
Simplicial Global Optimization

Julius �Zilinskas (Þëþñ Æèëèíñêàñ)

Vilnius University, Lithuania

Summer School on Operational Research and Applications

May 16, 2013

Global optimization

Find f ∗ = min
x∈D

f (x) and x∗ ∈ D, f (x∗) = f ∗, where D ⊆ Rn.

Example:

I n = 1;

I D = [0, 10];

I Objective function

f (x) =
5∑

j=1

j sin((j+1)x+j);

I f ∗ = −12.0312;
I x∗ = 5.7918.

-15

-10

-5

0

5

10

15

0 2 4 6 8 10

f(x
)

x

Local optimization

I A point x∗ is a local minimum

point if f (x∗) ≤ f (x) for

x ∈ N, where N is a

neighborhood of x∗.

I A local minimum point can be

found stepping in the

direction of steepest descent.

I Without additional

information one cannot say if

the local minimum is global.

I How do we know if we are in

the deepest hole? -15

-10

-5

0

5

10

15

3 4 5 6 7

f(x
)

x

Classi�cation of global optimization methods

I Methods with guaranteed accuracy:
I Covering methods;

I Direct methods:
I Random search methods,
I Clustering methods,
I Generalized descent methods;

I Indirect methods:
I Methods approximating level sets,
I Methods approximating objective function.

Criteria of performance of global optimization algorithms

I Speed:
I Time of optimization,
I Number of objective function (and sometimes gradient,

bounding, and other functions) evaluations,
I Both criteria are equivalent when objective function is

�expensive� � its evaluation takes much more time than
auxiliary computations of an algorithm.

I Best function value found.

I Reliability � how often problems are solved with prescribed

accuracy.

Covering methods

I Detect and discard non-promising sub-regions using
I interval arithmetic

{
f (X) |X ∈ X ,X ∈ [R,R]n

}
⊆ f

(
X
)
,

I Lipschitz condition |f (x)− f (y)| ≤ L||x − y ||,
I convex envelopes,
I statistical estimates,
I heuristic estimates,
I ad hoc algorithms.

I May be implemented using branch and bound algorithms.

I May guarantee accuracy for some classes of problems:

f ∗ ≤ minx∈D f (x) + ε.

Branch and bound

I An iteration of a classical branch and bound processes a node

in the search tree representing a not yet explored subspace.

I Iteration has three main components: selection of the node to

process, branching and bound calculation.

I The bound for the objective function over a subset of feasible

solutions should be evaluated and compared with the best

objective function value found.

I If the evaluated bound is worse than the known function value,

the subset cannot contain optimal solutions and the branch

describing the subset can be pruned.

I The fundamental aspect of branch and bound is that the

earlier the branch is pruned, the smaller the number of

complete solutions that will need to be explicitly evaluated.

General algorithm for partition and branch-and-bound

Cover D by L = {Lj |D ⊆
⋃

Lj , j = 1,m} using covering rule.

while L 6= ∅ do
Choose I ∈ L using selection rule, L← L\{I}.
if bounding rule is satis�ed for I then

Partition I into p subsets Ij using subdivision rule.

for j = 1, . . . , p do

if bounding rule is satis�ed for Ij then

L← L
⋃
{Ij}.

end if

end for

end if

end while

Rules of branch and bound algorithms for global

optimization

I The rules of covering and subdivision depend on type of

partitions used: hyper-rectangular, simplicial, etc.

I Selection rules:
I Best �rst, statistical � the best candidate: priority queue.
I Depth �rst � the youngest candidate: stack or without storing.
I Breadth �rst � the oldest candidate: queue.

I Bounding rule describes how the bounds for minimum are
found. For the upper bound the best currently found function
value may be accepted. The lower bound may be estimated
using

I Convex envelopes of the objective function.
I Lipschitz condition |f (x)− f (y)| ≤ L||x − y ||.
I Interval arithmetic

{
f (X) |X ∈ X ,X ∈ [R,R]n

}
⊆ f

(
X
)
.

Rules of covering rectangular feasible region and branching

�
�
�

�
�
�

@@ �
�
�

@
@
@

�
�
�@
@
@

&%
'$

&%
'$
��
����
��
��
����
��

&%
'$
��
����
��
��
����
��

������
��
������
��

&%
'$

&%
'$
��
��
��
��

&%
'$
��
��
��
��
������
��

&%
'$
��
��
��
��
������
��
������
��

Lipschitz optimization

I Lipschitz optimization is one of the most deeply investigated

subjects of global optimization. It is based on the assumption

that the slope of an objective function is bounded.

I The multivariate function f : D → R,D ⊂ Rn is said to be

Lipschitz if it satis�es the condition

|f (x)− f (y)| ≤ L‖x − y‖, ∀x , y ∈ D,

where L > 0 is a constant called Lipschitz constant, the

domain D is compact and ‖ · ‖ denotes a norm.

I Branch and bound algorithm with Lipschitz bounds may be

built: if the evaluated bound is worse than the known function

value, the sub-region cannot contain optimal solutions and the

branch describing it can be pruned.

Lipschitz bounds

The e�ciency of the branch and bound technique depends on the

bound calculation.

I The upper bound for the minimum is the smallest value of the

function at the vertices xv : LB(D) = min
xv

f (xv).

I The lower bound for the minimum is evaluated exploiting

Lipschitz condition:

f (x) ≤ f (y) + L‖x − y‖.

I The lower bound can be derived as

µ1 = max
xv∈V (I)

{
f (xv)− Lmax

x∈I
‖x − xv‖

}
.

Comparison of selection strategies in Lipschitz optimization

Average number of function evaluations
Dimension Best First Statistical Depth First Breadth First

n = 2 9064 9100 9716 9068

n = 3 1217072 1217206 1222060 1217509

n = 4 879656 879276 880478 879851

n = 5, 6 3939678 3923552 3925984 3960629
Average total amount of simplices
Dimension Best First Statistical Depth First Breadth First

n = 2 18126 18199 19430 18133

n = 3 2434138 2434406 244114 2435013

n = 4 1759290 1758531 1760934 1759680

n = 5, 6 7878996 7846744 7851609 7920898

Average maximal number of simplices in the list
Dimension Best First Statistical Depth First Breadth First

n = 2 2709 640 12 3135

n = 3 274960 102734 23 423552

n = 4 168927 105814 36 249651

n = 5, 6 704862 136589 374 903555
Average execution time
Dimension Best First Statistical Depth First Breadth First

n = 2 0.05 0.05 0.05 0.05

n = 3 17.99 16.00 12.41 13.64

n = 4 31.65 31.68 26.86 27.53

n = 5, 6 1592.19 1568.13 1577.68 1555.55

Average ratio tBestFound/tAllTime

Dimension Best First Statistical Depth First Breadth First

n = 2 0.234 0.236 0.365 0.408

n = 3 0.140 0.008 0.209 0.306

n = 4 0.142 0.035 0.240 0.472

n = 5, 6 0.074 0.000 0.005 0.077

Simplex

I An n-simplex is the convex hull of a set of (n + 1) a�nely

independent points in n-dimensional Euclidean space.

I An one-simplex is a segment of line, a two-simplex is a

triangle, a three-simplex is a tetrahedron.

T
T
T
T
T
T
T�

�
�
�
�
�
� T

T
T
T
T
T
T�

�
�
�
�
�
�

Simplicial vs rectangular partitions

I A simplex is a polyhedron in n-dimensional space, which has

the minimal number of vertices.

I Simplicial partitions are preferable when values of the objective

function at vertices of partitions are used to evaluate

sub-regions.

I Numbers of function evaluations in Lipschitz global

optimization with rectangular and simplicial partitions:

test function 1 2 3 4 5 6 7

rectangular 643 167 3531 45 73 969 7969

simplicial 611 132 2185 70 80 838 3117

test function 8 9 10 11 12 13

rectangular 301 13953 1123 2677 12643 15695

simplicial 244 3773 848 1566 4001 4084

Subdivision of simplices

I Into similar simplices.

T
T
T
T
T
T
T�

�
�
�
�
�
� T

T
T
T �

�
�
�

I Into two through the middle of the longest edge.

�
�
�
�
�
�
� @

@
@
@

�
�
�
�
�
�
��

�
�
�
�
�
�
�
�

����B
B
B
B

Covering of feasible region

I Very often a feasible region in global optimization is a

hyper-rectangle de�ned by intervals of variables.

I A feasible region is face-to-face vertex triangulated: it is

partitioned into n-simplices, where the vertices of simplices are

also the vertices of the feasible region.

I A feasible region de�ned by linear inequality constraints may

be vertex triangulated. In this way constraints are managed by

initial covering.

�
�
�
�
�
� ���

�

����@
@
@
@
@
@
(((((

((((
�
�
�
�
�
�
�

���
�

QQQQ

B
B
B
B(((((((((""

""
""
""

Combinatorial approach for vertex triangulation of a

hyper-rectangle

I General � for any n.

I Deterministic, the number of simplices is known in advance �

n!.

I All simplices are of equal hyper-volume � 1/n! of the
hyper-volume of the hyper-rectangle.

I By adding just one point at the middle of diagonal of the

hyper-rectangle each simplex may be subdivided into two.

I May be easily parallelized.

Examples of combinatorial vertex triangulation of two- and

three-dimensional hyper-rectangles

�
�
�
�
�
�

���
�

�����
�
�
�
�
�
�
(((((((((

�
�
�
�
�
�
���
�

�
�
�
�
�
�
� �

�
�
�
�
������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

(((((((((
(((((((((���

� �
�
�
�
�
�
�
�
�

�
�
�
�
�
�
��

�
�
�
�
�
�
�
�

����

�
�
�
�
�
��
�
�
�
�
�
�
�
�
(((((((((���
�
���

�
�
�
�
�
�
�
��

�
�
�
�
�

Algorithm for combinatorial vertex triangulation of

hyper-rectangle

for τ = equals one of all permutations of 1, . . . , n do

for j = 1, . . . , n do

v1j ← Dj1

end for

for i = 1, . . . , n do

for j = 1, . . . , n do

v(i+1)j ← vij
end for

v(i+1)τi ← Dτi2
end for

end for

Combinatorial vertex triangulation of a unit cube

τ = {1, 2, 3} τ = {1, 3, 2} τ = {2, 1, 3}

v =

0 0 0

1 0 0

1 1 0

1 1 1

 v =

0 0 0

1 0 0

1 0 1

1 1 1

 v =

0 0 0

0 1 0

1 1 0

1 1 1

τ = {2, 3, 1} τ = {3, 1, 2} τ = {3, 2, 1}

v =

0 0 0

0 1 0

0 1 1

1 1 1

 v =

0 0 0

0 0 1

1 0 1

1 1 1

 v =

0 0 0

0 0 1

0 1 1

1 1 1

Parallel algorithm for combinatorial vertex triangulation

for k = bn!rank/sizec to bn!(rank + 1)/sizec − 1 do

for j = 1, . . . , n do τj ← j end for

c ← 1

for j = 2, . . . , n do

c ← c(j − 1)
swap τj−bk/cc%j with τj

end for

for j = 1, . . . , n do v0j ← Dj1 end for

for i = 1, . . . , n do

for j = 1, . . . , n do v(i+1)j ← vij end for

v(i+1)τi ← Dτi2
end for

end for

Vertex triangulation of feasible region de�ned by linear

inequality constraints I

min f (x),
s.t. 0 ≤ xi ≤ 1,

x1 + x2 ≤ 1,
x2 − x3 ≤ 0.

@
@
@
@
@
@

���
�

�����
�
�
�
�
�
�
���� B

B
B
B
B
B
B�

�
�
�
�
�
�@
@
@
@
@
@����

x1 = 0, x2 = 0, x3 = 0

x1 = 0, x2 = 0, x3 = 1

((((
((((

(((hhhhhhhhhhh
x1 = 0, x2 = 1, x3 = 0

x1 = 0, x2 = 1, x3 = 1

x1 = 1, x2 = 0, x3 = 0

x1 = 1, x2 = 0, x3 = 1

((((
(((

((((hhhhhhhhhhh
x1 = 1, x2 = 1, x3 = 0

((((
((((

(((hhhhhhhhhhh
x1 = 1, x2 = 1, x3 = 1

Vertex triangulation of feasible region de�ned by linear

inequality constraints II

min f (x),
s.t. 0 ≤ xi ≤ 1,

x1 + x2 ≤ 1,
−x2 + x3 ≤ 0.

@
@
@
@
@
@

���
�

�����
�
�
�
�
�
�
����

@
@
@
@
@
@B
B
B
B
B
B
B

����

x1 = 0, x2 = 0, x3 = 0

((((
(((

((((hhhhhhhhhhh
x1 = 0, x2 = 0, x3 = 1

x1 = 0, x2 = 1, x3 = 0

x1 = 0, x2 = 1, x3 = 1

x1 = 1, x2 = 0, x3 = 0

(((
((((

((((hhhhhhhhhhh
x1 = 1, x2 = 0, x3 = 1

((((
(((

((((hhhhhhhhhhh
x1 = 1, x2 = 1, x3 = 0

((((
(((

((((hhhhhhhhhhh
x1 = 1, x2 = 1, x3 = 1

Coping with symmetries of objective function

I If interchange of the variables xi and xj does not change the

value of the objective function, it is symmetric over the

hyper-plane xi = xj .

I It is possible to avoid such symmetries by setting linear

constraints on such variables: xi ≤ xj .

I The resulting constrained search space may be vertex

triangulated.

I The search space and the numbers of local and global

minimizers may be reduced by avoiding symmetries.

Example of coping with symmetries of objective function

f (x) =
n∑

i=1

x2i
4000

−
n∏

i=1

cos(xi) + 1,D = [−500, 700]n

I The objective function is symmetric over hyper-planes xi = xj .

I Constraints for avoiding symmetries: x1 ≤ x2 ≤ . . . ≤ xn.

I The resulting simplicial search space:

D =

−500 −500 . . . −500 −500
−500 −500 . . . −500 700

...
. . .

...

−500 700 . . . 700 700

700 700 . . . 700 700

.

�
�
�
�
�
�
� �

�
�
�
�
������

�
�
�
�
�
�
�
�

Example of coping with symmetries: optimization of

gillage-type foundations

I Grillage foundation consists of separate beams, which are

supported by piles or reside on other beams.

I The piles should be positioned minimizing the largest di�erence

between reactive forces and limit magnitudes of reactions.

Optimization of gillage-type foundations: formulation

I Black-box problem. The values of objective function are

evaluated by an independent package which models reactive

forces in the grillage using �nite element method.

I Gradient may be estimated using sensitivity analysis

implemented in the modelling package.

I The number of piles is n.

I The position of a pile is given by a real number, which is

mapped to a two-dimensional position by the modelling

package. Possible values are from zero to the sum of length of

all beams l .

I Feasible region is [0, l]n.

I Characteristic of all piles are equal, their interchange does not

change the value of objective function.

Optimization of gillage-type foundations: simplicial search

space I

I Let us constrain the problem avoiding symmetries of the

objective function: x1 ≤ x2 ≤ . . . ≤ xn.

I Simplicial search space:

D =

0 0 . . . 0 0

0 0 . . . 0 l
...

. . .
...

0 l . . . l l

l l . . . l l

.

I Search space and the numbers of local and global minimizers

are reduced n! times with respect to the original feasible

region.

Optimization of gillage-type foundations: simplicial search

space II

I The distance between adjacent piles cannot be too small due

to the speci�c capacities of a pile driver.

I Let us constrain the problem avoiding symmetries and

distances between two piles smaller than δ:
x1 ≤ x2 − δ, . . . , xn−1 ≤ xn − δ.

I Simplicial search space:

D =

0 δ . . . (n − 2)δ (n − 1)δ
0 δ . . . (n − 2)δ l
...

. . .
...

0 l − (n − 2)δ . . . l − δ l

l − (n − 1)δ l − (n − 2)δ . . . l − δ l

.

Global optimization in least squares nonlinear regression

I The optimization problem in nonlinear LSR:

min
X∈A

N∑
i=1

(yi − ϕ(X ,Zi))2 = min
X∈A

f (X),

where the measurements yi at the points

Zi = (z1i , z2i , . . . , zpi) should be tuned by the nonlinear

function ϕ(X , ·).
I The minimization problem seems favorable for application of

classical nonlinear programming techniques: normally the

number of variables (equal to the number of model parameters

to be estimated) is small, and the objective function is smooth.
I A practical problem could be solved easily using well developed

nonlinear programming algorithms if a starting point for local

descent would be known in the region of attraction of the

global minimizer.
I If such a starting point is not known the problem should be

considered as a global optimization problem.

Example problem: MGH17

I 1 Response Variable (y)

I 1 Predictor Variable (z)

I 33 Observations

ϕ(X , z) = x1 + x2 exp(−x4z) + x3 exp(−x5z)

z

y

0 100 200 300

0.4

0.6

0.8

Test problems

No. Regression function Feasible region Minimizer
1 x1x3z1/(1+ x1z1 + x2z2) [0, 103]3 3.1315, 15.159, 0.7801
2 x3(exp(−x1z1) + exp(−x2z2)) [0, 103]2, [0, 104] 13.241, 1.5007, 20.100
3 x3(exp(−x1z1) + exp(−x2z2)) [0, 2 · 103], [0, 102]2 814.97, 1.5076, 19.920
4 x1 + x2 exp(x3z) [0, 103], [0, 10], [0, 2] 15.673, 0.9994, 0.02222
5 x1 exp(x2/(x3 + z)) [0, 104], [0, 5 · 104],

[0, 104]
5.610 · 10−3, 6181.4,
345.22

6 exp(x1z) + exp(x2z) [0, 1], [0, 1] 0.2578, 0.2578
7 x1 exp(x3z) + x2 exp(x4z) [0, 108]2, [−2, 0],

[−5, 0]
1655.2, 3404 · 104,
−0.6740, −1.8160

8 x1z
x3 + x2z

x4 [0, 1], [1, 8],
[1, 5], [0, 1]

0.004141, 3.8018,
2.0609, 0.2229

9 exp(x1z) + exp(x2z) [−50, 50]2 0.2807, 0.4064
10 x1 + x2 exp((x3 + x4z)x5) [0, 100]2, [0, 5], [0, 1]2 9.3593, 2.0292, 1.3366,

0.4108, 0.3551
11 x1 exp(x3z) + x2 exp(x4z) [−104, 104]2, [−1, 1]2 47.971, 102.05,

−0.2466, −0.4965
12 x1z

x2 + x
x2/z
3 [0, 5]3 0.05589, 3.5489, 1.4822

13 x1 + x2z
x3
1 + x4z

x5
2 + x6z

x7
3 [−5, 5],

{[−5, 5], [0, 10]}3
1.930, 2.578, 0.8017,
−1.299, 0.8991,
0.01915, 3.018

14 x1 ln(x2 + x3z) [0, 100]3 2.0484, 18.601, 1.8021

Application of CToolbox interval algorithm

No. Time (s) NFE Minimum

1 3600 718,757 Not �nished

2 3600 1,723,972 Not �nished

3 3600 1,186,617 Not �nished

4 3600 1,191,193 Not �nished

5 3600 789,384 Not �nished

6 0.00 661 124.3622
7 3600 656,474 Not �nished

8 3600 672,142 Not �nished

9 0.54 13,570 8.896301 · 10−3
10 3600 555,223 Not �nished

11 3600 700,494 Not �nished

12 1.29 17,454 4.375281 · 10−3
13 3600 659,215 Not �nished

14 3600 1,644,024 Not �nished

Modi�ed problems

I When the regression function contains linear and nonlinear

parameters the optimal values of the former can be found

analytically reducing the dimensionality of the problem.

I The regression function ϕ(X , z) = x1 exp(x3z) + x2 exp(x4z)
contains the linear parameters x1 and x2 whose optimal values

can be expressed as

b1 =
(
∑

yi exp(x3zi))×(
∑

exp(2x4zi))−(
∑

yi exp(x4zi))×(
∑

exp((x3+x4)zi))

(
∑

exp(2x3zi))×(
∑

exp(2x4zi)−(
∑

exp((x3 + x4)zi))2

b2=
(
∑

yi exp(x4zi))×(
∑

exp(2x3zi))−(
∑

yi exp(x3zi))×(
∑

exp((x3 + x4)zi))

(
∑

exp(2x3zi))×(
∑

exp(2x4zi))−(
∑

exp((x3+x4)zi))2

with the subsequent reduction of the original four-dimensional

problem to a two-dimensional problem:

ϕ(X , z) = b1 exp(x3z) + b2 exp(x4z).

Optimization of modi�ed test problems using CToolbox

Test No. Time NFE Minimum

1 0.58 11,572 4.355266 · 10−5
2 173.49 398,660 7.471221 · 10−5
3 3600 1,054,775 not �nished

12 0.68 6,507 4.375281 · 10−3
4 error of division by interval containing 0

5 error inverting matrix in interval Newton method

6-14 error of division by interval containing 0

Optimization with simplicial Lipschitz branch and bound

with global constant

Test problem 6 Test problem 9

Optimization with simplicial algorithm

Test problem 6 Test problem 7

Optimization with simplicial algorithm

Test problem 9 zoomed in

Optimization with simplicial algorithm

Test problem 11 Problem MGH17

Optimization with simplicial algorithm

Problem n n′ NFE NFE avoiding symetries

Test 6 2 2 600 302

Test 7 4 2 574 306

Test 9 2 2 317 161

Test 11 4 2 2101 1089

MGH17 5 2 573 290

Lanczos1 6 3 42692 7118

Lanczos2 6 3 42692 7118

Lanczos3 6 3 42758 7129

Heuristic attraction based subdivision method

I Developed for multidimensional global optimization.

I Partitioning is controlled by the information acquired during

local searches.

I There is no guarantee that the global minimum is found with a

prescribed accuracy.

I Applicable in a �black box� situation.

I Algorithm with hyper-rectangular partitions has been applied

for multidimensional scaling, many-body problems, growth

model of human mandible problem, grillage-type foundation

problem.

Attraction based subdivision algorithm

while not time-limit do

while sub-region list is not empty do

remove best sub-region

apply local searches from the sample points

reject or subdivide

end

for all rejected sub-regions do

subdivide and add to sub-region list

end

end

Rejection of the sub-region I

I All local searches go outside of the sub-region.

I Say, there is no minimum point in the sub-region.

�
�
�
�
�
�
�
�
�
�
�

q��T
T
T
qaa

a

q
���

���

Rejection of the sub-region II

I All local searches converge to the same point.

I Say, there is only one minimum point in the sub-region.

�
�
�
�
�
�
�
�
�
�
�

q���
�
�
q
qZZZ�

�
�
d

Rejection of the sub-region III

I The estimated lower bound for the minimum over the

sub-region is larger than the smallest function value found

before. The lower bound is estimated using the largest

gradient norm and the smallest objective function value in the

sub-region obtained during local searches.

�
�
�
�
�
�
�
�
�
�
�

qd

qd
q
������

Algorithmic copositivity detection by simplicial partitioning

I A symmetric matrix A is called copositive if xTAx ≥ 0 for all

x ∈ Rn
+, where Rn

+ := {x ∈ Rn : xi ≥ 0 for all i} denotes the
non-negative orthant.

I Bundfuss and D�ur (2008) proposed algorithmic copositivity

detection by simplicial partition.

I The algorithm starts with a standard simplex, whose vertices

are the unit vectors e1, . . . , en.

I Simplices are subdivided until:
I vTAv < 0 for one vertex v of one of the simplices what means

that the matrix A is not copositive or
I vT

i Avj ≥ 0 for all pairs of vertices vi and vj of all simplices
what means that the matrix A is copositive.

I Depth �rst selection strategy without storing the set of

simplices and corresponding matrices may be applied to avoid

memory problems.

Sketch of the algorithm for copositivity detection

Start with the standard simplex

while not stopped do

if vTAv < 0 for at least one vertex v of the simplex then

the matrix is not copositive, exit

else if vTi Avj ≥ 0 for all vertices vi and vj of the simplex

then

restore vertices, change vertex or stop the cycle

remember the changed vertex

else

subdivide the edge with the smallest vTi Avj
remember the changed vertex

end if

end while

the matrix is copositive

Notes on the algorithm for copositivity detection

I We use a matrix Q to store the values vTi Avj so not to

compute them for each simplex.

I A matrix V is used to store the vertices of a simplex.

I We start with V ← (e1, . . . , en); Q ← A.

I Storing the matrices V and Q of all candidate simplices would

require a large amount of memory.

I We apply a depth-�rst selection strategy without storing the

whole set of simplices, thus we store only the information

required to restore V and Q when returning to the lower

level (l).

I i∗l and j∗l are the row and column numbers of the smallest

negative element of Q and the numbers of vertices which are

used in subdivision of simplex.

I A vector v∗l is used to restore the vertex of the simplex,

whereas a vector q∗l is used to restore row and column of the

matrix Q.

Subdivision, remembering, restoring

T
T
T
T
T
T�

�
�
�
�
� T

T
T
T
T
T�

�
�
�
�
�
vj vi

�
�
�
�
�
�
vj vi

T
T
T
T
T
T�

�
�
�
�
�
vj vi

T
T
T
T
T
T

vj vi

T
T
T
T
T
T

�
�
�

vj

vi
�
�
�
T
T
T
vj

vi

T
T
T
T
T
T

�
�
�

vj

vi
�
�
�T
T
T

vj

vi
T
T
T
T
T
T
vj

T
T
T
T
T
T�

�
�
�
�
�
vj

Experimental results on random matrices

Aij = Aji = rand(−1, 1), Aii = 1, i , j = 1, . . . , n.
copositive t∗, ms

n # % max nsimp max l t, µs tcop/tncop (Yang&Li'09)

3 904408 90.4408 47 12 8.58 1.8 0.1

4 707647 70.7647 381 19 15.79 2.5 0.7

5 465611 46.5611 3125 25 27.97 4.5 3.2

6 252559 25.2559 7231 28 45.95 9.0 19.1

7 112081 11.2081 53777 31 66.86 19.0 96.4

8 39285 3.9285 55091 36 83.17 45.1 398.7

9 10791 1.0791 112423 35 91.59 119.4 351.2

10 2191 0.2191 199551 34 81.92 372.2 363.5

11 294 0.0294 238983 30 68.34 1599.3

12 37 0.0037 1283566 38 63.36 3562.0

13 6 0.0006 491129 27 46.63 14464.7

14 0 0.0000 69329 29 53.70

15 0 0.0000 38487 34 67.08

16 0 0.0000 124 27 75.94

17 0 0.0000 21 20 96.33

18 0 0.0000 18 17 113.38

19 0 0.0000 19 18 138.80

20 0 0.0000 19 18 157.93

Experimental results on random copositive matrices

A = BBT +N, Bij = rand(−1, 1), Nij = rand(0, 1), i , j = 1, . . . , n.
possitive purely

semide�nite non-negative

n # % # % max nsimp max l t, ms

3 6721 67.21 5288 52.88 15 4 0.006

4 5339 53.39 2407 24.07 39 5 0.009

5 4215 42.15 799 7.99 83 8 0.017

6 3299 32.99 183 1.83 249 11 0.036

7 2541 25.41 40 0.40 495 12 0.087

8 1891 18.91 10 0.10 1475 15 0.242

9 1453 14.53 1 0.01 10701 21 0.973

10 1045 10.45 0 0.00 20465 22 2.572

11 799 7.99 0 0.00 40377 23 9.524

12 550 5.50 0 0.00 285739 26 35.72

13 403 4.03 0 0.00 1627925 29 147.8

14 255 2.55 0 0.00 3764717 34 621.5

15 179 1.79 0 0.00 7614199 36 2502.8

16 120 1.20 0 0.00 75535303 39 11129.8

17 72 0.72 0 0.00 307585243 43 57932.7

Copositivity detection for solution of copositive programs

I A quadratic programming problem with a single quadratic

constraint

min〈Q,X 〉 s.t. 〈D,X 〉 = b, X = xxT , x ≥ 0.

I Copositive formulation with a variable y ∈ R and the cone of

copositive matrices C

max{y : Q − yD ∈ C}.

I The maximum clique problem may be formulated as

ω(G) = min{t : tQ − J ∈ C},

where t ∈ N is a variable, ω(G) is the clique number, and

Q = J − AG , where AG is the adjacency matrix of the graph

G , J is a matrix with all entries equal to 1.

I Since there is a single variable (y or t), the problems may be

solved by performing a series of copositivity tests.

Results on matrices for generated MaxClique problems

Graph n m ω A A ∈ C? nsimp max l t, s
Brock20 20 95 5 4Q − J No 7 6 0

5Q − J Yes 1599352423 58 24297
Jagota16 16 57 8 6Q − J No 13 12 0

7Q − J No 20968165 56 201
8Q − J Yes 130533619 63 1254

Morgen20 20 67 5 4Q − J No 9 8 0
5Q − J Yes 1263040427 49 21621

Morgen22 22 68 5 4Q − J No 11 10 0
5Q − J Yes 110514789 47 2225

Sanchis20 20 50 5 4Q − J No 4 3 0
5Q − J Yes 25204809 37 403

Sanchis22 22 50 5 4Q − J No 6 5 0
5Q − J Yes 57308615 39 1156

c-fat14-1 14 52 6 5Q − J No 5 4 0
6Q − J Yes 328379153 56 2454

Hamming4-4 16 8 2 2Q − J Yes 511 8 0
Johnson6-2-4 15 45 3 2Q − J No 2 1 0

3Q − J Yes 148231 21 1
Johnson6-4-4 15 45 3 2Q − J No 2 1 0

3Q − J Yes 147201 22 1
Johnson7-2-4 21 105 3 2Q − J No 2 1 0

3Q − J Yes 276748639 37 4979
Keller2 16 40 2 2Q − J Yes 10329 15 0

Results on matrices for Johnson's MaxClique problems

Graph n m ω A A ∈ C? nsimp max l t, s
J8-2-4 28 210 4 3Q − J No 3 2 0.00

4Q − J ? 495472976 58 20000
J8-4-4 70 1855 14 6Q − J No 6 5 0.01

7Q − J No 7 6 0.01
8Q − J No 8 7 0.05
9Q − J No 9 8 0.05
10Q − J No 10 9 0.03
11Q − J No 375 374 0.70
12Q − J No 12 11 0.02
13Q − J No 375 374 0.70
14Q − J ? 12888179 408 20000

J16-2-4 120 5460 8 6Q − J No 6 5 0.13
7Q − J No 7 6 0.14
8Q − J ? 2168649 488

J32-2-4 496 107880 16 6Q − J No 6 5 18.59
7Q − J No 7 6 31.06
8Q − J No 8 7 28.91
9Q − J No 9 8 24.25
10Q − J No 10 9 47.43
11Q − J No 3421 3420 10333
12Q − J No 12 11 34.29
13Q − J ? 3972 3638 20003
14Q − J ? 6621 3997 20003
15Q − J No 15 14 17.61
16Q − J ? 3803 3638 20005

Results on problems from the Second DIMACS Challenge

Data set n m ω ω′ max l memory memory
V & Q v∗ & q∗

Brock200_1 200 14834 21 13 1990 1.2GB 6.1MB
Brock200_2 200 9876 12 10 980 0.6GB 3.0MB
Brock200_3 200 12048 15 11 1330 0.8GB 4.1MB
Brock200_4 200 13089 17 13 1504 0.9GB 4.6MB
Brock400_1 400 59723 27 19 4984 11.9GB 30.4MB
Brock400_2 400 59786 29 18 4946 11.8GB 30.2MB
Brock400_3 400 59681 31 19 4919 11.7GB 30.0MB
Brock400_4 400 59765 33 19 4978 11.9GB 30.4MB
Brock800_1 800 207505 23 16 7609 72.6GB 92.9MB
Brock800_2 800 208166 24 16 7457 71.1GB 91.0MB
Brock800_3 800 207333 25 13 8193 78.1GB 100.0MB
Brock800_4 800 207643 26 13 7432 70.9GB 90.7MB
Hamming6-2 64 1824 32 32 788 49.3MB 0.8MB
Hamming6-4 64 704 4 4 112 7.0MB 0.1MB
Hamming8-2 256 31616 128 128 11747 11.5GB 45.9MB
Hamming8-4 256 20864 16 16 1557 1.5GB 6.1MB
Hamming10-2 1024 518656 512 196 4910 76.7GB 76.7MB
Hamming10-4 1024 434176 40 32 470 7.3GB 7.3MB
Johnson8-2-4 28 210 4 4 58 0.7MB 25.4KB
Johnson8-4-4 70 1855 14 14 408 30.5MB 0.4MB
Johnson16-2-4 120 5460 8 8 488 0.1GB 0.9MB
Johnson32-2-4 496 107880 16 16 3997 14.7GB 30.3MB
Keller4 171 9435 11 8 794 0.3GB 2.1MB
Keller5 776 225990 27 15 3646 32.7GB 43.2MB
Keller6 3361 4619898 ≥59 28 139 23.4GB 7.1MB
MANN_a9 45 918 16 16 323 10.0MB 0.2MB
MANN_a27 378 70551 126 121 23055 49.1GB 133.0MB

Reformulation of conditions in copositivity detection

I Observe that for the problem max{y : Q − yD ∈ C},
A = Q − yD with copositive D, the condition vTi Avj ≥ 0 can

be rewritten as

y ≤
vTi Qvj

vTi Dvj
: vTi (Q − yD)vj = vTi Qvj − yvTi Dvj .

I Therefore, the matrix A is not copositive, if

y >
vTQv

vTDv

for one vertex v of one of the simplices in the partition.

I Moreover, the matrix Q − (y − ε)D is copositive if

y − ε ≤
vTi Qvj

vTi Dvj

for all vertices vi , vj of all simplices in the partition P.

Reformulation for the standard quadratic programming

I In the case of the standard quadratic programming

max{y : Q − yJ ∈ C}, A = Q − yJ, and the condition

vTi Avj ≥ 0 can be rewritten as y ≤ vTi Qvj , since vTi Jvj = 1

for vi , vj ∈ ∆S .

I Therefore, the matrix A is not copositive, if y > vTQv for one

vertex v of one of the simplices.

I The matrix Q − (y − ε)J is copositive if y − ε ≤ vTi Qvj for all

vertices vi , vj of all simplices in the partition P.

Reformulation for the maximum clique problem

I In the case of the maximum clique problem

min{t : tQ − J ∈ C}, A = tQ − J, and the condition

vTi Avj ≥ 0 can be rewritten as t ≥ 1/(vTi Qvj):
vTi (tQ − J)vj = tvTi Qvj − vTi Jvj = tvTi Qvj − 1, Q and v does

not have negative entries.

I Therefore, the matrix A is not copositive, if t < 1/(vTQv) for

one vertex v of one of the simplices.

I The matrix (t + ε)Q − J is copositive if t + ε ≥ 1/(vTi Qvj) for
all vertices vi , vj of all simplices in the partition P. For the
maximum clique problem ε = 1 is set, as this is exactly the

tolerance needed for the integer clique number.

I If the previous condition holds, argmaxv 1/(vTQv) de�nes the

solution of the underlying problem (non zero values of v mean

the node is in the clique), where v is a vertex of a simplex.

Sketch of the algorithm for max{y : Q − yD ∈ C},
max{y : Q − yJ ∈ C}, min{t : tQ − J ∈ C}

Start with the standard simplex

while not stopped do

y ←min
{
y ,

vT
i
Qvi

vT
i
Dvi

}
, min

{
y , vTi Qvi

}
, t ← max

{
t, 1

vT
i
Qvi

}
,

i = 1, . . . , n

if y − ε ≤ vT
i
Qvj

vT
i
Dvj

, y − ε ≤ vTi Qvj , t + ε ≥ 1
vT
i
Qvj

,

i , j = 1, . . . , n then

restore vertices, change vertex or stop the cycle

remember the changed vertex

else

subdivide the edge with the smallest
vT
i
Qvj

vT
i
Dvj

, vTi Qvj , v
T
i Qvj

remember the changed vertex

end if

end while

Experimental results on example problems
from (Bomze & De Klerk, 2002)

max{y : Q − yD ∈ C}, ε = 10−6 max{y : Q − yJ ∈ C}, ε = 10−6

Q y∗ nsimp max l t, s y∗ nsimp max l t, s
Q1 0.5 19 4 0.0 0.5 19 4 0.0
Q2 0.3333 71679 22 0.53 0.3333 71679 22 0.35
Q3 -16.3333 23 6 0.0 -16.3333 23 6 0.0
Q4 0.4839 89 13 0.0 0.4839 89 13 0.0

min{t : tQ − J ∈ C}, ε = 1
Q t∗ nsimp max l t, s
Q1 2 19 4 0.0
Q2 3 31301 21 0.18

Q1 =

1 0 1 1 0
0 1 0 1 1
1 0 1 0 1
1 1 0 1 0
0 1 1 0 1

 , Q3 =

−14 −15 −16 0 0
−15 −14 −12.5 −22.5 −15
−16 −12.5 −10 −26.5 −16
0 −22.5 −26.5 0 0
0 −15 −16 0 −14

 ,

Q4 =

0.9044 0.1054 0.5140 0.3322 0
0.1054 0.8715 0.7385 0.5866 0.9751
0.5140 0.7385 0.6936 0.5368 0.8086
0.3322 0.5866 0.5368 0.5633 0.7478
0 0.9751 0.8086 0.7478 1.2932

Experimental results on generated MaxClique problems

Graph n m ω t∗ nsimp max l time, s
Brock14 14 51 5 5 1873355 33 15.73
Brock16 16 59 5 5 3929357 36 43.71
Brock18 18 78 5 5 100442543 50 1487.45
Brock20 20 95 5 5 936595215 52 18154.00
Jagota14 14 31 6 6 94425 24 0.71
Jagota16 16 57 8 8 14659409 43 157.13
Jagota18 18 84 10 10 2366989393 67 34478.00
Morgen14 14 50 5 5 2565871 37 20.97
Morgen16 16 59 5 5 1963895 36 21.39
Morgen18 18 60 5 5 10032327 38 141.71
Morgen20 20 67 5 5 298940103 43 5925.00
Morgen22 22 68 5 5 91131959 43 2109.27
Morgen24 24 69 5 5 80165637 45 2280.00
Sanchis14 14 50 5 5 1184933 31 10.09
Sanchis16 16 50 5 5 560033 28 6.05
Sanchis18 18 50 5 5 2578523 28 35.80
Sanchis20 20 50 5 5 17294981 33 315.58
Sanchis22 22 50 5 5 40407507 34 905.79
Sanchis24 24 50 5 5 172426589 38 4885.00
c-fat14-1 14 52 6 6 29692167 39 250.27
c-fat16-1 16 69 7 7 2071185519 52 23524.00
c-fat18-1 18 72 6 6 7515802065 53 109344.00
Hamming4-4 16 8 2 2 511 8 0.00
Johnson6-2-4 15 45 3 3 88483 21 0.82
Johnson6-4-4 15 45 3 3 90013 21 0.85
Johnson7-2-4 21 105 3 3 123008083 33 2829.00
Keller2 16 40 2 2 10329 15 0.10

Results for the DIMACS benchmark problems
Graph n m ω ω′ t′ nsimp max l t, s
Brock200_1 200 14834 21 13 16 708261 1989 104

Brock200_2 200 9876 12 10 10 710547 980 104

Brock200_3 200 12048 15 11 11 699520 1330 104

Brock200_4 200 13089 17 13 14 708598 1504 104

Brock400_1 400 59723 27 19 20 18115 4984 104

Brock400_2 400 59786 29 18 20 17955 4946 104

Brock400_3 400 59681 31 19 20 18027 4920 104

Brock400_4 400 59765 33 19 20 18162 4978 104

Brock800_1 800 207505 23 16 17 19290 8376 105

Brock800_2 800 208166 24 16 17 19317 8482 105

Brock800_3 800 207333 25 13 17 19275 8385 105

Brock800_4 800 207643 26 13 16 19379 8389 105

Hamm6-2 64 1824 32 32 32 15805366 883 104

Hamm6-4 64 704 4 4 4 16612788 112 104

Hamm8-2 256 31616 128 128 128 128307 14441 104

Hamm8-4 256 20864 16 16 16 128632 1628 104

Hamm10-2 1024 518656 512 196 512 3899 3899 105

Hamm10-4 1024 434176 40 32 33 3857 3857 105

John8-2-4 28 210 4 4 4 230691654 56 104

John8-4-4 70 1855 14 14 14 14850322 405 104

John16-2-4 120 5460 8 8 8 3202090 488 104

John32-2-4 496 107880 16 16 16 7818 4308 104

Keller4 171 9435 11 8 8 696414 794 104

Keller5 776 225990 27 15 20 19377 8608 105

Keller6 3361 4619898 ≥59 28 37 1493 1493 106

MANN_a9 45 918 16 16 16 57018692 320 104

MANN_a27 378 70551 126 121 121 242995 23055 105

MANN_a45 1035 533115 345 336 74763 74763 106

MANN_a81 3321 5506380 ≥1100 302 1550 1550 106

Ñïàñèáî çà âíèìàíèå
Thank you for your attention

	Global Optimization
	Covering methods
	Simplicial partitions
	Heuristic attraction based subdivision method

