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Brief Overview of the Basic Theory Models Convex problems in supply chain optimization Algorithms

The general form of the problems studied in nonlinear optimization
may be stated as :

(NLP) min f (x) (1)

s.t. g(x) ≤ 0 (2)

h(x) = 0 (3)

x ∈ S, (4)

where S ⊆ R
n, f : x ∈ S → f (x) ∈ R, g : x ∈ S → g(x) ∈ R

ℓ, and
h : x ∈ S → h(x) ∈ R

m.
alternatively

(P) min f (x)

s.t. x ∈ X ,

where X ⊆ R
n is the feasible region, and f (·) is the objective

function of the problem. A point x ∈ R
n is called feasible point to

P if x ∈ X , otherwise x is infeasible.
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Definition 1

A point x∗ is a local minimum point of P if

1 x∗ ∈ X , i.e., it is feasible, and

2 there exists a neighborhood Nǫ(x
∗) = {x : ‖x− x∗‖ ≤ ǫ},

ǫ > 0, such that f (x∗) ≤ f (x), ∀x ∈ Nǫ(x
∗) ∩ X .

A point x∗ is a global minimum point of P if

1 x∗ ∈ X , i.e., it is feasible, and

2 f (x∗) ≤ f (x), ∀x ∈ X .

The point x∗ is often referred to as a local (or global) optimal
point or optimal solution.
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Definition 2

The function f (x) defined on X ⊆ R
n is said to be lower

semicontinuous in X if the sets L(b) = {x ∈ X |f (x) ≤ b} are
closed relative to X for any b ∈ R.

Theorem 1

If X is a nonempty compact set and the function f (x) is lower
semicontinuous in X , then P has a solution x∗ ∈ X .
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Definition 3

The set X ⊂ R
n is convex if for all x1, x2 ∈ X it satisfies the

inclusion

αx1 + (1− α)x2 ∈ X

for all α ∈ [0, 1], that is, the convex combination of any two points
in X is also in X . The function f (x) is convex in the convex set X
if for all x1, x2 ∈ X and α ∈ (0, 1) it satisfies the inequality

f (αx1 + (1− α)x2) ≤ αf (x1) + (1− α)f (x2).

The function is strictly convex if strict inequality holds in the
above relation. Moreover, the function −f (x) is (strictly) concave
if f (x) is (strictly) convex.
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Theorem 2

If X and f (x) are convex in P, then any local minimum point is
also global. Moreover, if f (x) is strictly convex the minimum point
is unique.

Definition 4

A polyhedron X in R
n is the intersection of a finite number of

closed halfspaces, i.e., X = {x ∈ R
n|aTi x ≤ bi , i = 1, . . . ,m},

where ai ∈ R
n are constant vectors and bi are real numbers. A

bounded polyhedron is called a polytope.

Definition 5

The point x is an extreme point or a vertex of the polyhedron
X ⊂ R

n if x = αx1 + (1− α)x2 with x1, x2 ∈ X and α ∈ (0, 1)
implies that x = x1 = x2. That is, an extreme point cannot be
written as a convex combination of two distinct points in X .
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Definition 6

The nonzero vector d ∈ R
n is called a direction of the polyhedron

X if for every x ∈ X , x+ αd ∈ X for all α ≥ 0. The direction d of
X is an extreme direction of X if d = αd1 + βd2 for α, β > 0
implies d1 = γd2 for some γ > 0. That is, an extreme direction
cannot be written as a positive linear combination of two distinct
directions in X .

Theorem 3

The number of extreme points or vertices of a polyhedron is finite.
The number of extreme directions of a polyhedron is finite.
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Theorem 4

A polytope is the convex hull of its vertices, that is, if x̄1, x̄2, . . . , x̄K are the
extreme points of a polytope X ⊂ R

n, then

X =

{

x ∈ R
n|x =

K
∑

k=1

αk x̄
k
,

K
∑

k=1

αk = 1, αk ≥ 0 for k = 1, . . . ,K

}

In particular, since X ⊂ R
n, then at most n + 1 extreme points are needed in

order to represent any point x ∈ X .
Moreover, if X ⊂ R

n is an unbounded polyhedron with K extreme points
x̄1, x̄2, . . . , x̄K and L extreme directions d̄1, d̄2, . . . , d̄L, then x ∈ X if and only if

x =

K
∑

k=1

αk x̄
k +

L
∑

ℓ=1

βℓd̄
ℓ

K
∑

k=1

αk = 1

αk ≥ 0, ∀k

βℓ ≥ 0, ∀ℓ
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Definition 7

Let f (x) be defined on the nonempty set X ⊆ R
n and suppose

that x̄+ αd ∈ X for x̄ ∈ X , d 6= 0 a vector in R
n, and α > 0

sufficiently small. The directional derivative of f (x) at x̄ in the
direction d is given by the following limit if it exists:

lim
α→0+

f (x̄+ αd)− f (x̄)

α

Theorem 5

Let X be nonempty and convex set and assume that f (x) is
convex, then the limit in the definition of the directional derivative
exists.
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Theorem 6

If f (x) has the gradient ∇f (x̄) at x̄ ∈ R
n and d 6= 0 is a vector in

R
n, then the directional derivative of f (x) at x̄ in the direction d is
∇f (x̄)Td.

Definition 8

Let f (x) have the gradient ∇f (x̄) at x̄. Then the vector d 6= 0 is
descent direction of f (x) at x̄ if ∇f (x̄)Td < 0. The set
D(x̄) = {d ∈ R

n|∇f (x̄)Td < 0} is the set of descent directions of
f (·) at x̄.

Definition 9

Let x̄ be feasible to P. Then the vector d 6= 0 is a feasible direction
from x̄ if there exists a ᾱ > 0 such that x̄+ αd is feasible to P for
all α satisfying 0 ≤ α ≤ ᾱ. The set of all feasible directions from x̄
will be denoted by F(x̄).
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Theorem 7

If f (x) is differentiable at x̄, then it is continuous and has the
gradient ∇f (x̄) at x̄. Moreover, if f (x) is differentiable on the
segment joining x1 and x2, then the function
φ(α) = f (αx1 + (1− α)x2), defined for α ∈ [0, 1], is differentiable
in [0, 1] and has the derivative
φ′(α) = (x1 − x2)T∇f (αx1 + (1− α)x2), that is, φ′(α) is the
directional derivative of f (x) at αx1 + (1− α)x2 in the direction
x1 − x2. If φ′(0) < 0, i.e., (x1 − x2)T∇f (x2) < 0, then there is a
α ∈ (0, 1) such that φ(α) < φ(0), or equivalently
f (αx1 + (1− α)x2) < f (x2), for all α ∈ (0, ᾱ).
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Theorem 8

Let f (x) be a differentiable function on a nonempty open set
X ⊆ R

n. Then f (x) is convex if and only if for any y ∈ X the
inequality

f (x) ≥ f (y) +∇f (y)T (x− y), ∀x ∈ X

holds.
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Theorem 8

Let f (x) be a differentiable function on a nonempty open set
X ⊆ R

n. Then f (x) is convex if and only if for any y ∈ X the
inequality

f (x) ≥ f (y) +∇f (y)T (x− y), ∀x ∈ X

holds.

Theorem 9

Let f (x) be a differential convex function defined on the convex set
X . Then x∗ is a global optimal solution to P if and only if

∇f (x∗)T (x− x∗) ≥ 0, ∀x ∈ X .

Moreover, if X is open then x∗ is an optimal solution if and only if
∇f (x∗) = 0.

A. Migdalas



Brief Overview of the Basic Theory Models Convex problems in supply chain optimization Algorithms

Definition 10

The differentiable function f (x) defined on a nonempty open set X ⊆ R
n

is said to be pseudoconvex if

∇f (x1)T (x2 − x1) ≥ 0 ⇒ f (x2) ≥ f (x1), or equivalently,

f (x2) < f (x1) ⇒ ∇f (x1)T (x2 − x1) < 0,

for all x1, x2 ∈ X . Moreover, the function −f (·) is then called

pseudoconcave.

Theorem 10

Let f (x) be a differential concave function defined on the convex set X .
If x̄ is a local optimal solution to P then

∇f (x̄)T (x− x̄) ≥ 0, ∀x ∈ X . (5)

Moreover, if X is a nonempty polytope, then there exists an extreme

point x̄ ∈ X which is an optimal solution of P.
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Definition 11

The Kuhn-Tucker constraint qualification holds at x̄ if
D(x̄) = DL(x̄).

Theorem 11

In NLP, let S be a nonempty set with at least one interior point,
assume that f , g and h are continuously differentiable. If x̄ is a
local minimum point and some constraint qualification holds at x̄,
then there exist λ ∈ R

ℓ and µ ∈ R
m such that

−∇f (x̄) = λTg(x̄) + µTh(x̄) (6)

λTg(x̄) = 0 (7)

λ ≥ 0 (8)
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Theorem 12

Assume that the conditions of Theorem 11 on S, g and h are valid.
Assume further that f and the component functions gi (·) of g(·)
are pseudoconvex and that h is linear, that is h(x) = Ax− b.
Then, any feasible point x̄ in NLP which satisfies the
KKT-conditions (6)-(8) is a global minimum point to NLP.
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Sufficient optimality conditions for NLP can also be stated in
terms of the Lagrangian function. For the problem NLP, define
the Lagrangian function

L(x,λ,µ) = f (x) + λTg(x) + µTh(x) (9)

for x ∈ S and λ ≥ 0, and consider the Lagrangian subproblem

Θ(λ,µ) = min
x∈S

f (x) + λTg(x) + µTh(x), (10)

defined for λ ≥ 0.
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Theorem 13

Let x̄ be a solution to (10) for a given (λ̄, µ̄). If x̄ is a feasible
point to NLP and satisfies the conditions

f (x̄) + λ̄
T
g(x̄) + µ̄Th(x̄) = Θ(λ̄, µ̄) (11)

λ̄
T
g(x̄) = 0 (12)

λ̄ ≥ 0, (13)

then x̄ is an optimal solution to NLP.
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Definition 12

The situation x∗ is a Nash equilibrium of the game
G = [N , {X}i∈N , {fi}i∈N ] if

fi (x
∗) = min

xi∈Xi

fi (x
∗
i−, xi , x

∗
i+), ∀i ∈ N (14)

The game G is a team game if fi (·) = f (·), ∀i ∈ N , that is, if all
players share the same loss function. In such a case, a Nash
equilibrium of the game is obtainable by solving the following
problem

(CPP) min f (x1, x2, . . . , xn)

s.t. xi ∈ Xi , ∀i ∈ N ,

which is an optimization problem defined over a Cartesian product
of sets.
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(GBP) min g(y, x∗) (15)

s.t. y ∈ Y, (16)

where x∗ is such that

fi (y, x
∗) = min

xi∈Xi

fi (y, x
∗
i−, x, x

∗
i+), ∀i ∈ N .(17)

(BP) min g(y, x∗) (18)

s.t. y ∈ Y, (19)

where x∗ is such that

f (y, x∗) = min
x∈X

f (y, x). (20)
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Traffic Assignment and Routing

Wardrop’s equilibrium principle

hpk > 0 ⇒ cpk = πk , ∀p ∈ Pk ,

hpk = 0 ⇒ cpk ≥ πk , ∀p ∈ Pk ,

User equilibrium conditions for fixed demand

hpk(cpk − πk) = 0, ∀p ∈ Pk , (21)

cpk − πk ≥ 0, ∀p ∈ Pk , (22)
∑

p∈Pk

hpk = rk , (23)

hpk ≥ 0, ∀p ∈ Pk (24)

πk ≥ 0, (25)
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Theorem 14

Assume that the network G = (N ,A) is strongly connected with
respect to the pairs in K, that the demand matrix R is
nonnegative, and that the travel time function sa(·) is positive,
strictly monotone increasing and continuously differentiable. Then,
conditions (21)-(25) are the Karush-Kuhn-Tucker optimality
conditions of the convex optimization problem

(FTAP) min
∑

a∈A

∫ xa

0
sa(t)dt, (26)

s.t.
∑

p∈Pk

hpk = rk , ∀k , (27)

∑

k

∑

p∈Pk

δkaphpk = xa, ∀a ∈ A, (28)

hpk ≥ 0, ∀p ∈ Pk , ∀k (29)
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The system optimum problem

(SFTAP) min
∑

a∈A

sa(xa)xa,

s.t.
∑

p∈Pk

hpk = rk , ∀k ,

∑

k

∑

p∈Pk

δkaphpk = xa, ∀a ∈ A,

hpk ≥ 0, ∀p ∈ Pk , ∀k
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Wardrop’s user equilibrium for elastic demand

principle for both route flows and demands are mathematically
stated as follows:

hpk > 0 ⇒ cpk = πk , ∀p ∈ Pk ,

hpk = 0 ⇒ cpk ≥ πk , ∀p ∈ Pk ,

rk > 0 ⇒ rk = gk(π),

rk = 0 ⇒ gk(π) ≤ 0,
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User’s equilibrium conditions for elastic demand

hpk(cpk − πk) = 0, ∀p ∈ Pk , (30)

cpk − πk ≥ 0, ∀p ∈ Pk , (31)
∑

p∈Pk

hpk = gk(π), (32)

hpk ≥ 0, ∀p ∈ Pk , (33)

πk ≥ 0, (34)
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Theorem 15

Assume that the network G = (N ,A) is strongly connected with
respect to the pairs in K, and that the travel time function sa is
positive, monotone increasing and continuous differentiable. Then,
conditions (30)-(34) are the Karush-Kuhn-Tucker optimality
conditions of the following convex optimization problem:

(ETAP) min
∑

a∈A

∫ xa

0
sa(t)dt −

∑

k

∫ rk

0
g−1k (t)dt, (35)

s.t.
∑

p∈Pk

hpk = rk , ∀k , (36)

∑

k

∑

p∈Pk

δkaphpk = xa, ∀a ∈ A, (37)

hpk ≥ 0, ∀p ∈ Pk , ∀k , (38)

rk ≥ 0, ∀k . (39)
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User optimum flow assignment

(AFTAP) min
∑

a∈A

∫ xa

0
sa(t)dt, (40)

s.t.
∑

a∈A+(i)

xka −
∑

a∈A−(i)

xka = rki , ∀i ∈ N , ∀k ∈ K,(41)

xa =
∑

k∈K

xka , ∀a ∈ A, (42)

xka ≥ 0, ∀a ∈ A, ∀k ∈ K, (43)

where xka denotes the portion of flow from origin o(k) to
destination o(k) that streams through link a, and

rki =





rk , if i = o(k),
−rk , if i = d(k),

0, otherwise.
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System optimum flow assignment

(SAFTAP) min
∑

a∈A

sa(xa)xa,

s.t.
∑

a∈A+(i)

xka −
∑

a∈A−(i)

xka = rki , ∀i ∈ N , ∀k ∈ K,

xa =
∑

k∈K

xka , ∀a ∈ A,

xka ≥ 0, ∀a ∈ A, ∀k ∈ K,
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User optimim flow assignment for elastic demand

(AETAP) min
∑

a∈A

∫ xa

0
sa(t)dt −

∑

k

∫ rk

0
g−1k (t)dt,

s.t.
∑

a∈A+(i)

xka −
∑

a∈A−(i)

xka = rki , ∀i ∈ N , ∀k ∈ K,

xa =
∑

k∈K

xka , ∀a ∈ A,

xka ≥ 0, ∀a ∈ A, ∀k ∈ K,

where

rki =





rk , if i = o(k),
−rk , if i = d(k),

0, otherwise,

and rk ≥ 0.
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Capacity Assignment and Network Design

Example 1

Consider the network in Figure (a),
where the link costs sij are linear
increasing functions of the flow xij for
all links (i , j) of the network, and
assume that there are 6 units of flow to
be routed from node 1 to node 2. The
total delay on each link (i , j) for the
user equilibrium model FTAP is then
given by:

f13(x13) = 5x2
32

f32(x32) = 50x32 + 0.5x2
32

f14(x14) = 50x14 + 0.5x2
14

f42(x42) = 5x2
42

Braess’ Paradox

Figure 1: Illustration of Braess’
paradox in network design
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The network design problem from the system’s perspective

(SNDP) min
∑

a∈A

{sa(xa, ya)xa + ga(ya)}

s.t. (27)− (29) or, equivalently, (41)− (43)

ya ∈ Ya, ∀a ∈ A

It should be noted that in data communication networks, explicit
capacity constraints on the flow are often present , that is,

xa ≤ ua + ya, ∀a ∈ A

should be included in the above formulation.
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If the functions ga(ya) are convex nonlinear or linear, then the
presence of two blocks of variables encourages the application of a
so-called primal or Benders decomposition in which, the |A|
capacity assignment subproblems

capacity assignment subproblems

fa(xa) = min
ya

sa(xa, ya)xa + ga(ya)

s.t. ya ∈ Y

are solved and a so-called master problem is formed

Benders Master Problem

(BMP) min
∑

a∈A

fa(xa)

s.t. (27)− (29) or, equivalently, (41)− (43)
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The bilevel modeling

(SNDP) miny
∑

a∈A

{sa(x
∗
a , ya)va + ga(ya)}

s.t. ya ∈ Ya, ∀a ∈ A

where x∗ = [xa]a∈A solves

min
x

∑

a∈A

∫ xa

0
sa(t, ya)dt

s.t. (27)− (29) or, equivalently,(41)− (43)
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The transportation problem with costumer competition for
the offered service level

Assumptions

A producer supplies a product to a set of customers.

Customers themselves have to transport the product in order
to satisfy their demand

The producer tries to provide its customers the best, at his
opinion, level of service at minimum cost

The level of service provided is measured by the service delay
encountered.

The costumers make decisions based on the minimization of
their individual total.

Customer competition can be expressed in terms of a
noncompetitive Nash game.
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Symbols

n is the number of customers

m is the number of warehouses

rj is the demand of customer j , (j = 1, . . . , n)

qi is the capacity of warehouse i , (i = 1, . . . , n)

xij is the quantity purchased by customer i at facility j

xi =
∑n

j=1 xij is the total amount serviced by warehouse i

di (xi ) is the delay faced by customer j at facility i for each
unit served, example di (xi ) =

1
(qi−xi )

cij(xi ) = αipi + βij tij + µidi (xi ) is the perceived unit cost
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The producer’s convex optimization problem

(SO− TP) min

m∑

i=1

di (xi )xi +

m∑

i=1

pixi +

m∑

i=1

n∑

j=1

tijxij (44)

s.t
m∑

i=1

xij = rj , ∀j (45)

xi ≤ qi , ∀i (46)

xi −
n∑

j=1

xij = 0, ∀i (47)

xij ≥ 0, ∀i , ∀j (48)

A. Migdalas



Brief Overview of the Basic Theory Models Convex problems in supply chain optimization Algorithms

In this ”system optimum” in order to take place a transaction
between customer j and facility i the following must hold:

xij > 0 ⇒ di (xi ) + xi
∂di (xi )

∂xi
+ pi + tij = c̃ij ∀i , j (49)

xij = 0 ⇒ di (xi ) + xi
∂di (xi )

∂xi
+ pi + tij ≥ c̃ij ∀i , j (50)

where c̃(xij ) is the total unit cost faced at i
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Problem (44)-(48) can be expressed as a nonlinear
complementarity problem:

[
di (xi ) + xi

∂di (xi )

∂xi
+ pi + tij − c̃ij

]
xij = 0, ∀i , ∀j (51)

di (xi ) + xi
∂di (xi )

∂xi
+ pi + tij − c̃ij ≥ 0, ∀i , ∀j (52)

n∑

j=1

xij = xi ≤ qi , ∀i (53)

m∑

i=1

xij = rj , ∀j (54)

xij ≥ 0, ∀i , ∀j (55)
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Customers’ equilibrium conditions

xij > 0 ⇒ di (xi ) + pi + tij = ĉij ∀i , j (56)

xij = 0 ⇒ di (xi ) + pi + tij ≥ ĉij ∀i , j (57)

where ĉij is the maximum unit cost at which customer j is willing
to buy.

A. Migdalas



Brief Overview of the Basic Theory Models Convex problems in supply chain optimization Algorithms

The corresponding nonlinear complementarity problem:

[di (xi ) + pi + tij − ĉij ] xij = 0, ∀i , ∀j (58)

di (xi ) + pi + tij − ĉij ≥ 0, ∀i , ∀j (59)

xi ≤ qi , ∀i (60)

xi −
n∑

j=1

xij = 0, ∀i (61)

m∑

i=1

xij = rj , ∀j (62)

xij ≥ 0, ∀i , ∀j (63)
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Customers Problem

(UO− TP) min
m∑

i=1

∫ xi

0
di (t) dt +

m∑

i=1

pixi +
m∑

i=1

n∑

j=1

tijxij(64)

s.t.
m∑

i=1

xij = rj , ∀j (65)

xi ≤ qi , ∀i (66)

xi −
n∑

j=1

xij = 0, ∀i (67)

xij ≥ 0, ∀i , ∀j (68)

where ĉij = wj − πi , and wj and πi are the Lagrangian multipliers
corresponding to constraints (66) and (65) respectively.
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The Stochastic Transportation Problem

The stochastic transportation is an extension of the classical
transportation problem, where the demand rj of the costumer
j is uncertain, and thus, it could be treated as a continuous
random variable with probability density function ϕj(rj).

Moreover, it is assumed that variables rj are independent, that
is, the demand of the costumer ℓ does not affect the demand
of costumer j , for ℓ 6= j .

Let tij be the unit transportation cost from supply point i to
demand point j and

xj =
∑m

i=1 xij the amount of the product dispatched to
demand point j .
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Since the demand is not known in advance, when a particular
quantity xj of product is transferred to one of the destinations
the following cases may be faced:

1 xj < rj , i.e., the product is under-supplied. This shortage
creates a penalty gj(rj − xj) caused by the lost sales.

2 xj > rj , i.e., the product is oversupplied. The result of this
surplus is a penalty which is equal to ̟j(xj − rj).

3 xj = rj , which does not entail any additional cost.
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Thus, due to randomness of rj the expected cost of not covering
the demand of customer j is

gj

∫ ∞

j

(rj − xj)ϕj(rj) drj , (69)

while

̟j

∫ xj

0
(xj − rj)ϕj(rj) drj (70)

is the cost of the oversupplied demand.
Assuming further that each supply center has a production
capacity of qi units, the problem can be stated as follows:
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The stochastic transportation problem

(STP) min
n∑

j=1

{
gj

∫ ∞

j

(rj − xj)ϕj(rj) drj +

+ ̟j

∫ xj

0
(xj − rj)ϕj(rj) drj

}
+

+

m∑

i=1

n∑

j=1

tijxij (71)

s.t
n∑

j=1

xij ≤ qi , ∀i (72)

m∑

i=1

xij = xj , ∀j (73)

xij ≥ 0, ∀i , ∀j , (74)
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Production-transportation problem in the presence of an
intermediary

Assumptions

There exist |M| supply points

and |N| demand points for a product.

The supply points are controlled by |K | producers (Mk refers
to production facilities owned by the k th producer)

the demand points are owned by a single buyer.

The buyer’s demand is a vector r = [rj ].

The buyer is addressed to an intermediary in order to satisfy
this demand.

The intermediary is able to contact the |K | producers to
obtain the product and meet the buyer’s demand.
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Assumptions

Each producer k faces a different production function and
charges a price for the product based on a pricing function
ok(sk) , where sk = [xi ]i∈Mk

is a vector in R
|Mk | containing

the quantities produced by facility i owned by producer k .

Function pk(·) is a convex (non-decreasing) differentiable
function with

Function ok(·) is a convex (non-decreasing) differentiable
function with o(0) = 0.

If we assume further that the transportation cost tijxij , where
tij denotes the unit transportation cost and xij represents the
quantity transported from production facility i to demand
point j is charged to the customer, then the problem of the
intermediary can be stated as follows:
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Production-transportation problem in the presence of an
intermediary

[ITP] min

|K |∑

k=1

ok(sk) +

|M|∑

i=1

|N|∑

j=1

tijxij (75)

s.t

|N|∑

j=1

xij = xi , ∀i (76)

|M|∑

i=1

xij = rj , ∀j (77)

xij ≥ 0, ∀i , ∀j (78)
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We extend the problem to the case where at each demand
point j there exist |L| buyers.

In this case the demand faced by the intermediary is a vector
r = [r ℓj ], where r

ℓ
j is the demand of buyer ℓ at demand point j .

Let xi =
∑|L|

ℓ=1 x
ℓ
i .

Functions ok(·) and pk(·) are considered to be convex (non
decreasing) and differentiable.

The problem of the intermediary is to choose the quantities to
be ordered from each manufacturer in order to meet the
customers’ demand at minimum cost.

The problem can be mathematically modeled as:
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Production-transportation problem in the presence of an
intermediary and |L| buyers

(MITP) min

|K |∑

k=1

ok(sk) +

|M|∑

i=1

|N|∑

j=1

tij



|L|∑

ℓ=1

xij


 (79)

s.t

|N|∑

j=1

|L|∑

ℓ=1

xℓij = xi , ∀i (80)

|M|∑

i=1

xℓij = r ℓj , ∀j , ∀ℓ (81)

xℓij ≥ 0, ∀i , ∀j (82)
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The Frank-Wolfe Algorithm

Consider the problem of minimizing a differentiable function over a
polyhedral set, i.e.,’

(P1) min f (x)

s.t. x ∈ X ,

where X = {x ∈ R
n : Ax = b, x ≥ 0} is a nonempty polyhedron.

– The algorithm is based on the linearization of the objective
function.

– That is, given an iteration point xk ∈ X , the algorithm
approximates the objective with a first order Taylor expansion
at xk , resulting in the linear programming subproblem
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(FW-SUBk) min ∇f (xk)Tx

s.t. x ∈ X ,

where the constant terms have been dropped from the objective
function.

– The solution x̄k of this subproblem is used in the construction
of the search direction of descent dk = x̄k − xk .

– A line search on the interval [0, 1] furnishes the next iterate
xk+1, that is, xk+1 = xk + αkd

k , where
αk ∈ argminα∈[0,1] f (x

k + αdk), and the process is repeated.
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If f in P1 is convex, then an interesting aspect of the
application of the Frank-Wolfe algorithm to P1 is the
generation of a lower bound on f (x∗) at each iteration point
xk , namely f (xk) +∇f (xk)T (x̄k − xk).

However, these lower bounds are not monotonically increasing.
Hence, at iteration k , the current lower bound is defined as
lbd

k = max{lbdk−1, f (xk) +∇f (xk)T (x̄k − xk)}, where
lbd

k−1 is the incumbent lower bound, initially set to −∞.

In practice, the algorithm can be terminated once

f (xk)− lbd
k ≤ ǫ1 or f (xk )−lbdk

f (xk )
≤ ǫ2 for suitably chosen

ǫ1 > 0 and ǫ2 > 0.
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We observe further that due to the linearity of the objective
function in FW-SUBk , the subproblem separates into n problems,
one for each factor in the Cartesian product when the algorithm is
applied to the team game CPP:

min ∇i f (x
k)Txi

s.t. xi ∈ Xi

}
∀i ∈ N , (83)
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Convergence of the F-W algorithm

Assumptions for the global convergence of the approach

(A1) f (x) is continuously differentiable on X ,

(A2) f (x) is pseudoconvex on X , and

(A3) X is closed and bounded (i.e. a polytope).

– Assumption A2 is essential for the verification of the global
optimality of any accumulation point of the sequence {xk}.

– Assumption A3 ensures that P1 and FW-SUBk have finite
optima. It can be replaced by :

the coercivity assumption lim‖x‖→∞ f (x) =∞ on X ,

and the assumption that ∇f (xk)Tx is bounded from below on
X for all xk ∈ X .
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Theorem 16

Under the posed assumptions, the Frank-Wolfe algorithm either
terminates finitely with an optimal solution of P1 or it generates
an infinite sequence {xk} of feasible points in X such that any of
its accumulation points is an optimal solution of P1.
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Example 2

Consider the following instance of CPP:

min (x1 − 2x4)
2
+ (3x2 − x3)

2
+ (x1 − 2)

2
+

(x3 − 2)
2
+ (x2 − 5)

2
+ (x4 − 3)

2

s.t. 3x1 + 2x2 ≤ 6

5x3 + 2x4 ≤ 10

xj ≥ 0, j = 1, 2, 3, 4

Its optimal solution is (1.407, 0.890, 1.583, 1.042) and the corresponding optimal objective

function value is 22.89.

If the algorithm is initialized with the origin, it must approach the optimal solution by

following directions which are based on the alternate generation of the two extreme points

(x̄11 , x̄
1
2 ) = (2, 0) and (x̄21 , x̄

2
2 ) = (0, 3) of the first simplex and the alternate generation of the two

extreme points (x̄13 , x̄
1
4 ) = (2, 0) and (x̄23 , x̄

2
4 ) = (0, 5) of the second simplex, zig-zagging thus

towards the optimal solution. This phenomenon is illustrated in Figure 2. The jamming starts

as the steplengths αk become smaller for each new iteration. Table 1 shows a few iterations of

the algorithm. Note the rapid decrease of the objective function value in early iterations and

the small decimal changes in later iterations. �

A. Migdalas



Brief Overview of the Basic Theory Models Convex problems in supply chain optimization Algorithms

Figure 2: Movements of the Frank-Wolfe algorithm in the subproblem
spaces
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Table 1: Frank-Wolfe iterations

k xk f (xk ) x̄k1 x̄k2 lbdk dk αk

1 (0.000,0.000, 42.000 (0.000,3.000) (0.000,5.000) -18.000 (0.000,3.000, 0.139
0.000,0.000) 0.000,5.000)

2 (0.000,0.419, 37.814 (2.000,0.000) (2.000,0.000) 11.209 (2.000,-4.186, 0.432
0.000,0.695) 2.000,-0.698)

3 (0.763,0.562, 29.102
0.763,0.936)

33 (1.284,0.826, 23.861 (0.000,3.000) (2.000,0.000) 22.290 (-1.284,2.174, 0.0179
1.428,1.015) 0.572,-1.015)

34 (1.261,0.865, 23.847
1.438,0.997)
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Feasible Direction Improvements

The basic idea of improving the Frank-Wolfe algorithm is to
not let the generated directions be based so heavily on the
extreme points of the feasible region.

This can be done basically in two different ways;

1 either by avoiding the complete linearization of the objective
function or

2 by enriching the Frank-Wolfe subproblems with some nonlinear
information.

In both cases the original problem P is replaced iteratively by
a sequence of easier (sub-) problems obtained by replacing the
original objective function by a new one which may depend on
the current iteration point.
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Partial Linearization

In this approach the original function f (·) should only be
partially linearized, i.e,

if f (x) =
∑n

i=1 fi (xi ) + e(x), where fi (·) are strictly convex
functions and e(·) is not additively separable, then only e(·)
needs to be linearized.

Moreover, if f (·) does not have the necessary form, such a
form can be enforced with the introduction of a second
function ϕ(·), which may be assumed strictly convex and
additively separable.

Then, the original objective function f (·) is replaced by the
equivalent ϕ(·) + [f (·)− ϕ(·)] and the “error”
e(·) = f (·)− ϕ(·) is linearized.
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In the case of the form of the CPP, (83) is replaced by the strictly
convex subproblems

min fi (xj) +∇ie(x
k)Txi

s.t. xi ∈ Xi

}
∀i ∈ N . (84)

Letting x̄k = [x̄k1 , . . . , x̄
k
n] denote the point obtained by solving

these subproblems, a feasible direction of descent dk = x̄k − xk is
formed and the next iterate xk+1 is furnished by a line search on
the interval [0, ᾱk ], where ᾱk = max{α ≥ 0|xk + αdk ∈ X}, that
is, xk+1 = xk + αkd

k , where αk ∈ argminα∈[0,ᾱk ] f (x
k + αdk).
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Example 3

Partial linearization is applied to the problem instance of Example 2 by
linearizing only the non-separable part of the objective function, i.e.,
−4x1x4 − 6x2x3, we then obtain the two subproblems:

(SUB1) min 2(x1)
2 + 10(x2)

2 − (4 + 4x̄4)x1 − (10 + 6x̄3)x2

s.t. 3x1 + 2x2 ≤ 6

x1, x2 ≥ 0

and

(SUB2) min 2(x3)
2 + 5(x4)

2 − (4 + 6x̄2)x3 − (6 + 4x̄1)x4

s.t. 5x3 + 2x4 ≤ 10

x3, x4 ≥ 0

Table 2 lists three iteration of the partial linearization algorithm, while

Figure 3 illustrates the movements of the algorithm in the subproblems’

simplices. �
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Table 2: Iterations of the partial linearization algorithm

k xk f (xk ) x̄k1 x̄k2 dk αk

0 (0.000,0.000, 42.000 (1.000,0.500) (1.000,0.600) (1.000,0.500, 1.500
0.000,0.000) 1.000,0.600)

1 (1.500,0.750, 23.625 (1.410,0.885) (1.556,1.109) (-0.089,0.135, 1.000
1.500,0.900) 0.056,0.209)

2 (1.410,0.885, 22.913 (1.417,0.875) (1.582,1.045) (0.007,-0.010, 0.880
1.556,1.109) 0.026,-0.064)

3 (1.416,0.876, 22.894
1.578,1.053)
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Figure 3: Movements of the partial linearization algorithm in the
subproblem spaces
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Regularized Frank-Wolfe

In regularized Frank-Wolfe algorithm a regularization function
φ : X × X → R satisfying the following properties:

(A4) φ is continuously differentiable on X × X ,

(A5) φ is nonnegative and convex on X × X ,

(A6) φ(x, y) is strictly convex for every fixed y ∈ X ,

(A7) φ(x, y) is strictly convex for every fixed x ∈ X , and

(A8)

∇φ(x, y) = [∇xφ(x, y),∇yφ(x, y)] = [0, 0] if and only if x = y.
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Examples of functions that satisfy the stated requirements include

the proximal point function φ(x, y) = 1
2‖x− y‖2,

the projection function φ(x, y) = 1
2(x− y)TD(x− y), where D

is a positive diagonal matrix, and

the entropy function

φ(x, y) =
∑n

i=1{(xi + ǫ) ln
(
xi+ǫ
yi+ǫ

)
− (xi − yi )}, where ǫ > 0 is

a small constant.
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In the regularized Frank-Wolfe approach, the subproblems (83) in
the original algorithm are replaced by

min ∇i f (x
k)Txi + tkφi (xi , x

k
i )

s.t. xi ∈ Xi

}
∀i ∈ N , (85)

where tk > 0 is some positive constant and
φ(x, xk) =

∑n
i=1 φi (xi , x

k
i ).

The next iterate xk+1 is computed in the same manner as in the
partial linearization algorithm.

And FW-SUBk is replaced by the regularized subproblem

(RFW-SUBk) min ∇f (xk)Tx+ tkφ(x, x
k)

s.t. x ∈ X ,

A. Migdalas



Brief Overview of the Basic Theory Models Convex problems in supply chain optimization Algorithms

Convergence of the Regularized Frank-Wolfe Algorithm

Lemma 1

If xk solves RFW-SUBk , then xk is also a solution to P1. The
converse is also true.

Lemma 2

Let x̄k be the unique optimal solution in RFW-SUBk and assume
that x̄k 6= xk . Then dk = x̄k − xk is a feasible direction of descent.

Theorem 17

The regularized Frank-Wolfe algorithm either terminates in a finite
number of iterations or it generates an infinite sequence {xk} such
that any accumulation point is an optimal solution to P1.
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Cyclic Linearization

The cyclic linearization aims at to take advance of the new
informations generated during the loop of the the subproblems (83)
in the sequential implementation of the Frank-Wolfe algorithm.
In this approach the loop (83) in the original algorithm is replaced
by the following scheme:

x̄ki ∈ argminxi∈Xi
∇i f (x

k+1
i− , xki , x

k
i+)

Txi
αk
i ∈ argminα∈[0,1] f (x

k+1
i− , xki + α(x̄ki − xki ), x

k
i+)

xk+1
i = xki + αk

i (x̄
k
i − xki )



 ∀i ∈ N

(86)
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The PARTAN or parallel tangents approach

The PARTAN or parallel tangents approach has been
suggested in particular in order to provide an acceleration
scheme for the Frank-Wolfe algorithm that overcomes to
certain extend the zig-zagging behavior.

Thus, given two consecutive Frank-Wolfe iterates, xk and
xk+1,

1 a line search is performed along the descent direction
d̄k+1 = xk+1 − xk and

2 the new point x̄k+1 obtained as
f (x̄k+1) = f (xk + αk d̄

k+1) = minα∈[0,ᾱk ] f (x
k + αd̄k+1)

replaces xk+1 in the next Frank-Wolfe iteration.
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Simplicial Decomposition and Column Generation

Consider problem P1,using the Caratheodory’s Theorem 4 it can
be restated in the equivalent form:

(MP1) min y f (
n∑

k=1

yk x̄
k),

s.t.
K∑

k=1

yk = 1,

yk ≥ 0, k = 1, . . . ,K ,

where x̄k are the extreme points of X and K is the number of its
extreme points. If x∗ is an optimal solution to MP1, the optimal
solution to P1 is calculated as x∗ =

∑K
k=1 y

∗
k x̄

k . Recall that since
X ⊂ R

n, by Caratheodory’s theorem, at most n+ 1 extreme points
are needed to represent the optimum point x∗.
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The problem CPP, can be restated as follows:

(MP2) min y f (

K1∑

j=1

y1j x̄
j
1, . . . ,

Km∑

j=1

ymj x̄
j
m),

s.t.

Ki∑

j=1

yij = 1, i = 1, . . . ,m,

yij ≥ 0, j = 1, . . . ,Ki , i = 1, . . . ,m,

where x̄ji are the Ki in total extreme points of the ith polytope Xi

in the Cartesian product X = X1 × · · · × Xm. Clearly, MP2
includes a convexity constraint for each polytope in the product
and is therefore itself a minimization problem over a Cartesian
product of simplices.
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Hybridization of Simplicial Decomposition and Frank-Wolfe
Regularization

Consider problem (MP2) in the following form

(MP) min
y∈Y

f (y),

s.t.
y = [y1, y2, . . . , ym],

yi ∈ Yi =

{

yi

∣

∣

∣

Ki
∑

j=1

yij = 1, yij ≥ 0

}

, i = 1, . . . ,m,

m
∑

i=1

Ki = n,

where f : Rn → R is continuously differentiable and non-separable
and Y =

∏m
i=1 Yi is the Cartesian product of the m simplices.

These conditions are also sufficient to guarantee the existence of a
solution to (MP).
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For any given feasible solution yk = [yk1 , . . . , y
k
m], let

ci = ∇i f (y
k), i = 1, . . . ,m, denote the gradient of f with respect

to yi evaluated at yk . Then P is approximated at yk by m linear
subproblems:

(FW) min

Ki∑

j=1

cijyij

s.t.
ni∑

j=1

yij = 1

yij ≥ 0, j = 1, . . . , ni .

Let ŷi be the solution to each FW, and let ŷ = [ŷ1, . . . , ŷm]. A
search direction dk = ŷ − yk is defined and a new feasible solution
yk+1 = yk + αkd

k is generated by finding αk ∈ [0, 1] that
minimizes f (yk + αdk).
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(RFWP) min

Ki∑

j=1

cijyij + φi (yi , y
k
i )

s.t.
Ki∑

j=1

yij = 1

yij ≥ 0, j = 1, . . . , ni .
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Corollary 1

If yk = [yk1 , . . . , y
k
m] solves the corresponding m subproblems

RFWP, then yk is also a solution to P. The converse is also true.

Corollary 2

For feasible yk = [yk1 , . . . , y
k
m], let ŷ

k = [ŷk1 , . . . , ŷ
k
m] solve the

corresponding m subproblems RFWP, and assume that yk 6= ŷk .
Then dk = [dk1 , . . . ,d

k
m] = ŷk − yk is a feasible direction of descent

of f at yk

Corollary 3

For given feasible yk and any i = 1, . . . ,m, RFWP is feasible and
its optimal solution is unique.
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Lemma 3

Let µi be the least eigenvalue of Di . Then
∇i f (y

k)Tdki ≤ −µi‖d
k
i ‖.

Lemma 4

The maximum feasible step length is 1.
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1. algorithm regularized fw

2. Initialize y0 ∈ Y, LBD−1 ←− −∞, k ←− 0
3. do

4. UBDk ←− f (yk)

5. Solve all FW and compute LBDk

6. Let ŷk = [ŷk1 , . . . , ŷ
k
m] be the unique solutions to all RFWP

7. dk ←− ŷ − yk

8. if (dk = 0) exit

9. LBDk ←− max{LBDk−1, LBDk}

10. if( (UBDk − LBDk)/LBDk ≤ ǫ ) exit

11. αk ←− arg min
α∈[0,1]

f (yk + αdk)

12. yk+1 ←− yk + αkd
k

13. k ←− k + 1
14. end do
15. end regularized fw
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Theorem 18

Under the additional assumption of Lipschitz continuity of the
gradient, the regularized fw algorithm with Armijo steps
converges globally to an optimal solution of MP.
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Polynomially bounded dual algorithm for the solution of
the subproblems

We assume here that at iteration k , the regularization functions
φi (yi , y

k
i ) =

1
2(yi − yki )

TDi (yi − yki with diagonal Di , e.g.,
Di = diag(∇2

i f (y
k)), perturbed if necessary to positiveness, are

chosen for each i ∈ {1, . . . ,m}. Dropping constant terms and
indexing, each subproblem is thus of the form:

(QP) min
∑n

j=1
1
2djy

2
j − ljyj

s.t. ∑n
j=1 yj = 1

0 ≤ yj ≤ 1, j = 1, . . . , n.
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Let λ ∈ R be the Lagrangian multiplier associated with the
equality constraint and consider the Lagrangian inner subproblem:

[QP(λ)] min
∑n

j=1
1
2djy

2
j + (λ− l)jyj

s.t.
0 ≤ yj ≤ 1, j = 1, . . . , n.

Since dj > 0, ∀j , QP(λ) has a unique finite solution y(λ) defined
by

yj(λ) =





0, if (lj − λ)/dj ≤ 0
1, if (lj − λ)/dj ≥ 1
(lj − λ)/dj , otherwise,

Thus, the Lagrangian dual to QP is

[QPLD] max −λ+
∑n

j=1
1
2djyj(λ)

2 + (λ− l)jyj(λ).
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The λ∗ is computed using the bisection
algorithm of the nonlinear
programming.

1 Starting from an initial interval
[a0, b0] with g(a0)g(b0) < 0.

2 The midpoint of (a0+b0)
2

bisecting
the [a0, b0] is computed and
tested.

3 At each iteration, the interval is
reduced by half.

4 For a desired reduction of the
initial interval of length ε, the
maximum number of iterations
required is log2

b0−a0
ε

.

5 The final is obtained by linear
interpolation on the final interval

λ
∗ = ak +

(bk − ak)(1− g(ak)

g(bk)− g(ak)
.

(87)

Figure 4: The derivative of the
objective function in QPLD:
Breakpoints and the optimal
multiplier.
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The application of the simplicial decomposition method to STP
results in column generation sub-problems of the form:

(CGS) min
m∑

i=1

n∑

j=1

c̄
(k)
ij xij (88)

s.t
n∑

j=1

xij ≤ qi , ∀i (89)

xij ≥ 0 ∀i , ∀j , (90)

where

c̄
(k)
ij =

∂f (x (k), r (k))

∂xij
+

∂f (x (k), r (k))

∂rj
, ∀i , ∀j (91)

with

r
(k)
j =

m∑

i=1

x
(k)
ij , ∀j , (92)

and f (x , r) and denotes the objective function of the initial
problem. A. Migdalas
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Table 3: Comparison of the runtime of the algorithms

Problem size Execution time (secs)

n Helgason Brucker Pardalos Bisection
ε = 0.00001)

100 5.99E-3 3.000E-3 7.998E-3 1.000E-3

500 3.99E-2 4.099E-2 2.599E-2 2.000E-3

1000 9.29E-2 9.399E-2 6.499E-2 3.999E-3

2000 0.112 9.69E-2 7.099E-2 3.999E-3

5000 0.257 0.263 0.178 1.199E-2

7000 0.390 0.398 0.253 1.500E-2

10000 0.619 0.628 0.312 2.200E-2
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Figure 5: Size of restricted master problem in columns compared to
relative accuracy
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Figure 6: Computational time compared to the required relative accuracy
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Problems created by the principle of Cooper and LeBlanc

Problems created by the principle of LeBlanc et al.

Figure 7: Comparison of the computational results and the problem’s size
with accuracy 0.01 %
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Tailoring the Algorithm to the Traffic Assignment

Solving FTAP requires repeated solutions of restricted master
problems in the form MP and more specifically of the following
form when using disaggregate representation :

(RMP) min
∑

a∈A

fa(
∑

k∈K

rk
∑

p∈Πk

δkapλpk)

s.t. ∑

p∈Πk

λpk = 1, ∀k ∈ K

λpk ≥ 0, ∀p ∈ Pk , ∀k ∈ K

where λpk is the fraction of the total flow origin-destination (O-D)
demand on path pk ∈ Pk .
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If the RMP solution [λpk ] does not solve FTAP, where
hpk = rkλpk , p ∈ Pk , k ∈ K, then the set Pk is augmented by
solving the following column generating shortest path subproblems
which are separated over k and are obtained by linearizing AFTAP
at the current flow xa =

∑
k∈K

∑
p∈Πk

δkaphpk (where ca = sa(xa)):

[SPPk ] min f̂k(x) =
∑

a∈A

cax
k
a

s.t.

∑

a∈S(i)

xka −
∑

a∈T (i)

xka =





rk if o(k) = i
−rk if d(k) = i

0 otherwise



 ∀i ∈ N

xka ≥ 0, ∀a ∈ A

A. Migdalas



Brief Overview of the Basic Theory Models Convex problems in supply chain optimization Algorithms

Applying the regularized fw to the RMP, we can compute the
QP objective terms as dpk = r2k

∑
a∈A δkaps

′
a(xa), p ∈ Pk , k ∈ K,

and lpk = dpkλpk − rk
∑

a∈A δkapsa(xa), p ∈ Pk , k ∈ K.
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The hybrid algorithm for the traffic assignment problem I

algorithm DSD-RFW
Heuristic. Generate the first path for each O-D pair at zero arc flow,

and assign the full O-D demand to the path, i.e., perform an all-or-nothing
assignment.
1. xa ←− 0, ca ←− sa(xa), Pk ←− ∅.
2. p̂k ⇐= Solve SPPk , λp̂k

←− 1, Pk ←− Pk ∪ p̂k .
3. xa ←−

∑
k∈K rk

∑
p∈Pk

δkapλpk .
4. UBD←− f (v), LBD←− −∞.

Main solver. Generate paths based on the current arc delays. Augment the set of
generated paths. Solve the master problem over this restricted set.

Column generation. Shortest path based on current arc delays. Augment the
set of the generated paths if not previously included. Compute a lower bound
on the objective.
5. ca ←− sa(xa).

6. {f̂k (x), p̂k} ⇐= Solve SPPk .
7. If p̂k 6∈ Pk then Pk ←− Pk ∪ p̂k , λp̂k

←− 0.

8. LBD←− max{LBD,UBD +
∑

k∈K f̂k(x)−
∑

a∈A caxa}.

Convergence test. Terminate the algorithm if the relative objective error is lower
than some a priori set constant.
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The hybrid algorithm for the traffic assignment problem II

9. If |(UBD-LBD)/LBD| ≤ ǫ1 then terminate.

Restricted master. Solve the restricted master defined for the set of generated
paths. In each iteration, a QP is solved for each O-D pair.
10. MLBD←− −∞.
11. dpk ←− r2

k

∑
a∈A δkaps

′
a(xa), lpk ←− dpkλpk − rk

∑
a∈A δkapsa(xa).

12. MLBD←− max[MLBD, UBD+
∑

k∈K rk minpk∈Pk
{
∑

a∈A δkapsa(xa)}
−

∑
a∈A caxa].

13. If |(UBD-MLBD)/MLBD| ≤ ǫ2 then the master is sufficiently solved.
Goto 5.

14. λold
pk
←− λpk , x

old
a ←− xa.

15. λpk ⇐= Solve QP.
16. xa ←−

∑
k∈K rk

∑
p∈Pk

δkapλpk .

17. λdir
pk
←− λpk − λold

pk
, xdira ←− xa − xolda .

18. step⇐=Apply Armijo line search.

18′. (or step←− min{1,−
∑

a∈A sa(xolda )xdira /
∑

a∈A s′a(x
old
a )(xdira )2})

19. λpk ←− λold
pk

+ step ∗ λdir
pk

, xa ←− xolda + step ∗ xdira .
20. UBD←− f (x).
21. Goto 11.
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Computational Results I

The algorithm is implemented in C++

Nine tests on three real world networks requesting three levels
of relative objective error:

(i) the network of the city of Barcelona, Spain, which has 1020
nodes, 2522 arcs and 7922 origin-destination (O-D) pairs,

(ii) the network of Linköping, Sweden, which has 335 nodes, 882
arcs and 12372 O-D pairs, and

(iii) the network of Winnipeg, Canada, which has 1052 nodes, 2836
arcs and 4344 O-D pairs.

(DSD-RFW) is compared to the Fortran 77 code (DSD) by
Larson and Patriksson (1992)

The essential difference between the two codes is the
restricted master solver, where DSD uses a reduced gradient
technique, while our DSD-RFW utilizes the regularized fw

algorithm.
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Computational Results II

We adjusted the parameter γ (with β = 2 constant) in the
Armijo line search procedure to obtain the fastest possible
running times for both codes.

The best γ was always between 0.2 and 0.3.

We also tested various C++ and Fortran compilation
parameters since this has great impact on the computing
speed, resulting in the following switches when using Sun
(Oracle) C++ and Fortran compilers:

-Bstatic -dalign -fsimple -O5 -xlibmopt -xlibmil.
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Computational Results III

Table 4: Statistics on CPU time (in seconds), number of main iterations
(#MI), and number of line searches (#LS) for algorithms DSD and
DSD-RFW. Relative objective error achieved: 0.5%.

Network Code CPU #MI #LS

Barcelona DSD 61.3 5 100
DSD-RFW 31.3 10 28

Linköping DSD 54.2 4 20
DSD-RFW 48.3 6 12

Winnipeg DSD 53.8 6 114
DSD-RFW 30.4 12 35
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Computational Results IV

Table 5: Statistics on CPU time (in seconds), number of main iterations
(#MI), and number of line searches (#LS) for algorithms DSD and
DSD-RFW. Relative objective error achieved: 0.1%.

Network Code CPU #MI #LS

Barcelona DSD 92.6 6 149
DSD-RFW 58.8 10 59

Linköping DSD 53.8 7 94
DSD-RFW 31.7 6 36

Winnipeg DSD 135.5 7 281
DSD-RFW 59.6 11 81
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Computational Results V

Table 6: Statistics on CPU time (in seconds), number of main iterations
(#MI), and number of line searches (#LS) for algorithms DSD and
DSD-RFW. Relative objective error achieved: 0.05%.

Network Code CPU #MI #LS

Barcelona DSD 114.3 7 181
DSD-RFW 81.3 12 83

Linköping DSD 106.3 7 185
DSD-RFW 65.9 8 77

Winnipeg DSD 187.7 8 382
DSD-RFW 114.3 15 159
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Distributed System Implementation I

In this subsection we describe a synchronous single program
multiple data (SPMD) implementation of the hybridized simplicial
decomposition and regularized Frank-Wolfe algorithm as adapted
by Damberg and Migdalas (1997) There are four main reasons for
this choice:

i) the convergence properties are exactly the same as for the
sequential algorithm,

ii) it is relatively easy to implement since the compute nodes
(processors) are doing (virtually) the same thing,

iii) the FTAP problem structure suits this parallelization model
nicely, and

iv) the approach is easily adapted to modern shared-memory
multicore systems under the OpenMP parallel computing
model.
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Data structures and distribution I

By using the TAPh model, we can readily see that there are two
main data structures:

1 Network.

The network is defined by the number of nodes, links (with
corresponding delay functions) and the underlying graph.
The graph is stored as a sparse adjacency list of size |N |+ |A|
and the link data (flow, three delay function terms, and two for
temporary calculations) are stored in vectors of size |A|.
All compute nodes hold the entire network data so (given that
the compute nodes know the present link flow) the link delay
can be computed i parallel and the shortest path problems can
be solved in parallel without any communication.

2 OD-pairs.

An OD-pair is defined by its origin, destination and the
demand of flow that is to carried between the two.
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Data structures and distribution II

All processors hold this (constant) information (of size O(|K|)
to reduce the amount of data to be communicated if load
balancing is used.
Furthermore, in the disaggregated simplicial decomposition
case, there are also routes associated with the OD-pairs.
For each OD-pair there is a structure holding a linked list of
the routes (a dynamically allocated vector of network link
indices) which has been generated, i.e., the set Pk (or Lk)
from the subproblem phase SPPk . The same structure also
holds the present route flow.
The total size of these structures can be estimated with
O(|K||A|), since, in general, there are only a handful of routes
generated per OD-pair in an user equilibrium solution. This is
the (possibly huge set of) data which is to be divided among
the compute nodes.
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Data structures and distribution III

By distributing the OD-pairs over the processors we obtain a
data distribution which allows for the communication-less
solution of the route generating shortest path problems SPPk

in parallel.

Furthermore, within the master problem RMP we can solve
the quadratic knapsack problems (see §1) in parallel without
communication.
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Communication (message passing) I

Only one type (essentially) of communication is used in the
proposed algorithm.

Denote it reduce-add and multicast for further reference.

It works as follows:

1 all nodes compute their share of the data in question.
2 A ‘reduction with add’ operation is then performed to gather

and compute (summation) the total result,
3 which in its turn is sent (multicasted) back to all compute

nodes.

Optimal algorithms and their time complexity for these
operations can be found in the literature.
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Load balancing I

It performs local load balancing between pairs of processors by
comparing their compute time and transferring OD-pairs, i.e.,
the structure holding the route data (see Section 1, item 2) in
order to attempt to equalize the compute time (see Figure 8).

Denote this procedure balance-load for further reference.

P1 P2 P3 P4 P5 P6 P7 P8

P1 P2 P3 P4 P5 P6 P7 P8

Even iter:

Odd iter:

Figure 8: Local load balancing scheme.
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Load balancing II

Computational tests has proven this to be efficient, especially
if the algorithm is used for solving several snapshots of the
network with varying OD-pair demand for each snapshot.

One snapshot is in general solved with only a handful major
iterations, so there is little to gain in this case.
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The distributed disaggregate simplicial decomposition
algorithm I

Let C denote the set of compute nodes and

let Kc be the set of OD-pairs that compute node c ∈ C deals
with. Clearly ∪c∈CK

c = K,Ki ∩ Kj = ∅, ∀i , j ∈ C, i 6= j .

Let xc denote the vector of link flows [xca ], where
xca =

∑
k∈Kc

∑
pk∈Pk

hpkδkap, i.e., the part of the link flow
that the generated routes held by compute node c carry.

Let f̂ c(x) =
∑

k∈Kc f̂k(x) be the total shortest path cost for
problems SPPk which are solved by processor c .

Finally, define UBD as the upper bound on the objective and
by LBD the lower bound.

Note that all processors run the same program, but each have
different data sets (which correspond to Kc), i.e., it is a
SPMD algorithm.
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Algorithm SPMD-DDSD I

Initialization. Data input and initial distribution of OD-pairs. The
|K| OD-pairs are evenly distributed over the |C|
compute nodes.

Heuristic. Generate the first route for each OD-pair at zero link
flow, and assign the full OD demand to the route —
an all-or-nothing assignment.

1 x←− 0, ca ←− sa(x), Pk ←− ∅.
2 p̂k ⇐= Solve SPPk(ca, . . .),

hp̂k ←− rk , Pk ←− Pk ∪ p̂k .

3 x⇐= reduce-add and multicast(xc)

4 UBD ←− f (x), LBD ←− −∞
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Algorithm SPMD-DDSD II

Main solver. Generate routes based on the current link delays.
Augment the set of generated routes. Solve the
master problem over the restricted set of generated
routes.

Subproblem solver. Shortest path based on current link delays.
Augment the set of generated routes if not previously
included. Compute a lower bound on the objective.

5 ca ←− sa(x).

6 {f̂k(x), p̂k} ⇐= Solve SPPk(ca, . . .)
If p̂k /∈ Pk then Pk ←− Pk ∪ p̂k , hp̂k ←− 0.

7 f̂ (x)⇐= reduce-add and multicast(f̂ c(x))

8 LBD ←− max{LBD,UBD + f̂ (x)−
∑

a∈A caxa}

Convergence test. Terminate algorithm if the relative objective
error is below some a priori set constant.
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Algorithm SPMD-DDSD III

9 If (UBD− LBD)/LBD ≤ ε then Terminate!

Restricted master solver. Solve the equilibrium problem over the
restricted set of generated routes. Each iteration the
objective is approximated with a separable (over the
OD-pairs) quadratic function; see §1.

10 dpk ←−
∑

a∈A δkaps
′
a(xa), lpk =∑

a∈A δkapsa(xa).

11 holdpk ←− hpk , xolda ←− xa

12 hpk ⇐= Solve QPPk(h
old
pk , . . .)

13 x⇐= reduce-add and multicast(xc)

14 hdirpk ←− hpk − holdpk , xdira ←− xa − xolda

15 step ←−
min{1,−

∑
a∈A sa(x

old
a )xdira /

∑
a∈A s ′a(x

old
a )(xdira )2}
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Algorithm SPMD-DDSD IV

16 hpk ←− holdpk + step ∗ hdirpk ,

xa ←− xolda + step ∗ xdira

17 UBD ←− f (x)

18 Terminate master after (a priori set) number of
iterations. Return new equilibrium flow.

19 Goto 10.

Load equalization. Re-distribute OD-pair data to obtain equal
running times for the compute nodes.

20 balance-load

21 Goto 5.
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Implementation and Computational Results I

Table 7: Summary of network data

Network # nodes # links # OD-pairs OD-pair to link ratio

Barcelona 1020 2522 7922 3.1
Linköping 335 882 12372 14.0
Winnipeg 1052 2836 4344 1.5
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Implementation and Computational Results II

Figure 9: GIS map of the flow on the Linköping network.
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Table 8: Wall clock time (not including I/O to disk) in seconds for one
snapshot the networks. Requested relative objective error: 0.1 %.

Number of processors
Network Platform 1 2 4 8 16

Barcelona MIMD Computer 44.0 27.3 19.5 13.1 12.9
Multi-computer cluster 30.5 14.6 11.0 7.6 —

Linköping MIMD Computer 49.8 35.2 22.0 12.0 9.0
Multi-computer cluster 36.6 17.5 12.3 6.99 —

Winnipeg MIMD Computer 60.1 33.4 22.7 18.8 18.5
Multi-computer cluster 39.9 20.1 15.2 12.6 —
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Figure 10: Speed-up for one snapshot of all three networks (data from
Table 8).
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Figure 11: OD-pair demand scaling of original demand for each snapshot.
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Table 9: Wall clock time (not including I/O to disk) in seconds for 100
snapshots of the networks. Requested relative objective error for each
snapshot: 0.5%.

Number of processors
Network Platform 1 2 4 8 16

Barcelona MIMD Computer 2889 1520 822 576 561
Multi-computer cluster 1970 987 526 356 —

Linköping MIMD Computer 7426 4014 2196 1329 1045
Multi-computer cluster 3898 1954 1035 675 —

Winnipeg MIMD Computer 3294 1734 925 708 689
Multi-computer cluster 2281 1150 633 450 —
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Figure 12: Speed-up for 100 snapshots of all three networks (data from
Table 9)
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