Economic Growth

Basic Theories of (Trend) Growth

?? What might be behind differences in growth and income?

Culture?

Institutions?

Economic setup?

Output == fn(Inputs, Efficiency)

Growth in output = fn(Growth in inputs, growth in efficiency)

Growth in production then comes from

1) growth in inputs - "factor accumulation"

2) growth in efficiency - "technological progress", etc.

Among inputs, economists have focused on capital.

Capital = tools, objects, goods that extend our ability to produce other goods and services

e.g. machines, buildings, infrastructure, vehicles, computers, software [from Jones, p. 49]

Data show that in 2000, the average worker in _____ worked with ____ of capital :

U.S.	\$148,091			
Mexico	\$42,991			
India	\$6,720			

National Level:

\mathbf{Y}_{t}	—	national income (GDP) at time t
K _t	_	national capital stock at time t [equipment]
X _{1t} ,	,X _{Jt} -	other inputs (e.g. human capital)

A – total factor productivity (TFP) (constant for now) [techniques]

A embodies knowledge, ideas, and methods of organizing inputs into output

 N_t – population at time t

 $y_t = Y_t/N_t$ – income per capita at time t

 $k_t = K_t/N_t$ – capital per capita at time t

In general, lower case denotes per capita values

Production Function

 $Y_t = AF(K_t, X_{1t}, X_{2t}, \ldots, X_{Jt}, N_t)$

Assume F exhibits CRS in all factors of production together $F(zK, zX_1, ..., zX_J, zN) = zF(K, X_1, ..., X_J, N), z>0$

$$\begin{split} y_t &= Y_t / N_t = AF(K_t, X_{1t}, \dots, X_{Jt}, N_t) / N_t \\ &= AF(K_t / N_t, X_{1t} / N_t, \ , \dots, X_{Jt} / N_t, 1) \\ &= AF(k_t, x_{1t}, \dots, x_{Jt}, 1) \equiv Af(k_t, x_{1t}, \dots, x_{Jt}) \end{split}$$

CRS implies per capita output depends only on per capita amounts of inputs

AK Model:

Key Elements:

Production Function – CRS in K 1)

 $Y_t = AF(K_t) = AK_t$

A, total factor productivity, here assumed constant over time

 $y_t = AK_t/N_t = Ak_t = Af(k_t)$

2) **Evolution of Capital**

 $\dot{K}_t = I_t - dK_t$

- national investment at time t It _
- rate at which capital depreciates (assumed constant over time) d _

3) Macroeconomic Balance: Savings = Investment

$$S_t = I_t$$

[Note from macro, production $Y_t = C_t + I_t (+ G_t + NX_t)$; income $Y_t = C_t + S_t$. So $S_t = I_t$.]

4) Savings Behavior - constant savings rate $S_t = sY_t$ St national savings at time t _ savings rate (assumed constant over time) S

Population Growth 5)

—

 $\dot{N}_t/N_t = n$

Overall goal: How fast will this economy grow, i.e. what is gy?

First show $\frac{\dot{y}_t}{y_t} = \frac{\dot{k}_t}{k_t}$.
Next show $\frac{\dot{k}_t}{k_t} = \frac{\dot{K}_t}{K_t} - \frac{\dot{N}_t}{N_t}$
Let $g_x \equiv \frac{\dot{x}_t}{x_t}$; $g \equiv \frac{\dot{y}_t}{y_t}$
Rearrange to show $g_y = sA - d - n$:

$g_k = \frac{\dot{K}_t}{K_t} - \frac{\dot{N}_t}{N_t} = (I_t - dK_t)/K_t - n$	(Using 2&5)
$= S_t/K_t - d - n$	(Using 3)
= sY _t /K _t – (n+d)	(Using 4)
= sy _t /k _t - (n+d)	
= sAf(k _t)/k _t - (n+d)	(Key Equation in general)
= sA $-$ (n+d)	(Using 1)

IMPLICATIONS:

- 1- Growth continues indefinitely at a constant rate depending on s, A, d, and n
- g increases in the savings rate, s, and the level of productivity, Ag decreases in population growth, n, and rate of depreciation of capital, d
- 3- changes in s, A, n affect the growth rate permanently
- 4- No force for convergence or catch-up in GDP/capita

Ex. A =0.5, n = 2%, d = 8%; s₁ = 22%, s₂ = 28%.
⇒
$$g_1 = 0.5*0.22 - 0.08 - 0.02 = 1\%$$

 $g_2 = 0.5*0.28 - 0.08 - 0.02 = 4\%$

(in	50 years,	e ^{0.01*50}	=	1.6x	as	well	off)
(in	50 years,	e ^{0.04*50}	=	7.4x	as	well	off)

GRAPH COUNTRIES - they diverge over time

What is optimal savings rate?

s=1 maximizes growth, since g = sA - d - n

 $\begin{array}{lll} C_t & - & \mbox{national consumption at time t} \\ C_t = Y_t - S_t = & Y_t - sY_t = (1{-}s)Y_t \\ c_t \equiv C_t / N_t & - & \mbox{consumption per person at t} \end{array}$

$$c_T = (1-s) y_T = (1-s) y_t e^{g(T-t)}$$

But then $c_T = 0$ if s=1.

So growth maximization may not be the best goal – need some intermediate savings rate.

What is the optimal savings rate?

A higher savings rate always lowers consumption now but raises it in the future (provided s<1) GRAPH of ln c_t vs. time for two different savings rates

The more patient (or future-regarding) you are, the higher your optimal savings rate

?? Policy Implications of this model:

IF THE GOAL IS TO INCREASE GROWTH RATE

Increase the savings rate.

Government saving - tax, and invest in firms or public capital (e.g. Soviet Union)

Reduce taxes on saving/investing (assuming elastic)

e.g. capital gains tax, tax on interest income, corporate tax, estate tax

Firm-level investment subsidies

Increase productivity.

Technology assimilation programs

Protect intellectual property rights

Govt.-funded research

Create a business-friendly, competition-friendly environment (not over-regulated)

Lower population growth

Coercion, tax incentives, women's education, etc.

KEY EQUATION, USEFUL ACROSS MODELS:

** $g_k = sAf(k_t)/k_t - (n+d)$

1) What if s varies with y?

In general, **Poverty trap:** low income \Rightarrow low growth \Rightarrow low future income ...

Savings-based poverty trap: low income \Rightarrow low savings/investment per worker \Rightarrow cannot maintain or grow the capital stock \Rightarrow low growth \Rightarrow low income ...

Assume AK model, except that marginal propensity to save is s_1 below some income level, and s_h above that level. Graphically:

2) What if n varies with y? Assume n is high when income is low, n is low when income is high

Population-growth based poverty trap: low income \Rightarrow high population growth \Rightarrow higher investment requirements to maintain high capital/worker \Rightarrow cannot maintain or grow the capital stock \Rightarrow low growth \Rightarrow low income ...

(3) Health-based poverty trap: low income \Rightarrow poor nutrition, health \Rightarrow low productivity \Rightarrow low income per worker \Rightarrow savings/investment per worker \Rightarrow cannot maintain or grow the capital stock \Rightarrow low growth \Rightarrow low income ...

