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Graph clustering as an optimization problem )

min f(x) Mathematical Programming formulation:
gx)<b ) e
reXx defining an optimization problem

Reformulation:

finding a more convenient formulation

Aim: starting from a (nonlinear) optimization formulation for a bipartition problem,

find new formulations which enhance the efficiency of the proposed solution approach
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Graph clustering

Automatic analysis of complex systems represented as networks (graphs)

U

identification of clusters

cluster or community = a subset of vertices such that there are
more edges within the community than edges joining it to the outside
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Modularity

Modularity [Newman, Girvan; Phys. Rev. E, 2004]

Compare the number of inner edges minus the expected number of such edges in a
random graph having the same distribution of degrees of G:
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Modularity

Modularity [Newman, Girvan; Phys. Rev. E, 2004]

Compare the number of inner edges minus the expected number of such edges in a
random graph having the same distribution of degrees of G:

N.: number of clusters;
m: number of edges of the graph;
m,: number of edges in cluster c;

D.: sum of degrees of vertices in cluster c;
me .
it

fraction of edges in cluster c;

2 . . .
° f} <. expected number of edges in cluster ¢ in a graph where vertices have same

degrees but edges are placed randomly.
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Modularity

Ranges of modularity
° —% <0<l (—% for bipartite graphs, 1 cluster for partition);
@ O =~ 0: graph similar to random graph;

@ O ~ 1: graph with strong community structure.
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Modularity

Ranges of modularity
° —% <0<l (—% for bipartite graphs, 1 cluster for partition);
@ O =~ 0: graph similar to random graph;

@ O ~ 1: graph with strong community structure.

How many clusters in the graph?
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Modularity

Ranges of modularity
° —% <0<l (—% for bipartite graphs, 1 cluster for partition);
@ O =~ 0: graph similar to random graph;

@ O = I: graph with strong community structure.

How many clusters in the graph?
@ 1 cluster containing all vertices — Q = 0;
@ n clusters, with 1 vertex for cluster - Q < 0;

@ in general 1 < N, < n, not known a priori.

Maximizing modularity gives an optimal partition with the optimal number of clusters.
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Modularity maximization

Exact methods
@ Row generation for the clique partitioning model
[Grotschel, Wakabayashi, Math. Prog. 1989; Brandes et al., IEEE TKDE 2008]
o 0— 1 MIQP formulation [Xu et al., Eur. Phys. J. B, 2007]

@ Column generation extensions [Cafieri et al., Phys. Rev. E, 2010]
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Modularity maximization

Exact methods

@ Row generation for the clique partitioning model
[Grotschel, Wakabayashi, Math. Prog. 1989; Brandes et al., IEEE TKDE 2008]
o 0— 1 MIQP formulation [Xu et al., Eur. Phys. J. B, 2007]

@ Column generation extensions [Cafieri et al., Phys. Rev. E, 2010]

Heuristics

@ Partitioning methods
(greedy, simulated annealing, genetic search, and many others)

@ Hierarchical divisive and agglomerative methods

For a survey see [Fortunato; Phys. Rep., 2010]
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Hierarchical divisive heuristic

@ Proceed from an initial partition containing all entities

o Iteratively divide a cluster into two in such a way to increase most the objective
function (or the decrease in the objective value is the smallest possible)
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Hierarchical divisive heuristic

@ Proceed from an initial partition containing all entities

o Iteratively divide a cluster into two in such a way to increase most the objective
function (or the decrease in the objective value is the smallest possible)

critical point:
bipartitioning a cluster

Divisive
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Hierarchical divisive heuristic

Algorithm Divisive (input of first call is G = (V, E))

o Input: cluster ¢ = (V,, E.) of graph G
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Hierarchical divisive heuristic
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o Input: cluster ¢ = (V,, E.) of graph G

@ Output: partition into clusters of ¢

Sonia Cafieri (ENAC) Mathematical Programming reformulations in modularity m May 2013



Hierarchical divisive heuristic

Algorithm Divisive (input of first call is G = (V, E))

o Input: cluster ¢ = (V,, E.) of graph G
@ Output: partition into clusters of ¢

e if |V,| < 3 save c as cluster, and return;
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Hierarchical divisive heuristic

Algorithm Divisive (input of first call is G = (V, E))
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Hierarchical divisive heuristic

Algorithm Divisive (input of first call is G = (V, E))

Input: cluster ¢ = (V,, E.) of graph G

Output: partition into clusters of ¢

if |V,| < 3 save c as cluster, and return;

divide c in ¢; and ¢,

if Q(c) > Q(cy) + Q(cy) save c as cluster, and return;
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Hierarchical divisive heuristic

Algorithm Divisive (input of first call is G = (V, E))

Input: cluster ¢ = (V,, E.) of graph G
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Algorithm Divisive (input of first call is G = (V, E))

o Input: cluster ¢ = (V,, E.) of graph G

@ Output: partition into clusters of ¢

if |V,| < 3 save c as cluster, and return;

divide c in ¢; and ¢,

if Q(c) > Q(cy) + Q(cy) save c as cluster, and return;

@ call Divisive(c;) and Divisive(c,);

#: an optimal solution does not contain single vertex clusters [Brandes et al.; IEEE
TKDE, 2008].
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Locally optimal hierarchical divisive heuristic

[Cafieri, Hansen, Liberti.; Phys. Rev. E, 2011]:

@ Divisive scheme
o Bipartitioning step modeled as a 0-1 MIQP problem

o The 0-1 MIQP problem exactly solved

U

the proposed heuristic is locally optimal

(but not globally optimal)
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MIQP model for bipartition in the divisive heuristic

Objective function

Express D, as a function of Dy: D, = D. — D
(D, = sum of degrees in the community to be bipartitioned)
= Modularity:

Q
I

my; +mp Dlz + Dzz
m 4m?

my; +my D% D% + D% — 2D1DC B

m 4m? 4m? -

mp + my D% D? + DD,

m 4m?  4m? - 2m?
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MIQP model for bipartition in the divisive heuristic

Objective function

Express D, as a function of Dy: D, = D. — D
(D, = sum of degrees in the community to be bipartitioned)
= Modularity:

Q
I

my; +mp Dlz + Dzz
m 4m?

my; +my D% D% + D% — 2D1DC B

m 4m? 4m? -

mp + my D% D? + DD,

m 4m?  4m? - 2m?

Variables

@ X; ;s = 1if the edge (v;,v;) is inside the cluster s, 0 otherwise (s is either 1 or 2)

@ Y; =1 if the vertex v; is inside the cluster 1, O otherwise

Sonia Cafieri (ENAC)
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MIQP model for bipartition in the divisive heuristic

Constraints
Any edge (v;,v;) with end vertices indiced by i and j can only belong to cluster s if
both of its end vertices also belong to that cluster:

Y(vi,v)) € E. X <Y

Y(vi,vj) € E. Xij <Y

Y(vi,v;) € E. Xijp<1-Y

Y(vi,v)) € E, Xijp<1-Y,

The number of edges of each of the two clusters and the sum of vertex degrees of the
first cluster are expressed in terms of X and Y:

Vs e{l,2} mg = Z Xijs

(V[aV/)EE(‘
D = Z kY1

vieVe

k; = degree of the vertex v;

V. and E. = respectively the set of vertices and the set of edges of the cluster ¢ to be bipartitioned
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MIQP model used by the hierarchical divisive heuristic

(OB model)

Sonia Cafieri (ENAC)

2m 2

1 1 , DZ?
max — (m +m, — — D> + - DD,
m

s.t.

Xij1 <Y, Y(vi,v)) € E,

Xiji <Y, Y(vi,v;) € E,
Xija<1=Y  Y(v,v))€E.
Xijp<1-Y; Y(vi,v)) € E.
me= > Xy Vse{l2)

(vi,vj)EEe

Dy = > kY,

vieVe
Y e{0.1} Vv eV,
Xi,_lﬁs >0 V(V,‘,Vj) ceE.,Vse {1,2}
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Reformulations in Mathematical Programming

Mathematical programming formulation P = a set of entities:

min £(x) - parameters
g(x)<b = - decision variables (x € X)
xeX

- objective function (f(x))

- constraints (g(x) < b)

A reformulation Q of P is obtained via (symbolic) transformations applied to J

x, f(x), g(x) < 0, whilst keeping some of the properties of P invariant.

Pand QO
* may share the same numerical properties (feasible region, optima)

* often perform differently according to the type of the solving algorithm

= choosing the best possible formulation is crucial
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Reformulations in Mathematical Programming

Four main reformulation classes (Liberti, 2010):

@ exact reformulations: preserve all optimality
properties

@ narrowings: preserve some optimality
properties

o relaxations: provide bounds to the optimal
value of the objective function

@ approximations: formulations Q(k) Exact reformulation
parametrized on k such that klim Q(k) is an
—00

exact reformulation
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Improving the 0 — 1 MIQP formulation for bipartition

Reformulations:

@ Reduction of number of variables and constraints

@ Binary decomposition for linearization of quadratic term Df in the
objective function

@ Symmetry breaking
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May 2013
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Reduction of the number of variables

Consider the variables X of the original model:

X = 1 if edge (v;,v;) belongs to cluster s
bh 0 otherwise
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Reduction of the number of variables

Consider the variables X of the original model:

X = 1 if edge (v;,v;) belongs to cluster s
" 10 otherwise

We do not actually need to know if an edge is in the cluster 1 or 2, but only if it is
within a cluster or not:
F ifY; =Y,
Xij=

0 otherwise

= Half of the variables X needed
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Reduction of the number of variables

X;,j can be seen as the negation of the XOR operation between Y; and Y; variables.
= the following constraints can be employed [Brown and Dell, 2007]

Youv) eE. X <Yi—Y+1
Youv) €E. X <Y—Y+1
Youv) €E. X2 Yi+Y -1
Youv) €E.  Xij=1-Y,—Y;
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New variables

Variables X can then be expressed as

Xi,jZZYl'Yj—Yi—Yj-f-l, V(Vi,Vj)EEC

afieri (ENAC)



New variables

Variables X can then be expressed as
Xi,jZZYl'Yj—Yi—Yj-f-l, V(Vi,Vj)EEC

Variables S linearize the product of the binary variables Y:

Si,j = Y,Yj \/(v,-,vj) € EC
So we obtain

Xi,j=2Si,j_Yi_Yj+1 V(V,’,Vj)GEc

Sonia Cafieri (ENAC) Mathematical Programming reformulations in modularity m May 2013



Fortet’s linearization

Relationship §;; = Y;Y; (Fortet’s inequalities):

S,’JZO V(vi,Vj)EEC
Sijz2Y;+Y -1 Y(vi,v;) € E,
Sij<Y; Y(vi,vj) € E.
Sij<Y; Y(vi,v)) € E.

exact linearization of a product of binary variables

Sonia Cafieri (ENAC)
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Fortet’s linearization

Relationship §;; = Y;Y; (Fortet’s inequalities):

Sij=20 Y(vi,v;) € E,
SzYi+Yi—1  V.v) ek
Sij<Yi Y(vi,v)) € E.
S, <Y, Vi v)) € E,

exact linearization of a product of binary variables

Objective function maximizes variables S — half of the constraints needed:

Si,jS Y; v(vi,vj)EEc
Sij<Y; Y(vi,v;) € E.
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OB, formulation

1 1 D2
max —[ Z (2Si,j_Yi_Yj)+|Ec|_ 2—(D12+ ) —DlDC)
WiveE, n

sS.t. Si,j <Y Y(vi, Vj) € E.
NTES Y(vi,v)) € E.
D, = Z k;Y;
vieVe
Y; €{0,1} Yv; €V,

where in the objective function we use the fact that Z 1=|E/]
(i,vj)EEC

May 2013 26/41
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Quadratic term reformulation

In the objective function it appears D?, where D = Z kiY;.

V,‘EVC
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Quadratic term reformulation

In the objective function it appears D?, where D = Z kiY;.

V,‘EVC

The model is not linear; how to solve the problem?

@ using general MINLP solvers (as Couenne or BARON): too time consuming;
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Quadratic term reformulation

In the objective function it appears D?, where D = Z kiY;.

V,‘EVC

The model is not linear; how to solve the problem?

using general MINLP solvers (as Couenne or BARON): too time consuming;

using convex quadratic solver as CPLEX: efficient, but not possible to employ
other MIP solvers;

linearize products Y;Y; using Fortet’s inequalities: many variables and

constraints;

linearization using binary decomposition [Billionnet, Elloumi, Lambert;

Math. Prog., 2012]: better than Fortet inequalities.
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Binary decomposition reformulation

D, = Z kY

VeV,

k; is integer (degree of vertex v;), Y; is binary — D) is integer.
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Binary decomposition reformulation

D, = Z kY

VeV,

k; is integer (degree of vertex v;), Y; is binary — D) is integer.

t
D, = Z 2a;, a e l0,1)
=0

where f = [log,(D. + 1) = 17.
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Binary decomposition reformulation

D, = Z kY

VeV,

k; is integer (degree of vertex v;), Y; is binary — D) is integer.

t
D, = Z 2a;, a e l0,1)

where f = [log,(D. + 1) = 17.

D, = Zzza Z Zzzza +Zzzz+h+1

=0 =0 h<l
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Linearization for binary decomposition

aja, product of binary variables, can be linearized
= R, linearize the product a;ay,.

—R is maximized in the objective function — only 2 constraints are needed:

Rip>0 VIiel{0,...,t}, YVhe{0,...,[-1}
Riyp2a+a,-1 Vie{0,...,t}, YVhe{0,...,[ -1}

Sonia Cafieri (ENAC)
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Linearization for binary decomposition

aja, product of binary variables, can be linearized
= R, linearize the product a;ay,.

—R is maximized in the objective function — only 2 constraints are needed:

Riy>0 Vie{0,...,1), Vhel0,...,[—- 1}
Ru>a+ay—1  YIe{0,....1), Vhel0,...,1-1}

The objective function is

1 1 (O - I+l D’
a(m1+m2—%(22 al+ZZZ th+T—D]Dc

=0 =0 h<l

Sonia Cafieri (ENAC)
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formulation

1 1 (< : e D2
max Z(m1+m2—%[;221a1+222”' ]th+7—D]Dc

=0 <l
st. X <Y; Y(vi,v;) € E.
Xij £Y; Y(vi,v)) € E,
Xijpo<1-Y; Y(vi,v)) € E.
Xp<1-Y; Vv ek
Rp>a+ay—1  VI€{0,... .0, Yhel0,....[-1)
mo= > Xy Vse(l,2)

vivj)EEe

D, = ZkiYi

vieVe

t
Dl = ZZla,
=0
Y, e {0, 1} Yv;, eV,
Xijs 20 Y(vi,v)) € Ec, Vs € {1,2}
Ryu>0 VIEe(0,....0, Yhelo,.... - 1)
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Compact binary decomposition 1

It is possible to reduce the number of variables R.

R;, is the linearization of the term a;ay,.
We can write the term of the objective function involving R; in this way:

Zt: Z 2[+h+1th _ Z Z 2’+h+1ala _ Z 21+1al Z Zhah Z Zmazbz Z ZMRI,
=0 h<l 1=0 h<l h<l

where R; = a;b; and b, is a new variable defined as };,; 2hay,.

Since the upper bound for b; is Uy, = ¥, 2" =2/ - 1,
the constraints to add to the model are:

Vielo,...,1) bl=22hah

h<l
Vie{0,...,t} R >0
Vie{0,...,1} RIZUb,al+bl_Ubl

We have now ¢ + 1 variables R; instead of % variables Ry,
and we have adjoined 7 + 1 variables b and 7 + 1 constraints (definition of b).
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Compact binary decomposition 2

We can put together the term containing the variables a; and R;:

Zzzza+ szR Zzua,+2“ Zz( )

=0
Hence

t t

b 22
}jzﬂ(al+;’j_f) > grrar(bi+27") = § 2Mag = § 2%, ()
1=0 1=0 =0 =0

where the new variable z; is equal to b; + 2/=1'and T} is the linearization of a;z;.

= we remove the variables R and b, and all the related constraints,
and adjoin the new variables z and T, as well as these constraints:

Vielo,....t} z= ZZha +21 )
h<l

Vie{0,....t} T;20 3)

Yielo,..., 1} TIZUzlal"'Zl_Uzp “4)

where Uy, is the upper bound of the variable z;, and it is equal to 2.
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Symmetry breaking constraint - Fixing a vertex

If a solution is found, another equivalent solution is obtained by swapping the clusters
(i.e., vertices in cluster 1 are placed in cluster 2, and vice-versa)

— fix a vertex in one of the clusters

Sonia Cafieri (ENAC)
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Symmetry breaking constraint - Fixing a vertex

If a solution is found, another equivalent solution is obtained by swapping the clusters

(i.e., vertices in cluster 1 are placed in cluster 2, and vice-versa)

— fix a vertex in one of the clusters

Good choice: fix the vertex with highest degree in one cluster

Y, =0, g = argmax{k;, Yv; € V,}
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Symmetry breaking constraint - Fixing a vertex

If a solution is found, another equivalent solution is obtained by swapping the clusters

(i.e., vertices in cluster 1 are placed in cluster 2, and vice-versa)

— fix a vertex in one of the clusters

Good choice: fix the vertex with highest degree in one cluster

Y, =0, g = argmax{k;, Yv; € V,}

Original formulation + symmetry breaking constraint — OBz model.
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Tests

@ original formulation (OB)

o reformulation with less variables and constraints (OB)

@ binary decomposition reformulation (OB;)

@ original formulation + symmetry breaking constraint (OB3)
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@ original formulation (OB)

o reformulation with less variables and constraints (OB)

@ binary decomposition reformulation (OB;)

@ original formulation + symmetry breaking constraint (OB3)

ID  Graph n m  Reference
1 Karate 34 78  Zachary (1977)
2 Dolphins 62 159  Lusseau et al. (2003)
3 Les misérables 77 254 Hugo (1951), Knuth (1993)
4 A00 main 83 135  Batagelj and Mrvar (2006)
5 P53 protein 104 226  Dartnell at al. (2005)
6  Political books 105 441  Krebs (2008)
7 Football 115 613  Girvan and Newman (2002)
8 A0l main 249 635  Batagelj and Mrvar (2006)
9 USAIir97 332 2126  Batagelj and Mrvar (2006)
10 Netscience main 379 914  Newman (2006a)
11 S838 512 819  Milo et al. (2004)

12 Power 4941 6594  Watts and Strogatz (1998)
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Tests: 2.8GHz Intel iCore i7 CPU, 8 GB RAM, Linux, CPLEX 12.2
- branching based on pseudo reduced costs
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Numerical results

Tests: 2.8GHz Intel iCore i7 CPU, 8 GB RAM, Linux, CPLEX 12.2
- branching based on pseudo reduced costs

graph clusters OB OB, OBy OB3
\VI| |E|||N. Q|| nodes|CPU time|| nodes|CPU time|| nodes|CPU time||nodes|CPU time

1 34| 78| 4]|0.4188 45 0.14 41 0.06( 123 0.52 18 0.07
2 62| 159|| 4|0.5265|| 207 0.59( 157 0.19(| 505 1.29 98 0.49
3 77| 254|| 8|0.5468| 205 1.09] 185 0.40( 577 2.16|| 102 0.58
4 83| 135|| 7/|0.5281 76 0.35 56 0.11( 251 0.74 27 0.08
5 | 104| 226|| 7|0.5284( 275 1.10|| 201 0.53|| 678 3.22|| 135 0.59
6 | 105| 441|| 4|0.5263| 313 3.04]] 294 1.00]| 1284 9.17|| 145 1.36
7 | 115| 613|10]0.6009(| 8853| 307.56{| 5410 56.69|(15406| 252.96|| 3014| 118.24
8 | 249| 635||15(0.6288|| 1119 47.83|| 1010 16.85|| 4395 61.49|| 997 45.85
9 | 332|2126|| 8|0.3596(|16682| 4585.04(|17811| 1041.89(|63687| 3074.09|| 9446| 2510.81

10| 379| 914{|20(0.8470|| 291 3.64|| 267 1.44|| 931 14.53|| 108 1.82
512| 819(|15]0.8166|| 392 5.26|| 304 1.26]| 1348 22.46|| 197 2.15
4941(6594|| 4|0.9396|| 1459| 708.51|| 1449 217.61({11289| 2029.63|| 815| 417.26

—
—_

—
[ ]
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Best formulation

Best results: formulation with less constraints and variables (OB;)
+ symmetry breaking constraint (OB3)

graph OB OB + OB3

vertices |edges || nodes|CPU time||nodes|CPU time
Karate 34| 78 45 0.14 17 0.04
Dolphins 62| 159|| 207 0.59 93 0.16
Les Misérables 770 254|| 205 1.09|] 105 0.35
A00 main 83| 135 76 0.35 26 0.04
P53 protein 104| 226|| 275 1.10|| 119 0.26
Political books 105| 441|| 313 3.04|| 152 0.51
Football 115| 613|| 8853| 307.56|| 3822 44.38
AO01 main 249| 635| 1119 47.83|| 726 9.72
USAIr97 332| 2126{|16682| 4585.04|| 8665| 446.06
Netscience main 379| 914|] 291 3.64 94 0.85
5838 512| 819|| 392 5.26/| 186 1.18
Power 4941| 6594|| 1459 708.51|| 891| 123.85

Sonia Cafieri (ENAC) Mathematical Programming reformulations in modularity m V 3 39/41



Outline

@ Conclusions

ulations in modula



Conclusion

@ Reformulations reduce computational time (up to 10 times).

afieri (ENAC)



Conclusion

@ Reformulations reduce computational time (up to 10 times).

o High impact of the simple symmetry breaking constraint.

Cafieri (ENAC) Mathematical Programming reformulations in modularity m



Conclusion

Pros
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Cons

@ Binary decomposition not very effective (it is better to use CPLEX with the
quadratic model).
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@ Reformulations reduce computational time (up to 10 times).

o High impact of the simple symmetry breaking constraint.

W

Cons

@ Binary decomposition not very effective (it is better to use CPLEX with the
quadratic model).

4

@ Improve the binary decomposition.

@ Use the model for divisive heuristic for bipartite graph (there is not a quadratic
term there, binary decomposition is the best choice).
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