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Model risk

Every time you do an empirical project, you have to pick a model
specification to estimate

(recall, even Gauss-Markov theorem requires your model to be a
correct one!)

The best case scenario: your choice is driven by theory

Quite often, it is not an option

Estimating different models often yields different results

What to do then?

How to pick a model specification? How to draw conclusions from several
models at the same time? This is the topic of today’s session.
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There are 2 types of selection

testing 2 nested model specifications against each other

choosing the best among a range various models

Depending on your goal, you will need different tools

statistical tests

maximizing a certain criterion

The main requirement for any model-selection procedure is its
consistency: ability to choose the true data-generating process with
probability approaching 1 as the sample size goes to infinity.

All good tests and criteria have to satisfy this requirement.

R-squared and such do not. Never maximize R-squared.

Svetlana Bryzgalova (LSE) Model selection and averaging September 22, 2013 3 / 20



Nested models

When 1 model is a particular case of another, you can test this as a
restriction on parameters (linear or nonlinear)

Keeping regressors or not: t-test, F-test

In most cases Likelihood Ratio works:

LR = −2log
Likelihood(model 1)

Likelihood(model 2)

This covers restrictions on included regressors, comparing pooled
regression with panel data models, estimating time seties model (ARMA,
GARCH, etc)
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LASSO: least absolute shrinkage and selection operator

What if you could choose variables and estimate model parameters at
the same time?
LASSO is designed to do both simultaneously
Penalized least squares:

min

n∑

i=1

(yi −
k∑

j=1

xjβj)
2 + λ

k∑

j=1

|βj |

Penalty discourages the use of too many parameters, having weak
effect on y

λ is a tuning parameter, that needs to be specifically chosen for this
procedure to work well
other penalties work as well (a whole zoo of them!) for all sorts of
models and data features
many of them, like adaptive LASSO, have consistency
perform especially well when there are many factors: Fan and Li
(2001)
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One of many

Information criteria are designed to evaluate the probability that the
data comes from a particular model.

They work for two non-nested models

They are also good for picking the best out of many

Choosing the best ARMA-GARCH or comparing several regressions

Main idea: pick a specification with high likelihood and few
parameters that drive it

Two most widespread information criteria:

Akaike (AIC): for choosing the order of ARMA

AIC = 2k − 2log(Likelihood)

Schwarz (Bayesian Information Criterion, BIC): for choosing the rest

BIC = log(T )k − 2log(Likelihood)

where k is the number of parameters, T is the number of observations
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Selecting regressors

For the regression setup, AIC is not consistent, but BIC is. It selects a
parsimonious, true DGP with high probability.
Why does it happen? BIC directly approximates the probability the data
comes from a model. Example:

BIC ≈ Prob (y = xβ + ǫ |Data)

We do not fix a particular value of β here, we evaluate the probability of
coming from this structure in general, by averaging the likelihood over all
possible parameter values.

BIC is an estimate of the integrated likelihood. Integrated over a whole
range of β’s.

Contrast it with the usual maximum likelihood, fixed at the optimal
parameter values that maximize it.
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Distribution-free measures

Similar to AIC and BIC, there exist other criteria that are designed for
all sorts of models.

When the model is formulated by moment conditions, likelihood is
not available.

However, there exist analogues to AIC and BIC: Andrews (1999)

Sometimes it’s not easy to choose between models, as they are so close,
but also so different.

What to do? Take the best of both worlds!
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Hoeting et al(1999): Implementing Bayesian Model

Averaging

Box: ”All models are wrong, but some are useful”

No linear regression is the true data generating process, but some
could be closer than others
Study the weighted average from different models, for example

Prob(β = β0 |Data) =

= Prob(β = β0 |Data,Model 1)Prob(Model 1; |Data)+

+Prob(β = β0 |Data,Model 2)Prob(Model 2; |Data)

We already have nearly everything to do it:

Prob(β = β0 |Data,Model 1) comes from the usual Gauss-Markov
theorem, etc
Prob(Model 1; |Data) is approximated by BIC
some other weights can be used as well, e.g. as in Hansen (2007)
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Sala-i-Martin, Doppelhofer, Miller(2004): Determinants of

long-term economic growth

There exist many variables that seem to explain a significant
propertion of economic growth in different countries

Are there any common factors?

A comprehensive study of data on 88 countries and all sorts of factors
(67) from different papers

Looking for something robust across all the specifications

Q: Which factors would you include?
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Source: Sala-i-Martin, Doppelhofer, Miller(2004)
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18 factors robust across specifications

Source: Sala-i-Martin, Doppelhofer, Miller(2004)
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Avramov (2002): Stock return predictability and model

uncertainty

Model averaging can be used not only for inference, but in prediction
as well

Various models for stock market predictability has identified various
significant factors

Model averaging allows to minimize extreme swings, and accounts for
the model risk

Quite often using MA diminishes ”apparent” predictability, especially
in-sample

Avramov (2002) builds a structural framework, where model averaging is
part of the investor’s optimal decision

Monthly and quarterly data (1953-1998), 6 portfolios of stocks formed by
their characteristics.
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Stock market factors

dividend yield on the value-weighted NYSE index,

book-to-market on the Standard & Poors Industrials,

earnings yield on the Standard & Poors Composite,

the winners-minus-losers one-year momentum in stock returns,

default risk spread, formed as the difference in annualized yields of Moodys Baa and Aaa rated bonds,

monthlyrate of a three-month Treasury bill,

excess return on the CRSP value-weighted index with dividends,

default risk premium, formed as the difference between return on long-term corporate bonds and return on long-term
government bond,

term premium, formed as the difference between the monthly return on longterm government bond and the one-month
Treasurybill rate,

January Dummy,

monthly inflation rate,

size premium,

value premium,

term spread, formed as the difference in annualized yield of ten-year and one year Treasuries.
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Findings

Financial returns are slighly predictable, both in-sample and
out-of-sample

Model averaging substantially improves and robustifies prediction

The best predictors are term and market premium

Model uncertainty is even more important for prediction, than the
estimation error from running regressions

Further questions. What about

bond or currency pricing?

volatility effects? (is GARCH any good?)

influence on portfolio optimisation and market microstructure?
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Fereira, Santa-Clara (2012): Forecasting stock market

return: when the sum is greater than the whole

Sometimes combining predictions from several models can improve the
overall performance, because different factors have different properties.

Consider a typical stock return decomposition into capital gain (CG) and
dividend gain (DG):

1 + Rt+1 = 1 + CGt+1 + DGt+1 =
Pt+1

Pt

+
Dt+1

Pt

The capital gain can be expressed through the price/earnings ratio, etc:

1 + CGt+1 =
Pt+1

Pt

=
Pt+1/Et+1

Pt/Et

Et+1

Et

= (1 + GPEt+1)(1 + GEt+1)

where GPE is growth in P/E ratio, and GE - in earnings.
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Combinings predictors

What of dividend yield?

1 + DYt+1 =
Dt+1

Pt

=
Dt+1

Dt

Pt+1

Pt

= DPt+1(1 + GPEt+1)(1 + GEt+1)

where DPt+1 is the dividend-price ratio.

Substitute and sum everything together:

1 + Rt+1 =
Pt+1

Pt

+
Dt+1

Pt

= (1 + GPEt+1)(1 + GEt+1)(1 + DPt+1)

Take logs:

rt+1 = log (1 + Rt+1) = gpet+1 + get+1 + dpt+1

where lower-case letter stand for log-rates.
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Sum-of-the-parts method

Instead of trying to forecast returns per se, forecast each component
separately, and then sum up.

Taking advantage of the fact that different factors have different
predictability: some are more persistent than others (e.g.earnings growth).

Source: Fereira, Santa-Clara (2012)
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Results

Campbell and Thomas(2008): usual predictive regressions perform
rather poorly, because their parameters change over time

Different factors can be forecasted using accounting and market-wide
data separately

Combined procedure yields stable predictability over different
subperiods (still, not much - only 1-2% monthly out-of-sample)

Results are better than those from the factors from Goyal and Welsh
(2008) (another extensive list of variables)

A trading strategy, formed using combined prediction, earns a Sharpe
ratio of over 0.4 compared to the usual mean forecast
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What have we learned

Model uncertainty is a large component or estimation risk

Disregarding it can influence many results in empirical work

There are 2 ways to deal with it: either wisely choose the best model,
or try to make inference from several of them

Bayesian Model Averaging allows to weight the contribution of
various specifications

Combining several forecasts together may improve the fit, because it
takes into account individual predictability features
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