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Combinatorial Optimization Problem

¢ Input:
min {f(s), seSol}
where Sol is a feasible domain.

e Output:

— feasible solution seSol;

e Goal:
— find global minimum f(s) <f(s”), s”e Sol.
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Standard local descent algorithm

1. Select a starting solution seSol
2. Try to find better neighboring solution s ’:
f(s”) <f(s), s”e N(s)
3. If it exists then move:
s:=s”and goto2 else STOP

4. Return local minimum 8.

Examples: — Simplex method for linear programming;
— Ford—Fulkerson method for maximum flow problem;

— Bubble sort algorithm for sorting problem.
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The p-median problem

¢ [nput:
— aset | of facilities;
— asetJ ofusers;
— anumber p of opened facilities;
— a production—transportation cost Cjj to service user J from facility I;

e Qutput:

asetScl,|S|=p, of opened facilities;
e Swap neighborhood:
NS)={S’c1]||S|=p,|S\S’|=|S\S|=1}
e Goal: find a local optimal solution

F(S)= D mingc;; < ) minc;, VS e N(S).
jed €S jed jeS’
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Theorem 2.1. Assuming P#NP, no polynomial searchable neighborhood N can
guarantee that each local optimum S of the p-median problem is p-approximate

solution for any fixed constant p > 1, that is F(S)/Opt < p for any instances.

Proof. Let us consider the vertex cover problem (VC): given graph G = (V,E) and
integer positive number K. Is there a subset V’c V, | V| <k such that each edge is

incident to at least one vertex of V’? It 1s NP—complete problem.
Consider the family of the p-median problems with | =V, J=E, p=Kk and

_J1 if edgee; isincident to vertex I
" | E|+1)p, otherwise.

Let us select an arbitrary subset S I, | S | = p and apply Standard Local Search
Descent algorithm with neighborhood N. For this family, it 1s polynomial time
procedure. But each local optimum must have the same value if it is

po-approximate solution! Otherwise F(S) > |[E| -1+ (|[E|+ 1)p> |E|p. m
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Remark. The statement holds for p= where ( is any fixed polynomial.

Corollary. Assuming P = NP, there 1s no exact polynomial searchable
neighborhood for the p-median problem.

Theorem 2.2. [4] For the metric p-median problem, standard local descent
algorithm with Swap—neighborhood produces 5-approximate solution.

Theorem 2.3. [Arua et al. 2004] For the metric p-median problem, standard local
descent algorithm with k-Swap-neighborhood produces (3 + %)-approximate

solution.
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Advanced Local Search Strategies

Threshold algorithms
1. Construct an initial solution seSol, s* :=s, k := 0.
2. Repeat until a stop criterion 1s satisfied

Generate S’eN(S) and put k := k+1;
If F(s)—F(s)<tx thens:=5s";
If F(s*)>F(s) thens™*:=s.

3. Return s*.
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Three Types of Threshold Algorithms

¢ [terative improvement: ty = 0, kK > 0, it is standard LD algorithm with
random pivoting rule.

¢ Threshold accepting: ty > 0, ty > ty+, k>0, Iim t, =0.
K—o0

¢ Simulated annealing: tx 1s a random variable with expected value E(ty) =
Ck, K > 0; more exactly, the probability of accepting s’eN(S) at the K™
iteration is given by

1 if F(S")<F(S)

P, {accept S’}=<exp(F(S);F(S')j it F(S")> F(S)
L K
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Typical Behavior of SA
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Simulated Annealing Algorithm

1. Construct an 1nitial solution s, putt=t,,,, s* :=5;

2. Repeat until a stop criterion 1s satisfied.

3. For k=1 to K do
3.1 Randomly generate " €N(S);
3.2 A=F(s) - F(s);
3.3 If A<0thens:=s"elses:=s’” with probability exp(-A/t);
3.4 If F(s*)> F(S) then s* :=s;
4. Decrease the temperature t:=7

5. Return s*.
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Great Deluge Algorithm

Global optimum
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GD was introduced by Dueck, 1993
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Great Deluge Algorithm

1. Construct an 1initial solution S, put L = F(S), s* :=S;

2. Repeat until a stopping criterion is satisfied
Randomly generate S” e N(S);
If F(s”)<F(s)thens:=s’c¢lseif F(s”)<Lthens:=s’;
L:=L-AL
If F(s*) > F(S) then s* :=s;

3. Return s*.
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Typically behavior of Great Deluge
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Probabilistic Tabu Search

1. Construct an initial solution seSol; s* :=s;
2. Repeat until a stopping criterion is satisfied
2.1 Generate a random subneighborhood N’(S) < N(S)
2.2 Select the best legal neighboring solution s’
2.3 Puts:=s’, update TabuList
2.4 If F(s*)> F(S) then s* :=s.
3. Return s*
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Typical Behavior of Tabu Search
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Variable Neighborhood Search

1. Construct an initial solution s €Sol, select the set of neighborhoods N,
k=1,..., Kmax
2. Repeat until a stopping criterion is satisfied
Setk :=1;
Repeat until K = Knyax;
(a) Generate s’ eNg(S) at random,;

(b) Apply some local search method with S’ as 1nitial solution;

denote with s” the so obtained local minimum;
(c) IfF(s")<F(s)then (s:=5") & (k:=1)else k .=k + 1
3. Return s.
VNS was introduced by P. Hansen and N. Mladenovi¢ in 1997.
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Typical Behavior of Variable Neighborhood Search
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Genetic Local Search Algorithm
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Genetic approach was introduced by J.H. Holland, 1975.
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GLS Algorithm

1.
2.

Construct an initial population of kK solutions.
Use local search to replace the k solutions in the population by | local
optima.
Repeat until a stop criterion is satisfied
Augment the population by adding m offspring solutions;
Use local search to replace the m offspring solutions by m local
optima;
Reduce the population to its original size by selecting k solutions

from the current population.

Return the best solution from the population.
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Sobolev Institute of Mathematics
Laboratory "Mathematical Models of Decision Making

@ General information « Authors & Other libraries « Russian page «

Discrete Location
Preblems

Benchmark library

Simple Plant Location Problem

Capacitated Facility Location Problem

Multi_Stage Uncapacitated Facility Location Problem
e P-median Problem

» Bilevel Location Problem

Benchmark library was created thanks to financial support
by Russian Foundation for Basic Research (grants NN 98-07-90259, 01-07-90212, 04-07-90096)
© Sobolev Institute of Mathematics 2006

http://math.nsc.ru/AP/benchmarks/english.htmi
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