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Networks

Network = (in its simplest form),
a collection of points joined together in pairs by lines.

In many domains, many objects of interest or complex systems are composed of
parts or components linked together in some way.

⇒Many complex systems can be thought of as networks
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Networks

Networks often used to represent complex systems

social networks
telecommunication networks
transportation networks
...
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Why are we interested in networks?

Many complex systems are composed of parts or components
linked together in some way

Different ways to study systems:

- study the nature of the components
Ex.: study how a computer works

- study the nature of the connections between components
Ex.: study the communication protocols on the Internet

- study the pattern of connections between components
⇒ this can be represented as a network
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Why are we interested in networks?

The pattern of connections (structure of the network)
can have a big effect on the behaviour of the system

Examples
- computer network: the pattern of connections affects the routes that data take

over the network (efficiency of data transmission)

- social network: the connections affect the way people learn, form opinions,
gather informations

- ...

⇒ Study systems using a simplified representation reducing them to abstract structures
capturing basically the pattern of connections→ networks

⇒ Use mathematical, computational and statistical tools for analyzing networks
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Example: Social Networks

Social Network: components are people and connections represent some form of
social interaction between them. Actors and ties.

Many possible definitions of a connection:
- friendship
- professional relationships
- romantic relationships
- communication patterns
- exchange of goods or money
- etc...

Empirical methods to get data:
- direct questioning, interviews
- direct observation (watching interactions between individuals)
- use of archival records
- other: email exchange etc...

Foundation of the field: Jacob Moreno (psychiatrist), 1930s
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Social network I

Zachary’s karate club network
it describes friendship relations between 34 members of a karate club observed over two years
by Zachary. In that period the club split into two groups after a dispute between the club owner
and the karate instructor.
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Social network II

Dolphins network:
bottlenose dolphins studied by Lusseau in Doubtful Sound, New Zealand.
Network with 62 components corresponding to the dolphins and 159 links between pairs of
dolphins with frequent communications among them.
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Social network III

Victor Hugo’s Les Misérables network:

? 77 components associated to characters which interact

? 257 links between pairs of characters appearing jointly in at least one
chapter
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Social network IV

Football game network
it describes the schedule of games between American college football teams in the Fall 2000.
n = 115 components, m = 613 links
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Detection of modules (communities)

Automatic analysis of complex systems represented as networks
⇓

identification of communities

community = a subset of entities such that there are
more links within the community than links joining it to the outside
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Networks –> Graphs

Network: mathematical representation as a graph

A network, or graph: G = (V ,E)

V = Vertices, associated with the entities of the system under study
(people, companies, towns, natural species, ...)
represented by points

E = Edges, express that a relation defined on all pairs of vertices holds or not
for each such pair
represented by lines joining vertices

|V | = n, |E| = m
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Networks –> Graphs
Most of the networks we study have at most a single edge between any pair of vertices

A loop or self-edge is an edge for which both end vertices coincide.

When there is more than one edge between the same pair of vertices,

we refer to those edges collectively as a multiedge.

A multigraph is a graph such that two vertices can be joined by a multiedge.

A simple graph has neither loops nor multiple edges.
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Representation of a network

Edge list

- label the vertices with integer labels 1, . . . , n

- denote an edge between vertices i and j by (i, j)

- the network can be specified by giving the value of n and the list of all the edges.

Often used to store the structure of networks on computers.

Example
n = 6

(1,2)

(1,3)

(2,4)

(3,4)

(4,5)

(5,6)
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Representation of a network

Adjacency matrix

Matrix A with elments:

Aij =

 1 if there is an edge between vertices i and j

0 otherwise

Example
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Representation of a network

Adjacency matrix

Matrix A with elments:

Aij =

 1 if there is an edge between vertices i and j

0 otherwise

symmetric matrix

diagonal elements all 0 for graph with no self-edges

for a multiedge: the corresponding element Aij is the multiplicity of the edge

for a self-edge: it can be represented by the corresponding diagonal element

equal to 2
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Types of networks

Directed network or digraph

A network where each edge has a direction

directed edges: point from on vertex to another,

represented by lines with arrows

Examples: - hyperlinks on the World Wide Web run from one web page to another

- citation networks point from one paper to another

Adjacency matrix has elements:

Aij =

 1 if there is an edge from j to i

0 otherwise
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Types of networks

Weighted network

It can be useful in some situation to represent

edges as having a strenght, weight, or value

Usually, the weight is a real number

Examples: - the amount of data flowing on a computer network,

- frequency of contact between people in a social network

Adjacency matrix has elements with values equal to the weights of the edges
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Types of networks

Hypergraph

A generalization of a graph in which an edge can connect more than

two vertices at a time. (E is a subset of P(V) \ {∅}, with P(V) the power-set of V).

Example: - representation of family ties in families with more than two people

Can be viewed as an incidence structure

Often more conveniently represented by bipartite graphs
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Types of networks

Bipartite graph (two-mode network)
Graph whose vertices can be divided into two disjoint sets U and V such that

every edge connects a vertex in U to one in V .

Used to model relations between two different classes of objects.

Examples:

- actors and films in which they appear,

- football players and clubs

Incidence matrix: p × n matrix, with n = number of elements, p = number of groups

Bij =

 1 if vertex j belongs to group i

0 otherwise
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Types of networks

Tree = connected acyclic graph T = (G,V)

Any two vertices are connected by exactly one simple path (no closed loops)

T is connected, but is not connected if any single edge is removed from it

T has n vertices, n − 1 edges

T is labeled if each vertex is given a unique label

a star graph is a tree with as many leaves as possible

a path graph is a tree with two terminal vertices (the fewest possible)
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Measures & Properties

A network G can be characterized by several measures

Let us consider an unweighted network.

Measures

Degree

Clustering coefficient

Assortativity

Centrality

Properties

Modules

Small-world networks

Scale-free networks
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Degree

The degree of a vertex is the number of edges connected (incident) to it:

ki =

n∑
j=1

Aij

Undirected graphs:

2m ends of edges ⇒
n∑

i=1

ki = 2m ⇒ m =
1
2

∑
ij

Aij

regular graph: all vertices have the same degree→ degree of the graph

k-regular graph: all vertices have degree k

degree sequence: non-increasing sequence of its vertex degrees

isolated vertex: vertex with degree 0
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Degree

The degree of a vertex is the number of edges connected (incident) to it:

ki =

n∑
j=1

Aij

average degree of a graph:

c =
1
n

n∑
i=1

ki =
2m
n

density of a graph: fraction of edges that are actually present:

ρ =
m(
n
2

) =
2m

n(n − 1)
=

c
n − 1

- if ρ tends to a constant as n→ ∞, the network is said dense

- if ρ tends to 0 as n→ ∞, the network is said sparse
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Clustering coefficient

Clustering coefficient: a measure of the level of transitivity between pairs of vertices

relation “connected by an edge”: a transitive relation would mean

if u connected to v and v connected to w, then u also connected to w

“ the friend of my friend is also my friend”

perfect transitivity only possible on cliques

count all paths of length 2, count how many are closed, divide the 2nd number

by the 1st:

C =
number of closed paths of lenght 2

number of paths of lenght 2

C = 1: perfect transitivity, C = 0: no closed triads (Ex: trees)
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Clustering coefficient

Clustering coefficient: a measure of the level of transitivity between pairs of vertices

alternatively:

C =
(number of triangles) × 3

number of connected triples of vertices

Local clustering coefficient: for a vertex, quantifies how close its neighbors are to

being a clique

go through all distinct pairs of vertices that are neighbors of i, count the number

of such pairs that are connected to each other, and divide by the total number of

pairs (1/2)(ki(ki − 1)):

Ci =
number of pairs of neighbors of i that are connected

number of pairs of neighbors of i
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Assortativity and Centrality

A graph is said assortative if vertices with a high degree tend to be connected to other

vertices with high degree, and vertices with a low degree to others with low degree.

Centrality refers to the relative importance of a vertex within the network.

Measures:

- vertex degree

- betweenness centrality: fraction of shortest paths that pass through the vertex

- eigenvector centrality: value of the vector component, where the vector corresponds

to the largest eigenvalue of the adjacency matrix.

A shortest path between two vertices A and B is the path between A and B with the
smallest number of edges.
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Small-world networks

Stanley Milgram, 1960s
experiments to quantify the typical distance between people in social networks

- Milgram sent a set of packages to recipients randomly chosen in a city of Nebraska,
asking them to attempt to get the package to a specified target individual in Boston, MA.

- Each recipient was asked to pass the package to a person who he knew personally who
was more likely to know the target.

- Whoever received the package was asked to repeat the process.

- When and if the package eventually reached the contact person in Boston, Milgram could
know the entire path taken and count the number of times it had been forwarded from
person to person.

- Of the 96 packages, 18 found their way to the target.

- The mean length of the completed paths was just 5.9 steps.

- ⇒ origin of the idea of the “six degree of separation”: the popular belief that there
are only about 6 steps between any two people in the world.

- It is now widely accepted that vertex pairs in social networks tend on average to be
connected by short paths.
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Small-world networks

A small-world network is a graph in which most nodes are not neighbors of one
another, but most nodes can be reached from every other by a small number of
steps.
` = mean distance between vertices, n = number of vertices
Small-world network: a network where ` grows proportionally to the logarithm
of n:

` ∝ log n

In 1998, Duncan J. Watts and Steven Strogatz from Cornell University
published the first network model on the small-world phenomenon.
They showed that networks from both the natural and man-made world exhibit the
small-world phenomenon.

Substantial implications for networked systems:
- rumor spread over a social network,
- speed of response from a computer on the Internet,
- etc..
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Degree distribution

How is the frequency of distribution of vertex degree?

pk = degree distribution of the network = the fraction of vertices that have degree k

pk can be also thought as the probability that a random chosen vertex has degree k

A knowledge of the degree distribution does not tell us the complete structure of

a network.

Interestingly, often from the degree distribution we see that the mostly highly

connected vertex is connected to only a small percentage of the other vertices

(Example: Internet, 12%)

⇒ hub
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Scale-free networks

Scale-free network: network whose degree distribution follows a power law,

at least asymptotically:

pk ∼ Ck−γ

(the fraction of vertices having k connections goes as k−γ for large k)

C constant, γ typically in the range 2 ≤ γ ≤ 3

Studied by Barabasi and Albert (1999)

Examples: the Internet, social networks, etc..

Characteristics:

- often presence of hubs

- scale-free property strongly correlates with the network’s robustness to failure

- the clustering coefficient distribution decreases as the node degree increases.
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Clustering

Given a set of entities, find subsets, or clusters, which are
homogeneous and/or well separated

Homogeneity: entities in the same cluster
must be similar

Separation: entities in different clusters
must differ one from the other

This problem can be traced back to Aristotle and was already much studied by

18th century naturalists such as Buffon, Cuvier and Linné.

Applications in the natural sciences, medicine, engineering, economics, market-

ing and other fields.

The data usually correspond to observations or measurements on given entities.
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Clustering –> Graph Clustering

Graphical representation of data as graphs
→ finding data patterns→ network (graph) clustering

Many vertices inside clusters

Few edges between clusters

cluster or community = a subset of nodes which are more densely linked
compared to the rest of the network
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Examples

A community...

in a Social network:

individuals sharing a common interest or location

in a Biological network:

entities with a common function

in the World Wide Web:

web-pages having a common topic or language

etc...

A modular structure characterizes many complex systems, meaning that they contain

subgroups of entities sharing some common properties

Sonia Cafieri (ENAC) Network clustering: from models to methods May 2013 39 / 82



logoenac

Clustering on networks

Community detection useful to...

identify some properties of the system described by the studied network

starting from its structural features

study modules individually based on their properties

visualize and analyze to a higher level very large and complex networks by

compressing its modules in single nodes

...
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Partitions

A community corresponds to a subgraph GS = (S,ES) of a graph G = (V ,E):
a graph with vertex set S ⊆ V , edge set ES equal to all edges with both vertices in S.

⇒ finding a partition of V into subgraphs induced by nonempty subsets

V1,V2, . . . ,VM

such that
Vk ∩ Vl = ∅ ∀k ∈ 1, 2, . . .M

V1 ∪ V2 ∪ . . . ∪ VM = V

.

How to find and evaluate a partition?
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Clustering: finding communities

How to find and evaluate a partition?

We need
a clustering criterion / definition of community
a clustering algorithm
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Dividing networks into clusters

∗ Graph partitioning: dividing the vertices of a graph
such that the number of edges from one subgroup of vertices to another is minimized,
usually posing limits on the number of groups as well as on their relative size.
The number and sizes of the groups are fixed.

Typically used in parallel computing.

∗ Community detection: dividing the vertices of a graph
such that there are many edges within groups and few edges between groups, where the
size and number of groups are not specified and are determined by the network itself.
Finding the natural fault lines along which a network separates.

The terms community identification, graph clustering and graph partitioning are often
used interchangeably in this context.
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Graph Clustering

The problem can be formulated using mathematical programming.

Several formulations can be considered, depending on the definition of community

as well as the criterion chosen to evaluate the quality of the partition.

The research in this context is in fact generally essentially addressed

- on the one hand, to proposing and evaluating clustering criteria

- on the other hand, to devising efficient solution methods for the corresponding

optimization problems
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Clustering criteria / community definition

Two main approaches to evaluate a partition:

(i) Choose a criterion function, to be maximized or minimized

Example: Modularity (Newman & Girvan, 2004)

=⇒ define an optimization problem

(ii) Specify conditions to be satisfied by a community

Example: Strong and Weak conditions (Radicchi et al., 2004)

Further possibility/recent direction:

combining a criterion for community evaluation with constraints on each community
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Clustering criteria

Minimum cut:

min
C1 ,...,Ck

k∑
s=1

links(Cs,V\Cs)

Ratio cut (Cheng and Wei, 1991):

min
C1 ,...,Ck

k∑
s=1

links(Cs,V\Cs)
|Cs|

Normalized cut (Shi and Malik, 2000):

min
C1 ,...,Ck

k∑
s=1

links(Cs,V\Cs)
degree(Cs)

Min-max cut (Ding et al., 2001):

min
C1 ,...,Ck

k∑
s=1

links(Cs,V\Cs)
links(Cs,Cs)
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Modularity

Newman and Girvan, 2004:

compare the fraction of edges falling within communities
to the expected fraction of such edges

Modularity:
Q =

∑
s

[as − es]

as = fraction of all edges in module s

es = expected value of the same quantity in a graph with same vertex degree
and edges placed at random

Q ≈ 0 : the network is equivalent to a random network (barring fluctuations)
Q ≈ 1 : the network has a strong community structure
in practice, max Q often between 0.3 and 0.7

Maximizing modularity gives an optimal partition with the optimal number of clusters
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Criticism to modularity

Resolution limit:

in the presence of large clusters, some clusters smaller than a certain size can be

undetectable ⇒ modular structures like small cliques can be hidden in larger

clusters.

Degeneracy of Q:

there can be a large number of partitions, even very different from each other,

having high modularity values ⇒ easy to find high-scoring partitions but

difficult to identify the global optimum.
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Community definition

Clique S:

all pairs of vertices of S are joined by an edge

ki = |S| − 1 ∀vi ∈ S
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Community definition

Community S in the weak sense (Radicchi et al., 2004)

the sum of all degrees within S is larger than
the sum of all degrees joining S to the rest of the network:∑

i∈S

kin
i (S) >

∑
i∈S

kout
i (S)

(the number of edges within S is at least half the number of edges in the cut of S)

Community S in the strong sense (Radicchi et al., 2004)

every one of its vertices has more neighbors within the community than outside:

kin
i (S) > kout

i (S) ∀vi ∈ S
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Preliminaries

Is partitioning hard?

The simplest graph partitioning problem is the graph bisection

Aim: Dividing the vertices into two groups such that the cut size, i.e., the number of edges

between the groups, is minimized.

Naive approach: exhaustive search

simply look through all possible bisections of the required size and choose the one with

the smallest cut size.

What is the computational complexity?

The number of ways of dividing G = (V ,E) into 2 groups of n1 and n2 vertices is

n!/(n1! n2!).

Stirling’s formula: n! '
√

2πn(n/e)n and n = n1 + n2 ⇒

n!
n1! n2!

'

√
2πn(n/e)n

√
2πn1(n1/e)n

1

√
2πn2(n2/e)n

2

=
nn+ 1

2

n
n1+ 1

2
1 n

n2+ 1
2

2

⇒ the number of ways to divide a network into 2 parts of equal size n/2 is:

n + 1
2

( n
2 )n+1 =

2n+1

√
n

the amount of time to look through all the possible divisions goes up exponentially with

the size of the network
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Preliminaries

Partitioning into more than 2 groups

In general, more than 2 communities

We do not want to have to specify the number of communities

We could proceed by doing successive bisections into smaller and smaller

networks.

Need to pay attention to the fact that maximizing a criterion function on separate

communities may not maximize it for the network as a whole

Modularity maximization allows us to handle the problem maximizing over

divisions into any number of groups
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Clustering algorithms

Exact algorithms

can only solve small instances (with about a hundred entities) in reasonable time

provide an optimal solution together with the proof of its optimality

Heuristics

widely used

can solve approximately very large instances with up to hundred or thousand entities

do not have either an a priori performance guarantee
(finding always a solution with a value which is at least a given percentage of the
optimal one),
nor an a posteriori performance guarantee
(that the obtained solution is at least a computable percentage of the optimal one)
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Clustering algorithms

Heuristics based on:

Partitioning schemes
aim at finding the best partition into a given number of clusters

greedy,
simulated annealing,
genetic search,
a variety of other approaches

Hierarchical clustering
lead to a set of nested partitions

agglomerative schemes
divisive schemes
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Modularity maximization: greedy

(Blondel et al., 2008)

Greedy algorithm:

Start with the singleton partition and an ordering of the nodes α1, .., αn

Move each vertex from its current class to a neighbour’s class and compute the

change in modularity

Select the move with maximal increase in modularity

Repeat until no further increases in modularity are possible

The result depends on the order of vertices
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Modularity maximization: simulated annealing

Simulated Annealing (SA):

stochastic optimization method (meta-heuristic)

- Based on a temperature T: when T is high the system can explore configurations

of high cost whereas at low T the system only explores low-cost regions.

- By starting at high T and slowly decreasing T , the system descends gradually

towards minima.

SA for modularity maximization (Guimerà and Amaral, 2005)

Using modularity, the cost is −Q.
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Modularity maximization: simulated annealing

At each temperature, perform a number of random updates and accept them with

probability:

p =

 1 if increase in modularity

exp( ∆Q
T ) otherwise (∆Q = old modularity minus new modularity)

Updates include:

f n2 individual steps:

choosing a node and a community to move it to randomly

f n collective steps:

randomly choosing two communities to merge, or one community to split

typically, f = 1

After the movements are evaluated at a certain T , cool down the system to

T = cT , with c = 0.995
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Modularity maximization: genetic search

Genetic Algorithm (GA):
stochastic optimization method (meta-heuristic)

A set of candidate solutions is encoded as a kind of numerical chromosome.

- GA starts generating a random population of candidate solutions.

- Candidates are evaluated by using the fitness (cost) function.

- A new population of solutions is generated by applying biologically inspired

manipulations: mutation, crossover.

- Solutions with higher fitness values are kept in the next generation.

GA for modularity maximization: (Tasgin et al., 2008)

Candidate solutions are partitions

κi partition,

P = {κ1, ..., κp} population, set of chromosomes.

Sonia Cafieri (ENAC) Network clustering: from models to methods May 2013 60 / 82



logoenac

Modularity maximization: genetic search

Genetic Algorithm (GA):
stochastic optimization method (meta-heuristic)

A set of candidate solutions is encoded as a kind of numerical chromosome.

- GA starts generating a random population of candidate solutions.

- Candidates are evaluated by using the fitness (cost) function.

- A new population of solutions is generated by applying biologically inspired

manipulations: mutation, crossover.

- Solutions with higher fitness values are kept in the next generation.

GA for modularity maximization: (Tasgin et al., 2008)

Candidate solutions are partitions

κi partition,

P = {κ1, ..., κp} population, set of chromosomes.

Sonia Cafieri (ENAC) Network clustering: from models to methods May 2013 60 / 82



logoenac

Modularity maximization: genetic search
Start with a random chromosome, for example each vertex forms a cluster
Repeat the main loop a given number of times:

- Apply the fitness function to chromosomes

- Sort the chromosomes with respect to the fitness value and take the top p

- Pair the sorted chromosomes and apply crossover to the pairs. Apply mutation.

- Combine newly obtained p chromosomes and the previously saved p

Crossover on a pair source-destination chromosome:

(Tasgin et al.)

Mutation: randomly pick a chromosome to be mutated; pick two vertices vi and

vj randomly. Set the cluster of vj to the cluster of vi.
Sonia Cafieri (ENAC) Network clustering: from models to methods May 2013 61 / 82



logoenac

Hierarchical heuristics

Hierarchical heuristics are in principle devised for

finding a hierarchy of partitions implicit in the given network

when it corresponds to some situation where hierarchy is observed or

postulated.

They aim at finding a set of nested partitions.

Agglomerative heuristics

Divisive heuristics
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Hierarchical agglomerative clustering

Proceed from an initial partition with n communities each containing 1 entity

Iteratively merge the pair of entities for which merging increases most the
objective function (e.g., modularity)
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Hierarchical divisive clustering

Proceed from an initial partition containing all entities

Iteratively divide a cluster into two in such a way to increase most the objective
function (or the decrease in the objective value is the smallest possible)

critical point:
bipartitioning a cluster
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Heuristics in modularity literature: successful approaches

Clauset, Newman and Moore, 2004:

agglomerative hierarchical greedy, for sparse networks has a very low

complexity and is considerably faster than previously proposed methods.

Newman, 2006:

divisive hierarchical heuristic based on spectral graph theory,

splitting is done according to the sign of the components of the first eigenvector

of the modularity matrix.

Noack and Rotta, 2009:

heuristic based on a single-step coarsening with a multi-level refinement,

competitive with other methods in the literature.

Liu and Murata, 2010:

heuristic based on label propagation, gives better results than previous heuristics
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Exact algorithms for modularity maximization

Why using exact algorithms?

having an exact solution solves the problem of separating possible inadequacies

of the model from eventual errors resulting from the use of heuristics

⇒ communities may be interpreted with more confidence

an exact algorithm may be stopped and the best solution found considered

as a heuristic one

(it is not uncommon that the optimal solution is found at an early stage of

the resolution)

an exact algorithm can provide a benchmark of exactly solved instances

which can be used to compare heuristics and fine tune them

Sonia Cafieri (ENAC) Network clustering: from models to methods May 2013 66 / 82



logoenac

Exact algorithms for modularity maximization

Modularity maximization is NP-hard (Brandes et al., 2008)

Exact algorithms are rare. Based on mathematical programming formulations.

Two approaches:

? reduction of modularity maximization to clique partitioning

⇒ linear optimization problem (LP) in 0-1 variables

? direct formulation

⇒ mixed 0-1 quadratic optimization problem

Four algorithms:

� row generation for clique partitioning (Grötschel and Wakabayashi, 1990)

� column generation for clique partitioning (Cafieri et al., 2010)

� mixed-integer convex quadratic programming approach (Xu et al., 2007)

� column generation for the mixed-integer quadratic approach (Cafieri et al., 2010)
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Using mathematical programming

min f (x)
g(x) ≤ b

x ∈ X

⇒

Mathematical programming formulation =

a set of entities:

- parameters

- decision variables (x ∈ X)

- objective function (f (x))

- constraints (g(x) ≤ b)

that define an optimization problem

How to use mathematical programming in network clustering?
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Modularity: another expression

Modularity as a sum of values over all edges of the complete graph Kn:

Q =
1

2m

∑
i,j∈V

(
aij −

kikj

2m

)
δ(ci, cj)

where:
m = |E|

ki, kj = degrees of vertices i and j

aij = ij component of the adjacency matrix of G

δ(ci, cj) = 1 if the communities to which i and j belong are the same,
0 otherwise (Kronecker symbol)

kikj/2m = expected number of edges between vertices i and j in a null model
where edges are placed at random and the distribution of degrees
remains the same.
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Modularity maximization as clique partitioning

Introducing

wij =
1
m

(
aij −

kikj

2m

)
modularity maximization can be reformulated as a clique partitioning problem:

m= 5

k1= 2

k2= 2

k3= 3

k4= 2

k5= 1

a12= 1, m = 5, k1= 2, k2= 2

⇒ w12 = 1
5

(
1 − 2×2

10

)
= 0.12
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Modularity maximization as clique partitioning

Modularity maximization on Kn:

Kn complete graph⇒ it is a clique and any of its induced subgraphs are cliques.
partitioning G is thus equivalent to partitioning Kn into cliques.

The resulting partition is an equivalence relation:

reflexivity: each entity is in the same module as itself: ∀i xii = 1

symmetry: if i is in the same module as j, j is in the same as i: ∀i, j xij = xji

transitivity: if i and j are in the same module and j and k are in the same module,
then i and k must be in the same module
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Modularity maximization as clique partitioning
Introducing binary variables{

xij = 1 if vertices i, j belong to the same community
= 0 otherwise

max
∑

i<j∈V

wijxij − C −C = −
∑

i∈V
kiki
2m

s.t. xij + xjk − xik ≤ 1 ∀1 ≤ i < j < k ≤ n
xij − xjk + xik ≤ 1 ∀1 ≤ i < j < k ≤ n
−xij + xjk + xik ≤ 1 ∀1 ≤ i < j < k ≤ n
xij ∈ {0, 1} ∀1 ≤ i < j ≤ n

(Grötschel and Wakabayashi, 1990)

Linear 0-1 program

n(n−1)
2 = O(n2) variables

3
(

n
3

)
=

n(n−1)(n−2)
2 = O(n3) constraints
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Row generation

Typically used in combinatorial applications

1. the linear continuous relaxation is first solved

2. if the solution of this relaxation is in integers, it is optimal
(often the case for modularity maximization)

3. if the solution of the continuous relaxation is fractional, then
add valid constraints violated by the fractional solution: cutting planes

4. the number of constraints grows rapidly with n: they can be added by
batches of unsatisfied ones.
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Example: a social network

Zachary’s karate club network
it describes friendship relations between 34 members of a karate club observed over two years
by Zachary. In that period the club split into two groups after a dispute between the club owner
and the karate instructor.
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Column generation

Solving exactly linear programs with a number of variables (columns)
exponential in the size of the input

1. select a small number of columns and solve the linear program using only these

2. find an unused column which, if included, would most improve the objective value
(with favorable reduced cost) or determine that there is none

3. include the column in the linear program, re-solve it, and go to step 2.

The original problem is split into:

Master problem:
original problem with only a subset of variables being considered
Subproblem:
new problem created to identify a new variable
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Column generation

Subproblem (auxiliary problem):

its precise form depends on the type of problem under study

it can be solved heuristically as long as a column with a reduced cost

of the required sign can be found

when this is no more the case, an exact algorithm must be applied either to find

a column with the adequate reduced cost sign undetected by the heuristic or to

prove that there is no such column
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Column generation – clique partitioning

Idea: the columns correspond to all subsets of V (all nonempty modules)
implicitly take into account all possible communities

ait = 1 if vertex i belongs to module t
= 0 otherwise

Master problem:
max

∑
t∈T

ctzt − C∑
t∈T

aitzt = 1 ∀i = 1, . . . , n

zt ∈ {0, 1} ∀t ∈ T

- sum of modularities of all selected modules
minus the constant corresponding to the
diagonal terms

- each entity must belong to only one module

- modules must be selected entirely or not at all

ct =
∑

i
∑

j>i wijaitajt

i.e., the value of the module indexed by t, t = 1 . . . 2n − 1
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Column generation – clique partitioning

Improving columns are added progressively to relaxation of the master problem.

Reduced cost associated with column t: ct −
∑

i λiait.
To find a column with positive red. cost, replace the coefficients ait by variables yi.

Auxiliary problem:

max
∑

i

∑
j>i

wijyiyj −
∑

i

λiyi

Quadratic program in 0-1 variables with a 100% dense matrix of coefficients
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MIQP formulation (Xu, Tsoka and Papageorgiou, 2007)

Variables used to identify to which module each vertex and each edge belongs:

Xrs =

{
1 if edge r belongs to module s
0 otherwise ∀r = 1, 2, . . .m, s = 1, 2, . . .M

Yis =

{
1 if vertex i belongs to module s
0 otherwise. ∀i = 1, 2, . . . n, s = 1, 2, . . .M

max Q =
∑

s

[as − es] =
∑

s

ms

m
−

(
ds

2m

)2 ms = number of edges in module s
dS = sum of degrees ki of vertices in s

ms =
∑

r Xrs and dS =
∑

i kiYis∑
s Yis = 1 ∀i = 1, 2, . . . n each vertex belongs to one module

Xrs ≤ Yis ∀r = {vi, vj} ∈ E
Xrs ≤ Yjs ∀r = {vi, vj} ∈ E

any edge r = {vi, vj} can belong to module s
⇔ both of its end vertices i,j belong to s

us ≤ us−1

module s nonempty⇔ s − 1 is so
(us = 1 if module s nonempty, 0 otherwise)

symmetry-breaking constraints

⇓

Mixed-Integer Quadratic Program

with a convex continuous relaxation

Can be solved directly by a MIQP solver
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Column generation for modularity maximization (MIQP)
Idea: the columns correspond to all subsets of V (all nonempty modules)

implicitly take into account all possible communities

Master problem:
max

∑
t∈T

ctzt − C∑
t∈T

aitzt = 1 ∀i = 1, . . . , n

zt ∈ {0, 1} ∀t ∈ T

ct =
∑

i
∑

j>i
1
m

(
aij −

kikj
2m

)
aitajt t = 1 . . . 2n − 1

- sum of modularities of all selected modules

- each entity must belong to only one module

- modules must be selected entirely or not at all

Auxiliary problem:



max
∑

r

xr

m
−

(
d

2m

)2

−
∑

i

λiyi

s.t.
d =

∑
i

kiyi

xr ≤ yi ∀r = {vi, vj} ∈ E
xr ≤ yj ∀r = {vi, vj} ∈ E


xr = 1 if edge r belongs to the module

which maximizes the obj.funct.
= 0 otherwise

yi = 1 if vertex i belongs to the module
which maximizes the obj.funct.

= 0 otherwise

approach similar to that of Xu et al.
⇓

mixed 0-1 quadratic program

n + m binary variables + 1 continuous variable

2m + 1 linear constraints

a single nonlinear term which is concave,
in the obj.funct.

Can be solved using:

a heuristic, as long as a column with positive
reduced cost can be found

an exact method, when this is no more the case

Sonia Cafieri (ENAC) Network clustering: from models to methods May 2013 80 / 82



logoenac

Column generation for modularity maximization (MIQP)
Idea: the columns correspond to all subsets of V (all nonempty modules)

implicitly take into account all possible communities

Master problem:
max

∑
t∈T

ctzt − C∑
t∈T

aitzt = 1 ∀i = 1, . . . , n

zt ∈ {0, 1} ∀t ∈ T

ct =
∑

i
∑

j>i
1
m

(
aij −

kikj
2m

)
aitajt t = 1 . . . 2n − 1

- sum of modularities of all selected modules

- each entity must belong to only one module

- modules must be selected entirely or not at all

Auxiliary problem:

max
∑

r

xr

m
−

(
d

2m

)2

−
∑

i

λiyi

s.t.
d =

∑
i

kiyi

xr ≤ yi ∀r = {vi, vj} ∈ E
xr ≤ yj ∀r = {vi, vj} ∈ E


xr = 1 if edge r belongs to the module

which maximizes the obj.funct.
= 0 otherwise

yi = 1 if vertex i belongs to the module
which maximizes the obj.funct.

= 0 otherwise

approach similar to that of Xu et al.
⇓

mixed 0-1 quadratic program

n + m binary variables + 1 continuous variable

2m + 1 linear constraints

a single nonlinear term which is concave,
in the obj.funct.

Can be solved using:

a heuristic, as long as a column with positive
reduced cost can be found

an exact method, when this is no more the case

Sonia Cafieri (ENAC) Network clustering: from models to methods May 2013 80 / 82



logoenac

Column generation for modularity maximization (MIQP)
Idea: the columns correspond to all subsets of V (all nonempty modules)

implicitly take into account all possible communities

Master problem:
max

∑
t∈T

ctzt − C∑
t∈T

aitzt = 1 ∀i = 1, . . . , n

zt ∈ {0, 1} ∀t ∈ T

ct =
∑

i
∑

j>i
1
m

(
aij −

kikj
2m

)
aitajt t = 1 . . . 2n − 1

- sum of modularities of all selected modules

- each entity must belong to only one module

- modules must be selected entirely or not at all

Auxiliary problem:

max
∑

r

xr

m
−

(
d

2m

)2

−
∑

i

λiyi

s.t.
d =

∑
i

kiyi

xr ≤ yi ∀r = {vi, vj} ∈ E
xr ≤ yj ∀r = {vi, vj} ∈ E


xr = 1 if edge r belongs to the module

which maximizes the obj.funct.
= 0 otherwise

yi = 1 if vertex i belongs to the module
which maximizes the obj.funct.

= 0 otherwise

approach similar to that of Xu et al.
⇓

mixed 0-1 quadratic program

n + m binary variables + 1 continuous variable

2m + 1 linear constraints

a single nonlinear term which is concave,
in the obj.funct.

Can be solved using:

a heuristic, as long as a column with positive
reduced cost can be found

an exact method, when this is no more the case

Sonia Cafieri (ENAC) Network clustering: from models to methods May 2013 80 / 82



logoenac

Column generation for modularity maximization (MIQP)
Idea: the columns correspond to all subsets of V (all nonempty modules)

implicitly take into account all possible communities

Master problem:
max

∑
t∈T

ctzt − C∑
t∈T

aitzt = 1 ∀i = 1, . . . , n

zt ∈ {0, 1} ∀t ∈ T

ct =
∑

i
∑

j>i
1
m

(
aij −

kikj
2m

)
aitajt t = 1 . . . 2n − 1

- sum of modularities of all selected modules

- each entity must belong to only one module

- modules must be selected entirely or not at all

Auxiliary problem:

max
∑

r

xr

m
−

(
d

2m

)2

−
∑

i

λiyi

s.t.
d =

∑
i

kiyi

xr ≤ yi ∀r = {vi, vj} ∈ E
xr ≤ yj ∀r = {vi, vj} ∈ E


xr = 1 if edge r belongs to the module

which maximizes the obj.funct.
= 0 otherwise

yi = 1 if vertex i belongs to the module
which maximizes the obj.funct.

= 0 otherwise

approach similar to that of Xu et al.
⇓

mixed 0-1 quadratic program

n + m binary variables + 1 continuous variable

2m + 1 linear constraints

a single nonlinear term which is concave,
in the obj.funct.

Can be solved using:

a heuristic, as long as a column with positive
reduced cost can be found

an exact method, when this is no more the case

Sonia Cafieri (ENAC) Network clustering: from models to methods May 2013 80 / 82



logoenac

Example: a social network

Victor Hugo’s Les Misérables network:

? 77 vertices associated to characters which interact

? 257 edges associated with pairs of characters appearing jointly in at least
one chapter
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