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Graph clustering as an optimization problem
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min f (x)
g(x) ≤ b

x ∈ X

⇒ Mathematical Programming formulation:

defining an optimization problem

Reformulation:

finding a more convenient formulation

Aim: starting from a (nonlinear) optimization formulation for a bipartition problem,

find new formulations which enhance the efficiency of the proposed solution approach
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Graph clustering

Automatic analysis of complex systems represented as networks (graphs)
⇓

identification of clusters

cluster or community = a subset of vertices such that there are
more edges within the community than edges joining it to the outside
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Modularity

Modularity [Newman, Girvan; Phys. Rev. E, 2004]
Compare the number of inner edges minus the expected number of such edges in a
random graph having the same distribution of degrees of G:

Q =

Nc∑
c=1

(
mc

m
−

Dc
2

4m2

)

Nc: number of clusters;
m: number of edges of the graph;
mc: number of edges in cluster c;
Dc: sum of degrees of vertices in cluster c;
mc
m : fraction of edges in cluster c;
Dc

2

4m2 : expected number of edges in cluster c in a graph where vertices have same
degrees but edges are placed randomly.
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Modularity

Ranges of modularity
− 1

2 ≤ Q ≤ 1 (− 1
2 for bipartite graphs, 1 cluster for partition);

Q ≈ 0: graph similar to random graph;
Q ≈ 1: graph with strong community structure.

How many clusters in the graph?
1 cluster containing all vertices→ Q = 0;
n clusters, with 1 vertex for cluster→ Q < 0;
in general 1 < Nc < n, not known a priori.

Maximizing modularity gives an optimal partition with the optimal number of clusters.

Modularity maximization is NP-hard [Brandes et al.; IEEE TKDE, 2008].
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Modularity maximization

Exact methods

Row generation for the clique partitioning model
[Grötschel, Wakabayashi, Math. Prog. 1989; Brandes et al., IEEE TKDE 2008]

0 − 1 MIQP formulation [Xu et al., Eur. Phys. J. B, 2007]

Column generation extensions [Cafieri et al., Phys. Rev. E, 2010]

Heuristics

Partitioning methods
(greedy, simulated annealing, genetic search, and many others)
Hierarchical divisive and agglomerative methods

For a survey see [Fortunato; Phys. Rep., 2010]
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Hierarchical divisive heuristic

Proceed from an initial partition containing all entities

Iteratively divide a cluster into two in such a way to increase most the objective
function (or the decrease in the objective value is the smallest possible)

critical point:
bipartitioning a cluster
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Hierarchical divisive heuristic

Algorithm Divisive (input of first call is G = (V, E))

Input: cluster c = (Vc, Ec) of graph G

Output: partition into clusters of c

if |Vc| < 3 save c as cluster, and return;∗

divide c in c1 and c2

if Q(c) > Q(c1) + Q(c2) save c as cluster, and return;

call Divisive(c1) and Divisive(c2);

∗: an optimal solution does not contain single vertex clusters [Brandes et al.; IEEE
TKDE, 2008].
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Locally optimal hierarchical divisive heuristic

[Cafieri, Hansen, Liberti.; Phys. Rev. E, 2011]:

Divisive scheme

Bipartitioning step modeled as a 0-1 MIQP problem

The 0-1 MIQP problem exactly solved

⇓

the proposed heuristic is locally optimal

(but not globally optimal)
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MIQP model for bipartition in the divisive heuristic

Objective function
Express D2 as a function of D1: D2 = Dc − D1
(Dc = sum of degrees in the community to be bipartitioned)
⇒ Modularity:

Q =

(
m1 + m2

m
−

D1
2 + D2

2

4m2

)
=

=
m1 + m2

m
−

D2
1

4m2 −
D2

c + D2
1 − 2D1Dc

4m2 =

=
m1 + m2

m
−

D2
1

4m2 −
D2

c

4m2 +
D1Dc

2m2

Variables

Xi, j,s = 1 if the edge (vi, v j) is inside the cluster s, 0 otherwise (s is either 1 or 2)

Yi = 1 if the vertex vi is inside the cluster 1, 0 otherwise
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MIQP model for bipartition in the divisive heuristic

Constraints
Any edge (vi, v j) with end vertices indiced by i and j can only belong to cluster s if
both of its end vertices also belong to that cluster:

∀(vi, v j) ∈ Ec Xi, j,1 ≤ Yi,1

∀(vi, v j) ∈ Ec Xi, j,1 ≤ Y j,1

∀(vi, v j) ∈ Ec Xi, j,2 ≤ 1 − Yi,1

∀(vi, v j) ∈ Ec Xi, j,2 ≤ 1 − Y j,1

The number of edges of each of the two clusters and the sum of vertex degrees of the
first cluster are expressed in terms of X and Y:

∀s ∈ {1, 2} ms =
∑

(vi,v j)∈Ec

Xi, j,s

D1 =
∑
vi∈Vc

kiYi,1

ki = degree of the vertex vi

Vc and Ec = respectively the set of vertices and the set of edges of the cluster c to be bipartitioned
Sonia Cafieri (ENAC) Mathematical Programming reformulations in modularity maximizing graph clustering May 2013 15 / 41



MIQP model used by the hierarchical divisive heuristic
(OB model)

max
1
m

(
m1 + m2 −

1
2m

(
D1

2 +
Dc

2

2
− D1Dc

))
s.t. Xi, j,1 ≤ Yi ∀(vi, v j) ∈ Ec

Xi, j,1 ≤ Y j ∀(vi, v j) ∈ Ec

Xi, j,2 ≤ 1 − Yi ∀(vi, v j) ∈ Ec

Xi, j,2 ≤ 1 − Y j ∀(vi, v j) ∈ Ec

ms =
∑

(vi ,v j)∈Ec

Xi, j,s ∀s ∈ {1, 2}

D1 =
∑
vi∈Vc

kiYi

Yi ∈ {0, 1} ∀vi ∈ Vc

Xi, j,s ≥ 0 ∀(vi, v j) ∈ Ec, ∀s ∈ {1, 2}
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Reformulations in Mathematical Programming

min f (x)
g(x) ≤ b

x ∈ X

⇒
Mathematical programming formulation P = a set of entities:

- parameters

- decision variables (x ∈ X)

- objective function ( f (x))

- constraints (g(x) ≤ b)

A reformulation Q of P is obtained via (symbolic) transformations applied to

x, f (x), g(x) ≤ 0, whilst keeping some of the properties of P invariant.

P and Q

? may share the same numerical properties (feasible region, optima)

? often perform differently according to the type of the solving algorithm
⇒ choosing the best possible formulation is crucial
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Reformulations in Mathematical Programming

Four main reformulation classes (Liberti, 2010):

exact reformulations: preserve all optimality
properties

narrowings: preserve some optimality
properties

relaxations: provide bounds to the optimal
value of the objective function

approximations: formulations Q(k)
parametrized on k such that lim

k→∞
Q(k) is an

exact reformulation

P

Q

phi

F
L

G

L

G

F

phiL

phiG

Exact reformulation
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Improving the 0 − 1 MIQP formulation for bipartition

Reformulations:

Reduction of number of variables and constraints

Binary decomposition for linearization of quadratic term D2
1 in the

objective function

Symmetry breaking

Sonia Cafieri (ENAC) Mathematical Programming reformulations in modularity maximizing graph clustering May 2013 20 / 41
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Reduction of the number of variables

Consider the variables X of the original model:

Xi, j,s =

1 if edge (vi, v j) belongs to cluster s
0 otherwise

We do not actually need to know if an edge is in the cluster 1 or 2, but only if it is
within a cluster or not:

Xi, j =

1 if Yi = Y j

0 otherwise

⇒ Half of the variables X needed
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Reduction of the number of variables

Xi, j can be seen as the negation of the XOR operation between Yi and Y j variables.
⇒ the following constraints can be employed [Brown and Dell, 2007]

∀(vi, v j) ∈ Ec Xi, j ≤ Yi − Y j + 1

∀(vi, v j) ∈ Ec Xi, j ≤ Y j − Yi + 1

∀(vi, v j) ∈ Ec Xi, j ≥ Yi + Y j − 1

∀(vi, v j) ∈ Ec Xi, j ≥ 1 − Yi − Y j
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New variables

Variables X can then be expressed as

Xi, j = 2YiY j − Yi − Y j + 1, ∀(vi, v j) ∈ Ec

Variables S linearize the product of the binary variables Y:

S i, j = YiY j ∀(vi, v j) ∈ Ec

So we obtain

Xi, j = 2S i, j − Yi − Y j + 1 ∀(vi, v j) ∈ Ec
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Fortet’s linearization

Relationship S i, j = YiY j (Fortet’s inequalities):

S i, j ≥ 0 ∀(vi, v j) ∈ Ec

S i, j ≥ Y j + Yi − 1 ∀(vi, v j) ∈ Ec

S i, j ≤ Yi ∀(vi, v j) ∈ Ec

S i, j ≤ Y j ∀(vi, v j) ∈ Ec

exact linearization of a product of binary variables

Objective function maximizes variables S→ half of the constraints needed:

S i, j ≤ Yi ∀(vi, v j) ∈ Ec

S i, j ≤ Y j ∀(vi, v j) ∈ Ec

Sonia Cafieri (ENAC) Mathematical Programming reformulations in modularity maximizing graph clustering May 2013 25 / 41



Fortet’s linearization

Relationship S i, j = YiY j (Fortet’s inequalities):

S i, j ≥ 0 ∀(vi, v j) ∈ Ec

S i, j ≥ Y j + Yi − 1 ∀(vi, v j) ∈ Ec

S i, j ≤ Yi ∀(vi, v j) ∈ Ec

S i, j ≤ Y j ∀(vi, v j) ∈ Ec

exact linearization of a product of binary variables

Objective function maximizes variables S→ half of the constraints needed:

S i, j ≤ Yi ∀(vi, v j) ∈ Ec

S i, j ≤ Y j ∀(vi, v j) ∈ Ec

Sonia Cafieri (ENAC) Mathematical Programming reformulations in modularity maximizing graph clustering May 2013 25 / 41



OB1 formulation

max
1
m

 ∑
(vi,v j)∈Ec

(
2S i, j − Yi − Y j

)
+ |Ec| −

1
2m

(
D1

2 +
Dc

2

2
− D1Dc

)
s.t. S i, j ≤ Yi ∀(vi, v j) ∈ Ec

S i, j ≤ Y j ∀(vi, v j) ∈ Ec

D1 =
∑
vi∈Vc

kiYi

Yi ∈ {0, 1} ∀vi ∈ Vc

where in the objective function we use the fact that
∑

(vi,v j)∈EC

1 = |Ec|
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Quadratic term reformulation

In the objective function it appears D2
1, where D1 =

∑
vi∈Vc

kiYi.

The model is not linear; how to solve the problem?

using general MINLP solvers (as Couenne or BARON): too time consuming;

using convex quadratic solver as CPLEX: efficient, but not possible to employ

other MIP solvers;

linearize products YiY j using Fortet’s inequalities: many variables and

constraints;

linearization using binary decomposition [Billionnet, Elloumi, Lambert;

Math. Prog., 2012]: better than Fortet inequalities.
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Binary decomposition reformulation

D1 =
∑
vi∈Vc

kiYi

ki is integer (degree of vertex vi), Yi is binary→ D1 is integer.

D1 =

t∑
l=0

2lal, al ∈ {0, 1}

where t = dlog2(Dc + 1) − 1e.

D1
2 =

t∑
l=0

2lal ·

t∑
h=0

2hah =

t∑
l=0

22lal +

t∑
l=0

∑
h<l

2l+h+1alah
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Linearization for binary decomposition

alah product of binary variables, can be linearized
⇒ Rl,h linearize the product alah.
−R is maximized in the objective function → only 2 constraints are needed:

Rl,h ≥ 0 ∀l ∈ {0, . . . , t}, ∀h ∈ {0, . . . , l − 1}
Rl,h ≥ al + ah − 1 ∀l ∈ {0, . . . , t}, ∀h ∈ {0, . . . , l − 1}

The objective function is

1
m

m1 + m2 −
1

2m

 t∑
l=0

22lal +

t∑
l=0

∑
h<l

2l+h+1Rlh +
Dc

2

2
− D1Dc
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OB2 formulation

max
1
m

m1 + m2 −
1

2m

 t∑
l=0

22lal +

t∑
l=0

∑
h<l

2l+h+1Rlh +
Dc

2

2
− D1Dc


s.t. Xi, j,1 ≤ Yi ∀(vi, v j) ∈ Ec

Xi, j,1 ≤ Y j ∀(vi, v j) ∈ Ec

Xi, j,2 ≤ 1 − Yi ∀(vi, v j) ∈ Ec

Xi, j,2 ≤ 1 − Y j ∀(vi, v j) ∈ Ec

Rl,h ≥ al + ah − 1 ∀l ∈ {0, . . . , t}, ∀h ∈ {0, . . . , l − 1}

ms =
∑

(vi ,v j)∈Ec

Xi, j,s ∀s ∈ {1, 2}

D1 =
∑
vi∈Vc

kiYi

D1 =

t∑
l=0

2lal

Yi ∈ {0, 1} ∀vi ∈ Vc

Xi, j,s ≥ 0 ∀(vi, v j) ∈ Ec, ∀s ∈ {1, 2}

Rl,h ≥ 0 ∀l ∈ {0, . . . , t}, ∀h ∈ {0, . . . , l − 1}
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Compact binary decomposition 1

It is possible to reduce the number of variables R.

Rl,h is the linearization of the term alah.
We can write the term of the objective function involving Rl,h in this way:

t∑
l=0

∑
h<l

2l+h+1Rlh =

t∑
l=0

∑
h<l

2l+h+1alah =

t∑
l=0

2l+1al

∑
h<l

2hah =

t∑
l=0

2l+1albl =

t∑
l=0

2l+1Rl,

where Rl = albl and bl is a new variable defined as
∑

h<l 2hah.
Since the upper bound for bl is Ubl =

∑
h<l 2h = 2l − 1,

the constraints to add to the model are:

∀l ∈ {0, . . . , t} bl =
∑
h<l

2hah

∀l ∈ {0, . . . , t} Rl ≥ 0
∀l ∈ {0, . . . , t} Rl ≥ Ubl al + bl − Ubl

We have now t + 1 variables Rl instead of t2+t
2 variables Rl,h,

and we have adjoined t + 1 variables b and t + 1 constraints (definition of b).
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Compact binary decomposition 2

We can put together the term containing the variables al and Rl:

t∑
l=0

22lal +

t∑
l=0

2l+1Rl =

t∑
l=0

22lal +
22l

2l−1 Rl =

t∑
l=0

22l
(
al +

albl

2l−1

)
.

Hence
t∑

l=0

22l
(
al +

albl

2l−1

)
=

t∑
l=0

22l

2l−1 al

(
bl + 2l−1

)
=

t∑
l=0

2l+1alzl =

t∑
l=0

2l+1Tl, (1)

where the new variable zl is equal to bl + 2l−1 and Tl is the linearization of alzl.
⇒ we remove the variables R and b, and all the related constraints,

and adjoin the new variables z and T , as well as these constraints:

∀l ∈ {0, . . . , t} zl =
∑
h<l

2hah + 2l−1 (2)

∀l ∈ {0, . . . , t} Tl ≥ 0 (3)
∀l ∈ {0, . . . , t} Tl ≥ Uzl al + zl − Uzl , (4)

where Uzl is the upper bound of the variable zl, and it is equal to 2l.
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Outline

1 Introduction
Modularity maximization
A locally optimal hierarchical heuristic

2 Reformulations
Variables and constraints reduction
Binary decomposition
Symmetry breaking constraint

3 Results

4 Conclusions
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Symmetry breaking constraint - Fixing a vertex

If a solution is found, another equivalent solution is obtained by swapping the clusters
(i.e., vertices in cluster 1 are placed in cluster 2, and vice-versa)

→ fix a vertex in one of the clusters

Good choice: fix the vertex with highest degree in one cluster

Yg = 0, g = arg max{ki, ∀vi ∈ Vc}

Original formulation + symmetry breaking constraint→ OB3 model.
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Tests

original formulation (OB)

reformulation with less variables and constraints (OB1)
binary decomposition reformulation (OB2)
original formulation + symmetry breaking constraint (OB3)

ID Graph n m Reference

1 Karate 34 78 Zachary (1977)
2 Dolphins 62 159 Lusseau et al. (2003)
3 Les misérables 77 254 Hugo (1951), Knuth (1993)
4 A00 main 83 135 Batagelj and Mrvar (2006)
5 P53 protein 104 226 Dartnell at al. (2005)
6 Political books 105 441 Krebs (2008)
7 Football 115 613 Girvan and Newman (2002)
8 A01 main 249 635 Batagelj and Mrvar (2006)
9 USAir97 332 2126 Batagelj and Mrvar (2006)

10 Netscience main 379 914 Newman (2006a)
11 S838 512 819 Milo et al. (2004)
12 Power 4941 6594 Watts and Strogatz (1998)

Sonia Cafieri (ENAC) Mathematical Programming reformulations in modularity maximizing graph clustering May 2013 37 / 41



Tests

original formulation (OB)
reformulation with less variables and constraints (OB1)

binary decomposition reformulation (OB2)
original formulation + symmetry breaking constraint (OB3)

ID Graph n m Reference

1 Karate 34 78 Zachary (1977)
2 Dolphins 62 159 Lusseau et al. (2003)
3 Les misérables 77 254 Hugo (1951), Knuth (1993)
4 A00 main 83 135 Batagelj and Mrvar (2006)
5 P53 protein 104 226 Dartnell at al. (2005)
6 Political books 105 441 Krebs (2008)
7 Football 115 613 Girvan and Newman (2002)
8 A01 main 249 635 Batagelj and Mrvar (2006)
9 USAir97 332 2126 Batagelj and Mrvar (2006)

10 Netscience main 379 914 Newman (2006a)
11 S838 512 819 Milo et al. (2004)
12 Power 4941 6594 Watts and Strogatz (1998)

Sonia Cafieri (ENAC) Mathematical Programming reformulations in modularity maximizing graph clustering May 2013 37 / 41



Tests

original formulation (OB)
reformulation with less variables and constraints (OB1)
binary decomposition reformulation (OB2)

original formulation + symmetry breaking constraint (OB3)

ID Graph n m Reference

1 Karate 34 78 Zachary (1977)
2 Dolphins 62 159 Lusseau et al. (2003)
3 Les misérables 77 254 Hugo (1951), Knuth (1993)
4 A00 main 83 135 Batagelj and Mrvar (2006)
5 P53 protein 104 226 Dartnell at al. (2005)
6 Political books 105 441 Krebs (2008)
7 Football 115 613 Girvan and Newman (2002)
8 A01 main 249 635 Batagelj and Mrvar (2006)
9 USAir97 332 2126 Batagelj and Mrvar (2006)

10 Netscience main 379 914 Newman (2006a)
11 S838 512 819 Milo et al. (2004)
12 Power 4941 6594 Watts and Strogatz (1998)

Sonia Cafieri (ENAC) Mathematical Programming reformulations in modularity maximizing graph clustering May 2013 37 / 41



Tests

original formulation (OB)
reformulation with less variables and constraints (OB1)
binary decomposition reformulation (OB2)
original formulation + symmetry breaking constraint (OB3)

ID Graph n m Reference

1 Karate 34 78 Zachary (1977)
2 Dolphins 62 159 Lusseau et al. (2003)
3 Les misérables 77 254 Hugo (1951), Knuth (1993)
4 A00 main 83 135 Batagelj and Mrvar (2006)
5 P53 protein 104 226 Dartnell at al. (2005)
6 Political books 105 441 Krebs (2008)
7 Football 115 613 Girvan and Newman (2002)
8 A01 main 249 635 Batagelj and Mrvar (2006)
9 USAir97 332 2126 Batagelj and Mrvar (2006)

10 Netscience main 379 914 Newman (2006a)
11 S838 512 819 Milo et al. (2004)
12 Power 4941 6594 Watts and Strogatz (1998)

Sonia Cafieri (ENAC) Mathematical Programming reformulations in modularity maximizing graph clustering May 2013 37 / 41



Tests

original formulation (OB)
reformulation with less variables and constraints (OB1)
binary decomposition reformulation (OB2)
original formulation + symmetry breaking constraint (OB3)

ID Graph n m Reference

1 Karate 34 78 Zachary (1977)
2 Dolphins 62 159 Lusseau et al. (2003)
3 Les misérables 77 254 Hugo (1951), Knuth (1993)
4 A00 main 83 135 Batagelj and Mrvar (2006)
5 P53 protein 104 226 Dartnell at al. (2005)
6 Political books 105 441 Krebs (2008)
7 Football 115 613 Girvan and Newman (2002)
8 A01 main 249 635 Batagelj and Mrvar (2006)
9 USAir97 332 2126 Batagelj and Mrvar (2006)

10 Netscience main 379 914 Newman (2006a)
11 S838 512 819 Milo et al. (2004)
12 Power 4941 6594 Watts and Strogatz (1998)

Sonia Cafieri (ENAC) Mathematical Programming reformulations in modularity maximizing graph clustering May 2013 37 / 41



Numerical results

Tests: 2.8GHz Intel iCore i7 CPU, 8 GB RAM, Linux, CPLEX 12.2
- branching based on pseudo reduced costs

graph clusters OB OB1 OB2 OB3

|V | |E| Nc Q nodes CPU time nodes CPU time nodes CPU time nodes CPU time

1 34 78 4 0.4188 45 0.14 41 0.06 123 0.52 18 0.07

2 62 159 4 0.5265 207 0.59 157 0.19 505 1.29 98 0.49

3 77 254 8 0.5468 205 1.09 185 0.40 577 2.16 102 0.58

4 83 135 7 0.5281 76 0.35 56 0.11 251 0.74 27 0.08
5 104 226 7 0.5284 275 1.10 201 0.53 678 3.22 135 0.59

6 105 441 4 0.5263 313 3.04 294 1.00 1284 9.17 145 1.36

7 115 613 10 0.6009 8853 307.56 5410 56.69 15406 252.96 3014 118.24

8 249 635 15 0.6288 1119 47.83 1010 16.85 4395 61.49 997 45.85

9 332 2126 8 0.3596 16682 4585.04 17811 1041.89 63687 3074.09 9446 2510.81

10 379 914 20 0.8470 291 3.64 267 1.44 931 14.53 108 1.82

11 512 819 15 0.8166 392 5.26 304 1.26 1348 22.46 197 2.15

12 4941 6594 4 0.9396 1459 708.51 1449 217.61 11289 2029.63 815 417.26
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Best formulation

Best results: formulation with less constraints and variables (OB1)
+ symmetry breaking constraint (OB3)

graph OB OB1 + OB3

vertices edges nodes CPU time nodes CPU time

Karate 34 78 45 0.14 17 0.04
Dolphins 62 159 207 0.59 93 0.16
Les Misèrables 77 254 205 1.09 105 0.35
A00 main 83 135 76 0.35 26 0.04
P53 protein 104 226 275 1.10 119 0.26
Political books 105 441 313 3.04 152 0.51
Football 115 613 8853 307.56 3822 44.38
A01 main 249 635 1119 47.83 726 9.72
USAir97 332 2126 16682 4585.04 8665 446.06
Netscience main 379 914 291 3.64 94 0.85
S838 512 819 392 5.26 186 1.18
Power 4941 6594 1459 708.51 891 123.85
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Conclusion

Pros
Reformulations reduce computational time (up to 10 times).

High impact of the simple symmetry breaking constraint.

Cons
Binary decomposition not very effective (it is better to use CPLEX with the
quadratic model).

Future work
Improve the binary decomposition.
Use the model for divisive heuristic for bipartite graph (there is not a quadratic
term there, binary decomposition is the best choice).
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