notations: IMax(A) or IMax(A|C ); Max(A) or Max(A|C )
Dinh The Luc Vector Optimization: basic concepts and numerical methods
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Pareto maximality

The sets IMin(A) and Min(A) are defined similarly.

IMin(A|C ) = IMax(A| − C )

Min(A|C ) = Max(A| − C ).

Dinh The Luc Vector Optimization: basic concepts and numerical methods
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Pareto maximality

Example

Consider the set A (the lower half-disc)

Then IMax(A|R2
+) = Max(A|R2

+) 6= ∅.
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Pareto maximality

Example

With this new ordering cone

IMax(A|C ) = ∅
Max(A|C ) = {(x , y) ∈ R2 : (x − 1)2 + (y − 1)2 = 1, 1.5 ≤ x ≤ 2}.
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Pareto maximality

Equivalent definition of Pareto maximality:
Let A be a nonempty set in Rk . Then

a ∈ IMax(A)⇔ a ∈ A and A ⊆ a− C ;

a ∈ Max(A)⇔ a ∈ A and A ∩ (a + C \ {0}) = ∅.
If IMax(A|C ) is nonempty, then it is a singleton and
IMax(A|C ) = Max(A|C ).
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Maximality with respect to extended orders

Extended order: ” ≥
C̃

” (where C̃ is a pointed convex cone) is an
extended order of the order ” ≥C” if

x ≥C y ⇒ x ≥
C̃
y

(equivalently C ⊆ C̃ .)
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Maximality with respect to extended orders

Extended order: ” ≥
C̃

” (where C̃ is a pointed convex cone) is an
extended order of the order ” ≥C” if

x ≥C y ⇒ x ≥
C̃
y

(equivalently C ⊆ C̃ .)

Theorem

Let A be a nonempty set and C̃ a pointed and convex cone
containing C . The following assertions hold

IMax(A|C ) = IMax(A|C̃ ) if IMax(A|C ) is nonempty.

Max(A|C ) ⊇ Max(A|C̃ )
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Maximality of sections

Section: A section of A at x : Ax := A ∩ (x + C ).
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Maximality of sections

Section: A section of A at x : Ax := A ∩ (x + C ).

Theorem

For every x ∈ Rk we have

Max(Ax) ⊆ Max(A) =
⋃
y∈A

Max(Ay ).
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Proper maximality and weak maximality

Definition

Let A be a nonempty set.

a ∈WMax(A|C ) if a ∈ Max(A|C 0) where C 0 := {0} ∪ int(C )

a ∈ PrMax(A|C ) if a ∈ Max(A|C̃ ) for some pointed and
convex cone C̃ , such that cl(C )\{0} ⊆ int(C̃ ).
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Proper maximal points

Example

Consider the set A
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Proper maximal points

Example

Consider the set A

WMax(A) = [P,Q]∪
_
QR .
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Proper maximal points

Example

Consider the set A

WMax(A) = [P,Q]∪
_
QR .

Max(A) =
_
QR .
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Proper maximal points

Example

Consider the set A

WMax(A) = [P,Q]∪
_
QR .

Max(A) =
_
QR .

PrMax(A) = Max(A) \ {Q,R}.

Dinh The Luc Vector Optimization: basic concepts and numerical methods
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Maximality

Relationship between proper maximality, maximality and weak
maximality.

Theorem

For a nonempty set A in Rk one has the inclusions

PrMax(A) ⊆ Max(A) ⊆WMax(A).

Dinh The Luc Vector Optimization: basic concepts and numerical methods
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Proper maximal point and weak maximal point

Example

A is the convex hull of the quarter disc
D := {(x , 0, z) ∈ R3

+ : x2 + z2 ≤ 1} and the point (0, 2, 1).

Dinh The Luc Vector Optimization: basic concepts and numerical methods
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Proper maximal point and weak maximal point

Example

A is the convex hull of the quarter disc
D := {(x , 0, z) ∈ R3

+ : x2 + z2 ≤ 1} and the point (0, 2, 1).

[(0, 0, 1); (0, 2, 1)) is weak maximal, but not maximal
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Proper maximal point and weak maximal point

Example

A is the convex hull of the quarter disc
D := {(x , 0, z) ∈ R3

+ : x2 + z2 ≤ 1} and the point (0, 2, 1).

[(0, 0, 1); (0, 2, 1)) is weak maximal, but not maximal
Max(A) is not closed
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Proper maximal point and weak maximal point

Example

A is the convex hull of the quarter disc
D := {(x , 0, z) ∈ R3

+ : x2 + z2 ≤ 1} and the point (0, 2, 1).

[(0, 0, 1); (0, 2, 1)) is weak maximal, but not maximal
Max(A) is not closed
The point (1, 0, 0) is maximal but not proper maximal
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A set without proper maximal points

Example

Consider the set A in R2:
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A set without proper maximal points

Example

Consider the set A in R2:

Max(A) is the graph of the function 1
x , x > 0.
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A set without proper maximal points

Example

Consider the set A in R2:

Max(A) is the graph of the function 1
x , x > 0.

PrMax(A) = ∅
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Maximal points of free disposal hulls

Free disposal set. A ⊆ Rk is free disposal if A = A− C .
A− C is called the free disposal hull of A. It is the smallest free
disposal set that contains A.
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Maximal points of free disposal hulls

Free disposal set. A ⊆ Rk is free disposal if A = A− C .
A− C is called the free disposal hull of A. It is the smallest free
disposal set that contains A.

Theorem

Let A be a nonempty set. The following assertions hold:

IMax(A) = IMax(A− C ),

Max(A) = Max(A− C ),

PrMax(A) = PrMax(A− C ),

WMax(A) = A ∩WMax(A− C ).
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The main theorems

Existence conditions by coverings.

Theorem

Assume that C is closed. The following assertions are equivalent

A point a ∈ A is maximal;

The set A \ {a} is covered by the family {(xν + C )c : ν ∈ N}
for every increasing sequence {xν}ν∈N in A converging to a;

The set A \ {a} is covered by the family {(xν + C )c : ν ∈ N}
for some increasing sequence {xν}ν∈N in A converging to a.
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The main theorems
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Generalization to order-complete sets

Order complete set. A set A ⊆ Rk is said to be C−complete (resp.
strongly C−complete) if it has no covering of the form

{(xν + cl C )c : ν ∈ N}
(
resp. {(xν + C )c : ν ∈ N}

)
where {xν}ν∈N is a strictly increasing sequence in A.
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Generalization to order-complete sets

Order complete set. A set A ⊆ Rk is said to be C−complete (resp.
strongly C−complete) if it has no covering of the form

{(xν + cl C )c : ν ∈ N}
(
resp. {(xν + C )c : ν ∈ N}

)
where {xν}ν∈N is a strictly increasing sequence in A.

REMARK:
every strongly C−complete set is C−complete. The converse is
not always true. When C is a closed cone these two concepts
coincide.
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Existence

Example

Consider the set

A = {(ν, 0) ∈ R2 : ν ∈ N}

and equip R2 with the ubiquitous cone Ub.
Then A is Ub-complete, but not strongly Ub-complete.
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Existence condition for order complete sets.

Theorem

If the cone C is correct and the set A admits a nonempty
C -complete section, then the set A has maximal points.
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Existence

Existence condition for order complete sets.

Theorem

If the cone C is correct and the set A admits a nonempty
C -complete section, then the set A has maximal points.

In particular, if the cone C is correct and the set A− C has a
nonempty compact section, then A has maximal points.
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Existence

Existence condition by monotone functions.

Theorem

Assume that the strictly positive polar cone C+ of C is nonempty.
A nonempty set A has a maximal point if and only if it has a
compact section.
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Existence

Existence condition by monotone functions.

Theorem

Assume that the strictly positive polar cone C+ of C is nonempty.
A nonempty set A has a maximal point if and only if it has a
compact section.

In particular, if the closure of the cone C is pointed, then every
compact set has maximal points.
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Existence

Existence condition by monotone functions.

Theorem

Assume that the strictly positive polar cone C+ of C is nonempty.
A nonempty set A has a maximal point if and only if it has a
compact section.

In particular, if the closure of the cone C is pointed, then every
compact set has maximal points.
REMARK: a more subtle proof shows that the conclusion remains
true without any condition on the cone C . This fact is, however,
not true in infinite dimension.
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Existence

Linear case:

Theorem

If A is a polyhedral convex set and C is a polyhedral cone, then
x ∈ Max(A | C ) if and only if these is some ξ ∈ C+ such that

〈ξ, x〉 ≥
〈
ξ, x ′

〉
, for all x ′ ∈ A.

Consequently the set Max(A | C ) consists of faces of A.
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Linear functions

Theorem

Let ξ ∈ C ′\ {0} and let x ∈ A maximize the linear function 〈ξ, ·〉
on A. Then

x ∈WMax(A|C );

x ∈ Max(A|C ) if it is a unique maximum of 〈ξ, ·〉 on A;

x ∈ PrMax(A|C ) if ξ ∈ (cl(C ))+.
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Existence

Convex case:

Theorem

Assume that A− C is a convex set. The following assertions hold

x ∈WMax(A|C ) if and only if there is some ξ ∈ C ′\{0} such
that x is a maximum of 〈ξ, ·〉 on A;

x ∈ PrMax(A|C ) if and only if there is some ξ ∈ (cl(C ))+

such that x is a maximum of 〈ξ, ·〉 on A;

If x ∈ Max(A|C ), then there is some ξ ∈ C ′\{0} such that x
is a maximum of 〈ξ, ·〉 on A.
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Vector problem

Consider (MOP) (vector/ multiple objective optimization problem):

Max f (x)
subject to x ∈ X

with X ⊆ Rn and f : X → Rk .
x solves (MOP) (efficient / maximal solution)

⇔ f (x) ∈ Max(f (X )|C ).
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Vector problem

A typical condition for existence of efficient solutions:

Theorem

Assume that cl(C ) is pointed, X is a nonempty compact set and f
is a continuous function. Then the problem (MOP) has efficient
solutions.
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Scalarization

A frequently used method in the study of (MOP) is to convert it
into a scalar optimization problem of the form (P)

max g ◦ f (x)
subject to x ∈ X

where g : f (X )→ R is a scalarizing function.
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General case.

Relationship between the solution set S(P) of problem (P) and the
solution set S(MOP) of (MOP).

g is increasing / weakly increasing ⇒ S(P) ⊆ S(MOP)
/ S(P) ⊆WS(MOP)

g ∈ (clC )+ ⇒ S(P) ⊆ PrS(MOP).

If (MOP) is linear, then ∃ξi ∈ (clC )+, i = 1, ...,m such that

S(MOP) =
m⋃
i=1

S(Pξi ).

If (MOP) is concave, then

PrS(MOP) = ∪ξ∈(clC)+S(Pξ) ⊆WS(MOP) = ∪ξ∈C ′\{0}S(Pξ).

For a given v ∈ int(C ), x ∈WS(MOP)⇔ x solves (Phf (x),v ).
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Classical method

AIM OF SOLUTION METHODS:
Find Max(f (X )) or a representative part of it.
Weighting Method:
This method consists of choosing weights p1, ..., pk ≥ 0, not all
zero and solving the associated scalar problem (P) by known
techniques:

(P)
max

∑k
i=1 pi fi (x)

subject to x ∈ X
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Classical method

Theorem

For the problem (MOP) and (P) above we have

If pi > 0, i = 1, ...,m then any optimal solution of (P) is an
efficient solution of (MOP).

If pi ≥ 0, i = 1, ..., k and not all are zero, then any optimal
solution of (P) is a weakly efficient solution of (MOP). If in
addition the set f (argmin (P)) is a singleton, then it is an
efficient solution.
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Classical method

Here is the algorithm.

STEP 1. Choose ξ > 0 and m ≥ 1 such that 1
m ≤ ξ. Choose

λ = 1
m (m1, ...,mk) with mi ∈ {0, 1, ...,m} such that

m1 + ...+ mk = m.

STEP 2. Solve (Pλ). If mi > 0, i = 1, ..., k , store an optimal solution
xλ and its value f (xλ). If mi = 0 for some i , solve (P∗λ) and
store an optimal solution xλ and its value f (xλ).

STEP 3. Choose another λ in Step 1 and go to Step 2 unless no λ left.
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REMARKS:
• The method generates a set of maximal solutions and a set of
maximal values corresponding to an ε-net of weighting vectors (in
the sense that for every ξ ∈ Rk

+ with
∑k

i=1 ξi = 1, there is λ of
that family such that ‖ξ − λ‖ ≤ ε).
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REMARKS:
• The method generates a set of maximal solutions and a set of
maximal values corresponding to an ε-net of weighting vectors (in
the sense that for every ξ ∈ Rk

+ with
∑k

i=1 ξi = 1, there is λ of
that family such that ‖ξ − λ‖ ≤ ε).
• For nonconcave problems and even for linear problems, the
generated set of maximal values may be a very small part of the
maximal value set of the problem even if ε tends to zero.
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ε-constraint method. In this method one maximizes one
objective, while other objectives are considered as constraints.
Choose ` ∈ {1, ..., k}, Lj ∈ R, j = 1, ..., k , j 6= `, and solve the
scalar problem (P`):

Max f`(x)

subject to fj(x) ≥ Lj , j = 1, ..., k , j 6= `

x ∈ X .
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ε-constraint method. In this method one maximizes one
objective, while other objectives are considered as constraints.
Choose ` ∈ {1, ..., k}, Lj ∈ R, j = 1, ..., k , j 6= `, and solve the
scalar problem (P`):

Max f`(x)

subject to fj(x) ≥ Lj , j = 1, ..., k , j 6= `

x ∈ X .

Remark: If Lj are big, then (P`) may have no feasible solutions. If
Lj are too small, then an optimal solution of (P`) may be not
efficient.
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Definition. A constraint fj(x) ≥ Lj is binding if equality fj(x) = Lj
is satisfied at every optimal solution of (P`).
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Definition. A constraint fj(x) ≥ Lj is binding if equality fj(x) = Lj
is satisfied at every optimal solution of (P`).

Theorem

Let x0 ∈ X be given. The following assertions hold.

x0 ∈WS(X , f ) if it is an optimal solution of (P`);

x0 ∈ S(X , f ) if it is an optimal solution of (P`) and if either it
is a unique optimal solution, or all constraints of (P`) are
binding;

x0 ∈ S(X , f ) if and only if it is optimal for all (P`), ` = 1, ..., k
and L−` = (f1(x0), ..., f`−1(x0), f`+1(x0), ..., fk(x0)).
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Below is the algorithm to solve (MOP).

STEP 1. Solve
max fi (x)
subject to x ∈ X

for i = 1, ..., k. Let x1, ..., xk be optimal solutions.

STEP 2. Find fj(x
j), i , j ∈ {1, ..., k} and determine

Mi = max{fi (x1), ..., fi (x
k)}

mi = min{fi (x1), ..., fi (x
k)}

STEP 3. Choose r = 1, 2, ... and solve (P`) with

Lj = Mj −
t

r − 1
(Mj −mj), t = 0, ..., r − 1.
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REMARKS:

If at a solution of (P`), all the constraints are binding, then this
solution is maximal for (MOP).

If f1, ..., fs are binding, fs+1, ..., fk( 6= f`) are nonbinding, one solves
(P*)

max
∑

j=s+1,...,k,j 6=`
fj(x)

subject to x ∈ X , fi (x) = f (x∗)i , i = 1, ..., s, i 6= `,

to obtain an efficient solution.

In the last step for each t the problem (P`) (or the corresponding
(P*)) provides an efficient solution and hence a maximal value of
(MOP). With r large one may generate a good representative
subset of the maximal value set of the problem.
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New method

Free disposal outer approximation method. Assume that f (X ) is a
compact set in the interior of the Pareto cone. The Edgeworth-Pareto
hull (E-P hull for short) of f (X ):

f (X )♦ :=
(
f (X )− Rk

+

)
∩ Rk

+,

It is said to be finitely generated if there are a finite number of vectors
v1, ..., vm such that f (X )� coincides with {v1, ..., vm}�.
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compact set in the interior of the Pareto cone. The Edgeworth-Pareto
hull (E-P hull for short) of f (X ):

f (X )♦ :=
(
f (X )− Rk

+

)
∩ Rk

+,

It is said to be finitely generated if there are a finite number of vectors
v1, ..., vm such that f (X )� coincides with {v1, ..., vm}�.

Theorem

The following assertions hold

Max (f (X )) = Max
(
f (X )♦

)
WMax (f (X )) ⊆WMax

(
f (X )♦

)
f (X )♦ = [ Max (f (X ))]♦ = [ WMax (f (X ))]♦ .
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New method

Here is the algorithm.

STEP 1. For i = 1, ..., k solve

(P0) q0i = max
x∈X

fi (x).

Put ` = 1, W1 = {(q01 , ..., q0k)}, E0 = ∅, V0 = W1, E = ∅, S = ∅.
STEP 2. For q ∈W` \ E`−1. Solve

(Pq,e) tq = max hq,e(f (x)), subject to x ∈ X .

Compute

E` = E`−1 ∪ {q ∈W` \ E`−1 : tq = 0}
V` = W` \ E`.

and set

S = S ∪ {x ∈ X : f (x) = q, q ∈ E`}
E = E ∪ E`.
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STEP 3. If V` = ∅, stop. Otherwise for q ∈ V` solve

(SPq)
max

∑k
i=1 fi (x)

subject to x ∈ X , f (x) ≥ q + tqe.

Set

S = S ∪ {x ∈ X : x solves (SPq)}
E = E ∪ {f (x) : x solves (SPq)}.

STEP 4. Determine W`+1 by

W`+1 = Max(A`+1)

with A`+1 = W♦
` ∩ {y ∈ Rk

+ : hq,e(y) ≤ tq, q ∈ V`}.
Put ` = `+ 1 and return to STEP 2.
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REMARKS:
• The set W♦

1 (see Step 1) is the E-P hull of the vertex
(q01 , ..., q

0
k) ∈ Rk . It is the first finitely generated E-P hull outer

approximation of the set f (X )♦.
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New method

REMARKS:
• The set W♦

1 (see Step 1) is the E-P hull of the vertex
(q01 , ..., q

0
k) ∈ Rk . It is the first finitely generated E-P hull outer

approximation of the set f (X )♦.
• The aim of the subsequent steps is to generate decreasing (by
inclusion) sequence of finitely generated E-P approximations of
f (X )♦ meanwhile generating a set of maximal values of (MOP).
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REMARKS:
• In Step 2, one considers a vertex q of Wl . If q ∈ [f (X )]♦ which
corresponds to the case tq = 0, then it is a maximal value of

(MOP). If q is outside of [f (X )]♦, the problem (Pq) will provide a
new maximal value to add to the collection E . If all vertices of W`

belong to [f (X )]♦ , then the E-P hull W♦
` coincides with [f (X )]♦

and the algorithm stops. Otherwise one determines new vertices
for a smaller approximation of f (X )♦ in Step 4.
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REMARKS:
• In Step 2, one considers a vertex q of Wl . If q ∈ [f (X )]♦ which
corresponds to the case tq = 0, then it is a maximal value of

(MOP). If q is outside of [f (X )]♦, the problem (Pq) will provide a
new maximal value to add to the collection E . If all vertices of W`

belong to [f (X )]♦ , then the E-P hull W♦
` coincides with [f (X )]♦

and the algorithm stops. Otherwise one determines new vertices
for a smaller approximation of f (X )♦ in Step 4.
• One may prove that the sequence (W`)

♦ approaches to the set
[f (X )]♦ as l tends to ∞, and the collection E approaches the
closure of the maximal value set of (MOP).

Dinh The Luc Vector Optimization: basic concepts and numerical methods



Outline
Optimization
Partial orders

Pareto maximality
Existence

Vector optimization problems
Numerical methods

New method

Example

We wish to generate the maximal value set of A.
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Example

We wish to generate the maximal value set of A.

The first polyhedron A1 approximating A is the box
[
0aq0b

]
,

where q0 is found by solving (P0).

Dinh The Luc Vector Optimization: basic concepts and numerical methods



Outline
Optimization
Partial orders

Pareto maximality
Existence

Vector optimization problems
Numerical methods

New method

Example

We wish to generate the maximal value set of A.

At Step 2, we solve (Pq0) and obtain the nonconvex polyhedron
A2, the E-P hull of W2 =

{
q1, q2

}
.
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Example

We wish to generate the maximal value set of A.

The third nonconvex polyhedron A3 is the E-P hull of the set
W3 = {q3, q4, q5, q6}.
The collection E of maximal values contains
a1 after the first iteration, and
a1, a2 and a3 after the second iteration.
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Classical books:
V. Chankong and Y. Y. Haimes, Multiobjective Decision Making: Theory
and Methodology, North-Holland, New York, 1983.
D. T. Luc, Theory of Vector Optimization, LNEMS 319, Springer-Verlag,
Germany, 1989.
Y. Sawaragi, H. Nakayama and T. Tanino, Theory of Multiobjective
Optimization, Academic Press INC., New York, 1985.
R. E. Steuer, Multiple-Criteria Optimization: Theory, Computation, and
Application, John Wiley and Sons, New York, 1986.
P. L. Yu, Multiple-criteria Decision Making: Concepts, Techniques and
Extensions , Plenum Press, New York, 1985.
M. Zeleny, Linear Multiobjective Programming, Springer-Verlag, New
York, 1974.

Dinh The Luc Vector Optimization: basic concepts and numerical methods



Outline
Optimization
Partial orders

Pareto maximality
Existence

Vector optimization problems
Numerical methods

Reading

More recent books:
R. I. Bot, S. M. Grad and G. Wanka, Duality in Vector Optimization,
Springer-Verlag Berlin Heidelberg, 2009.
M. Erhgott, Multicriteria Optimization, Springer, Berlin, 2005.
A. Gopfert, R. Hassan, C. Tammer and C. Zalinescu, Variational
Methods in Partially Ordered Spaces, Springer, New York, 2003.
J. Jahn, Vector Optimization: Theory, Applications, and Extensions,
Springer, Berlin, 2004.

K. Miettinen, Nonlinear Multiobjective Optimization, Kluwer Academic

Publishers, Boston, 1999.
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