Consumption-based asset pricing

Svetlana Bryzgalova

sabryzgalova@gmail.com

September 22, 2013

Outline

Financial markets have a tremendous impact over many spheres of our lives to be smply ignored.

- While they have many distinguishing features, the basis of their functioning is the same as any other market.
- People try to make the best possible decisions, given information and circumstances
- Investment and consumption decisions are tightly linked
- The whole purpose of financial markets is to transfer wealth from one state of the world to another to enhance consumtion abilities

Outline

Financial markets have a tremendous impact over many spheres of our lives to be smply ignored.

- While they have many distinguishing features, the basis of their functioning is the same as any other market.
- People try to make the best possible decisions, given information and circumstances
- Investment and consumption decisions are tightly linked
- The whole purpose of financial markets is to transfer wealth from one state of the world to another to enhance consumtion abilities

Today we will look at the basic results in consumption-based asset pricing:

- main ideas behind the set of modelling techniques
- stylized facts of the data
- current strands of the literature

Salient features of financial data

International stock and bill returns									
Country	Sample period	$\overline{r_e}$	$\sigma(r_e)$	$\rho(r_e)$	$\overline{r_f}$	$\sigma(r_f)$	$\rho(r_f)$		
USA	1947.2-1998.4	8.085	15.645	0.083	0.896	1.748	0.508		
AUL	1970.1-1999.1	3.540	22.699	0.005	2.054	2.528	0.645		
CAN	1970.1-1999.2	5.431	17.279	0.072	2.713	1.855	0.667		
FR	1973.2-1998.4	9.023	23.425	0.048	2.715	1.837	0.710		
GER	1978.4-1997.4	9.838	20.097	0.090	3.219	1.152	0.348		
ITA	1971.2-1998.2	3.168	27.039	0.079	2.371	2.847	0.691		
JAP	1970.2-1999.1	4.715	21.909	0.021	1.388	2.298	0.480		
NTH	1977.2-1998.4	14.070	17.228	-0.030	3.377	1.591	-0.085		
SWD	1970.1-1999.3	10.648	23.839	0.022	1.995	2.835	0.260		
SWT	1982.2-1999.1	13.744	21.828	-0.128	1.393	1.498	0.243		
UK	1970.1-1999.2	8.155	21.190	0.084	1.301	2.957	0.478		
USA	1970.1-1998.4	6.929	17.556	0.051	1.494	1.687	0.571		
SWD	1920-1998	7.084	18.641	0.096	2.209	5.800	0.710		
UK	1919-1998	7.713	22.170	-0.023	1.255	5.319	0.589		
USA	1891-1998	7.169	18.599	0.047	2.020	8.811	0.338		

Source: Cochrane (2002)

Salient features of financial data

international consumption and dividends									
Country	Sample period	$\overline{\Delta c}$	$\sigma(\Delta c)$	$\rho(\Delta c)$	$\overline{\Delta d}$	$\sigma(\Delta d)$	$\rho(\Delta d)$		
USA	1947.2-1998.4	1.964	1.073	0.216	2.159	28.291	-0.544		
AUL	1970.1-1999.1	2.099	2.056	-0.324	0.656	34.584	-0.450		
CAN	1970.1-1999.2	2.082	1.971	0.105	-0.488	5.604	0.522		
FR	1973.2-1998.4	1.233	2.909	0.029	-0.255	13.108	-0.133		
GER	1978.4-1997.4	1.681	2.431	-0.327	1.189	8.932	0.078		
ITA	1971.2-1998.2	2.200	1.700	0.283	-3.100	19.092	0.298		
JAP	1970.2-1999.1	3.205	2.554	-0.275	-2.350	4.351	0.354		
NTH	1977.2-1998.4	1.841	2.619	-0.257	4.679	4.973	0.294		
SWD	1970.1-1999.3	0.962	1.856	-0.266	4.977	14.050	0.386		
SWT	1982.2-1999.1	0.524	2.112	-0.399	6.052	7.698	0.271		
UK	1970.1-1999.2	2.203	2.507	-0.006	0.591	7.047	0.313		
USA	1970.1-1998.4	1.812	0.907	0.374	0.612	16.803	-0.578		
SWD	1920-1998	1.770	2.816	0.150	1.551	12.894	0.315		
UK	1919-1998	1.551	2.886	0.294	1.990	7.824	0.233		
USA	1891-1998	1.789	3.218	-0.116	1.516	14.019	-0.087		

Source: Cochrane (2002)

Stylized facts

- Average real returns on the stocks are usually 4.5% or higher
- Short-term debt instruments tend to have a substantially lower return
- Annualized standard deviation of the stocks varies a lot (15-27%)
- Annualized volatility of the debt instruments is low (2-3%)
- \bullet Real consumption growth is low, with standard deviation rarely above 3%
- Both consumption and returns are procyclical
- Dividends are more volatile than consumption, but not as much as stocks

These features are persistent across all countries.

Hereinafter, I will make use of US data for illustrative purpose.

The basic model of asset pricing

An infinitely lived representative household maximizes his expected expected utility of consumption

$$E_t[U_t] = u(c_t) + E_t \left[\beta u(c_{t+1}) + \beta^2 u(c_{t+2}) + \dots\right] =$$
$$= u(c_t) + E_t \left[\sum_{i=1}^{i=\infty} \beta^i u(c_{t+i})\right]$$

The basic model of asset pricing

An infinitely lived representative household maximizes his expected expected utility of consumption

$$E_t[U_t] = u(c_t) + E_t \left[\beta u(c_{t+1}) + \beta^2 u(c_{t+2}) + \dots\right] =$$
$$= u(c_t) + E_t \left[\sum_{i=1}^{i=\infty} \beta^i u(c_{t+i})\right]$$

Each period he gets some proceeds from the old savings, and divides them between consumption and investment

$$W_{t+1} = (1 + R_{w,t+1})(W_t - c_t)$$

where W_t is the stock aggregate wealth, and $R_{w,t+1}$ is its net return.

Fundamental pricing relation

FOC: maximize utility w.r.t. each c_t (note the use of 2 budject constraints)

$$-u'(c_t) + \beta E_t \left[R_{w,t+1}u'(c_{t+1}) \right] = 0$$

utility loss from investing another dollar in the stock should be offset by the expected gain next period, or

$$1 = E_t \left[\beta \frac{u'(c_{t+1})}{u'(c_t)} R_{w,t+1} \right]$$

Fundamental pricing relation

FOC: maximize utility w.r.t. each c_t (note the use of 2 budject constraints)

$$-u'(c_t) + \beta E_t \left[R_{w,t+1}u'(c_{t+1}) \right] = 0$$

utility loss from investing another dollar in the stock should be offset by the expected gain next period, or

$$1 = E_t \left[\beta \frac{u'(c_{t+1})}{u'(c_t)} R_{w,t+1} \right]$$

In general, we can write this as

$$1 = E_t \left(M_{t+1} R_{w,t+1} \right)$$

where M_{t+1} is a stochastic discount factor, a particular function of consumption and other variables, depending on the utility function and other features of the economy.

Svetlana Bryzgalova (LSE)

Stochastic discount factor

The fundamental pricing relation should work for all the assets, including the risk-free bond and the market return:

$$1 + R_f = \frac{1}{E_t [M_t]} = E_t [M_{t+1} R_{m,t+1}]$$

Equivalently one can formulate for excess returns:

$$0 = E_t \left[M_{t+1} R_{t+1}^{ex} \right]$$

Stochastic discount factor

The fundamental pricing relation should work for all the assets, including the risk-free bond and the market return:

$$1 + R_f = \frac{1}{E_t [M_t]} 1 = E_t [M_{t+1} R_{m,t+1}]$$

Equivalently one can formulate for excess returns:

$$0 = E_t \left[M_{t+1} R_{t+1}^{ex} \right]$$

Recalling that E[MX] = cov(M, X) + E[M]E[X]:

$$0 = Cov_{t} \left(M_{t+1}, R_{t+1}^{ex} \right) + \frac{E_{t} \left[R_{t+1}^{ex} \right]}{R_{f}}$$
$$E_{t} \left[R_{t+1} \right] - R_{f} = -R_{f} Cov_{t} \left[M_{t+1}, R_{t+1} \right]$$

In the equilibrium return of the asset is explained by its co-movement with the consumption. This is testable, once we specify utility function.

Svetlana Bryzgalova (LSE)

Consumption-based asset pricing

Mehra, Prescott (1985) The equity premium: a puzzle

Take a particular utility function, Constant Relative Risk Aversion (CRRA)

$$u(c_t) = \left(\frac{c_t^{1-\gamma}}{1-\gamma}\right) \quad \Rightarrow \quad 1 = E_t \left[\beta \left(\frac{c_{t+1}}{c_t}\right)^{-\gamma} R_{m,t+1}\right]$$

 β and γ can be estimated with GMM or a nonlinear regression straight away.

Mehra, Prescott (1985) The equity premium: a puzzle

Take a particular utility function, Constant Relative Risk Aversion (CRRA)

$$u(c_t) = \left(\frac{c_t^{1-\gamma}}{1-\gamma}\right) \quad \Rightarrow \quad 1 = E_t \left[\beta \left(\frac{c_{t+1}}{c_t}\right)^{-\gamma} R_{m,t+1}\right]$$

 β and γ can be estimated with GMM or a nonlinear regression straight away.

Note, that $M_{t+1} \approx \beta [1 - \gamma \Delta c_{t+1}]$.

Other things being equal, the higher is risk-aversion, the larger is the covariance between R_{t+1} and M_{t+1} .

How big should be RRA to fit the real data?

We want to test the model on the actual data. In our model,

 consumption cannot be stored till next period (everything is consumed today!)

- consumption cannot be stored till next period (everything is consumed today!) ⇒ No furniture, cars, jewelry, etc... only short period, *nondurable* consumption
- our household does not grow in time

- consumption cannot be stored till next period (everything is consumed today!) ⇒ No furniture, cars, jewelry, etc... only short period, *nondurable* consumption
- our household does not grow in time ⇒ nondurable consumption should be made per capita (aggregate/population)
- there is no money and no inflation

- consumption cannot be stored till next period (everything is consumed today!) ⇒ No furniture, cars, jewelry, etc... only short period, *nondurable* consumption
- our household does not grow in time ⇒ nondurable consumption should be made per capita (aggregate/population)
- there is no money and no inflation \Rightarrow use only *real* data
- what kind of inflation to delete?

- consumption cannot be stored till next period (everything is consumed today!) ⇒ No furniture, cars, jewelry, etc... only short period, *nondurable* consumption
- our household does not grow in time ⇒ nondurable consumption should be made per capita (aggregate/population)
- there is no money and no inflation \Rightarrow use only *real* data
- what kind of inflation to delete? the only good in nondurable consumption ⇒ all returns and growth rates should be made real with the inflation rate for nondurable goods (different from usual CPI!)

- consumption cannot be stored till next period (everything is consumed today!) ⇒ No furniture, cars, jewelry, etc... only short period, *nondurable* consumption
- our household does not grow in time \Rightarrow nondurable consumption should be made per capita (aggregate/population)
- there is no money and no inflation \Rightarrow use only *real* data
- what kind of inflation to delete? the only good in nondurable consumption ⇒ all returns and growth rates should be made real with the inflation rate for nondurable goods (different from usual CPI!)
- to sum up, we need the real growth rate of nondurable consumption per capita and real returns on market and a short-term government bond to find their means and standard deviations.

- consumption cannot be stored till next period (everything is consumed today!) ⇒ No furniture, cars, jewelry, etc... only short period, *nondurable* consumption
- our household does not grow in time \Rightarrow nondurable consumption should be made per capita (aggregate/population)
- there is no money and no inflation \Rightarrow use only *real* data
- what kind of inflation to delete? the only good in nondurable consumption ⇒ all returns and growth rates should be made real with the inflation rate for nondurable goods (different from usual CPI!)
- to sum up, we need the real growth rate of nondurable consumption per capita and real returns on market and a short-term government bond to find their means and standard deviations.
- what kind of time stamp to take? The more, the better \Rightarrow use quarterly.

Data

Where to get all this data? Two main free sources:

- Bureau of Economic Analysis with NIPA tables (www.bea.gov)
- Federal Reserve Economic Data (FRED, www.http://research.stlouisfed.org/fred2/)

Findings:

Where to get all this data? Two main free sources:

- Bureau of Economic Analysis with NIPA tables (www.bea.gov)
- Federal Reserve Economic Data (FRED, www.http://research.stlouisfed.org/fred2/)

Findings:

- pure variation in the consumption growth rate is too low to drive the risk premium through covariance with the stocks
- ullet to match the average market return, you need risk aversion of >90
- normal values of RRA generate the equity premium of only 1-2% pa, not required 6% ⇒ equity premium puzzle
- normal values of RRA also generate too high risk-free rate, 12% pa, instead of the usual $2\% \Rightarrow risk$ free rate puzzle

- Imagine, you have 10k rubles.
- I give you a bet, where you either gain 10k or lose them with prob=1/2. Would you agree?

- Imagine, you have 10k rubles.
- I give you a bet, where you either gain 10k or lose them with prob=1/2. Would you agree?
- Probably, not. What if I increase the upside to X=25? 30? 500? When would you agree to participate?

- Imagine, you have 10k rubles.
- I give you a bet, where you either gain 10k or lose them with prob=1/2. Would you agree?
- Probably, not. What if I increase the upside to X=25? 30? 500? When would you agree to participate?

	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10
Agreable X Risk-aversion										

- Imagine, you have 10k rubles.
- I give you a bet, where you either gain 10k or lose them with prob=1/2. Would you agree?
- Probably, not. What if I increase the upside to X=25? 30? 500? When would you agree to participate?

	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10
Agreable X Risk-aversion										

$$\frac{10^{1-\gamma}}{1-\gamma} = \frac{1}{2} \frac{X^{1-\gamma}}{1-\gamma} + \frac{1}{2} \frac{0}{1-\gamma}$$
$$\gamma = 1 + \frac{\ln \frac{1}{2}}{\ln \frac{X}{10}}$$

Consumption-based asset pricing

The fundamental relation between macroeconomic variables and asset pricing

$$1 = E\left[M_{t+1}R_{t+1}\right]$$

where M_{t+1} is a stochastic discount factor, usually a function of marginal utility, consumption, and other things. Returns are driven by their covariance with the SDF.

The fundamental relation between macroeconomic variables and asset pricing

$$1 = E\left[M_{t+1}R_{t+1}\right]$$

where M_{t+1} is a stochastic discount factor, usually a function of marginal utility, consumption, and other things. Returns are driven by their covariance with the SDF. The basic specification:

- consumption varies too slowly compared to the stock market;
- CRRA utility is not enough to amplify this co-movement to match the stylized facts.

Good overviews:

- Mehra, Prescott (2003) The equity premium in retrospect
- Ludvigson(2012) Advances in consumption-based asset pricing: empirical tests

Overall, the literature focuses on

- measurement error in data
- changing preferences (utility channel)
- introducing market frictions (budget constraint channel)
- introducing a production sector in the economy

- Consumption data is difficult to accurately measure
- 7-10% unreported, a lot of aggregation and smoothing
- Maybe we can use a different proxy for the official consumption growth rate

- Consumption data is difficult to accurately measure
- 7-10% unreported, a lot of aggregation and smoothing
- Maybe we can use a different proxy for the official consumption growth rate
- Use Municipal Solid Waste, aka garbage!

- Consumption data is difficult to accurately measure
- 7-10% unreported, a lot of aggregation and smoothing
- Maybe we can use a different proxy for the official consumption growth rate
- Use Municipal Solid Waste, aka garbage!
- $\bullet\,$ Garbage growth rates are more procyclical $\Rightarrow\,$ don't need very high risk-aversion
- Estimated RRA goes does down from 89 to 19

- Consumption data is difficult to accurately measure
- 7-10% unreported, a lot of aggregation and smoothing
- Maybe we can use a different proxy for the official consumption growth rate
- Use Municipal Solid Waste, aka garbage!
- $\bullet\,$ Garbage growth rates are more procyclical $\Rightarrow\,$ don't need very high risk-aversion
- Estimated RRA goes does down from 89 to 19
- Good, but still too high... Measurement error in consumption cannot explain all of it (and many other features).

Consumption vs garbage

Figure 1. The time series of garbage growth and expenditure growth. This figure shows the time series of realized annual garbage growth and NIPA nondurables and services expenditure growth over the sample 1980 through 2007 against the contemporaneous excess return on the CRSP value-weighted portfolio. Gray bands indicate NBER recessions. All three series are demeaned for ease of comparison. The growth of consumption measure c is c_{t+1}/c_t , using the beginning-of-period convention.

Source: Savov (2011)

Recursive preferences: Epstein and Zin (1989, 1991)

$$egin{aligned} \mathcal{V}_t &= \left[(1-eta)\mathcal{C}_t^{1-
ho}+eta\mathcal{B}_t(\mathcal{V}_{t+1})^{1-
ho}
ight]^{rac{1}{1-
ho}}\ &B_t(\mathcal{V}_{t+1}) = \left(\mathcal{E}_t\left[\mathcal{V}_{t+1}^{1-\gamma}
ight]
ight)^{rac{1}{1-\gamma}} \end{aligned}$$

where V_{t+1} is the continuation value of the future consumption plan, γ is the RRA, $1/\rho$ is the elasticity of intertemporal substitution.

Recursive preferences: Epstein and Zin (1989, 1991)

$$egin{aligned} \mathcal{V}_t &= \left[(1-eta) \mathcal{C}_t^{1-
ho} + eta \mathcal{B}_t (\mathcal{V}_{t+1})^{1-
ho}
ight]^{rac{1}{1-
ho}} \ \mathcal{B}_t (\mathcal{V}_{t+1}) &= \left(\mathcal{E}_t \left[\mathcal{V}_{t+1}^{1-\gamma}
ight]
ight)^{rac{1}{1-\gamma}} \end{aligned}$$

where V_{t+1} is the continuation value of the future consumption plan, γ is the RRA, $1/\rho$ is the elasticity of intertemporal substitution.

- When $\theta = \gamma$, we get the usual CRRA utility.
- Disentanges 1 period risk attitude with intertemporal substitution

Recursive preferences: Epstein and Zin (1989, 1991)

$$egin{aligned} \mathcal{V}_t &= \left[(1-eta) \mathcal{C}_t^{1-
ho} + eta \mathcal{B}_t (\mathcal{V}_{t+1})^{1-
ho}
ight]^{rac{1}{1-
ho}} \ \mathcal{B}_t (\mathcal{V}_{t+1}) &= \left(\mathcal{E}_t \left[\mathcal{V}_{t+1}^{1-\gamma}
ight]
ight)^{rac{1}{1-\gamma}} \end{aligned}$$

where V_{t+1} is the continuation value of the future consumption plan, γ is the RRA, $1/\rho$ is the elasticity of intertemporal substitution.

- When $\theta = \gamma$, we get the usual CRRA utility.
- Disentanges 1 period risk attitude with intertemporal substitution
- Any shock to current consumption will have a more prominent impact on utility, due to a stronger desire to smooth consumption over time
- Thus, there is no need to have a too high one-period risk aversion
- No analytical solution, more complicated econometrics, but explaines lots of stuff!

• A standard building block in any consumption-related model.

Svetlana Bryzgalova (LSE)

Consumption-based asset pricing

• Currently the main framework to work in macrofinance

- Currently the main framework to work in macrofinance
- Key idea: Epstein-Zin preferences + a very small, but persistent component in the consumption process

- Currently the main framework to work in macrofinance
- Key idea: Epstein-Zin preferences + a very small, but persistent component in the consumption process
- Persistent component of consumption (long-run risk) is driven by some state variables
- Its existence slowly amplifies the impact of any shock
- Matches many empirical findings surprisingly well

- Currently the main framework to work in macrofinance
- Key idea: Epstein-Zin preferences + a very small, but persistent component in the consumption process
- Persistent component of consumption (long-run risk) is driven by some state variables
- Its existence slowly amplifies the impact of any shock
- Matches many empirical findings surprisingly well
- Downside 1: even more complicated algebra and econometrics (calibration)

- Currently the main framework to work in macrofinance
- Key idea: Epstein-Zin preferences + a very small, but persistent component in the consumption process
- Persistent component of consumption (long-run risk) is driven by some state variables
- Its existence slowly amplifies the impact of any shock
- Matches many empirical findings surprisingly well
- Downside 1: even more complicated algebra and econometrics (calibration)
- Downside 2: relies on investors being able to correctly identify this slow-moving component (Croce, Lettau, Ludvigson, 2010)

So far, this is **the best framework to buid on**. It is flexible enough to accomodate many other feature, but also sturdy to successfully work on its own in many other aspects.

Svetlana Bryzgalova (LSE)

Maybe what matters, is not the consumption/utility level per se, but how it relates to the benchmark X_t

$$U = E \sum_{i=1}^{\infty} \beta^{i} \frac{(C_{t+i} - X_{t+i})^{1-\gamma} - 1}{1-\gamma}$$

Maybe what matters, is not the consumption/utility level per se, but how it relates to the benchmark X_t

$$U = E \sum_{i=1}^{\infty} \beta^{i} \frac{(C_{t+i} - X_{t+i})^{1-\gamma} - 1}{1-\gamma}$$

• Internal habits: function of past consumption, Campbell and Cochrane (2000)

Maybe what matters, is not the consumption/utility level per se, but how it relates to the benchmark X_t

$$U = E \sum_{i=1}^{\infty} \beta^{i} \frac{(C_{t+i} - X_{t+i})^{1-\gamma} - 1}{1-\gamma}$$

- Internal habits: function of past consumption, Campbell and Cochrane (2000)
- External habits: "catching up with the Joneses", Abel (1990, 1999).

Maybe what matters, is not the consumption/utility level per se, but how it relates to the benchmark X_t

$$U = E \sum_{i=1}^{\infty} \beta^{i} \frac{(C_{t+i} - X_{t+i})^{1-\gamma} - 1}{1-\gamma}$$

- Internal habits: function of past consumption, Campbell and Cochrane (2000)
- External habits: "catching up with the Joneses", Abel (1990, 1999).

A shock to consumption propagates further by getting you away from the desired "habit" level, hence, higher impact on utility, lower risk-aversion, etc.

Limited market participation

Q: how many of you hold stocks?

Limited market participation

Q: how many of you hold stocks?

Typically, only a small proportion of the population invests in financial markets. Constantinides and Duffie (1996), Mankiw and Zeldes (1991), Guvenen (2009)

Asset prices will be mostly driven by the dynamics and shocks of the people, actively participating in trading. The aggregate consumption can be slow-moving.

Credit channel to non-participants, spillover effects.

Successfully explains the equity premium puzzle and many other features.

Disaster risk

• Barro(2006): a small probability of facing a really large negative shock.

Disaster risk

- Barro(2006): a small probability of facing a really large negative shock.
- Underestimated in the data due to small sample.
- Increases investors perception of risk
- Alongside with long-run risk models explains many salient features of the data

Disaster risk

- Barro(2006): a small probability of facing a really large negative shock.
- Underestimated in the data due to small sample.
- Increases investors perception of risk
- Alongside with long-run risk models explains many salient features of the data
- Wachter(2010): time-varying probability of disaster, matching the yield curve
- Bansal, Shaliastovich (2010, 2011, 2013): implications for time-varying volatility, predictability, etc