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1. Wiedemann–Franz law
German physics G. Wiedemann and R. Franz in 1853
experimentally found the law, which connects electrical
conductivity and thermal conductivity of the metals.  They
determined that the ratio of the coefficient of thermal
conductivity χ  to the conductivity σ  at constant temperature
is equal for all metals:
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Danish physicist L. Lorenz showed in 1982 that this relation
varies proportionally to the absolute temperature:
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where  L - Lorentz number, identical for all metals.

This regularity was explained by German physicist P. Drude,
who considered electrons in the metal as gas.  However, the
expression for Lorentz number well consistent with the
observations was obtained only with the aid of the quantum
statistics, according to conclusions of which  (Aschkroft and
Mermim of 1979):
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where  κ   is the Boltzmann constant, e  is the electron charge.
Wiedemann -  Franz  law agree with the experiments

Here are shown dependence of
Lorentz numbers  810L ⋅   on the
temperature for some metals

In this report we will to discuss several

sufficiently complex theoretical problems.  First

of all I want to remind you of Wiedemann -

Franz law.  According to this law the metals

thermal conductivity coefficient is proportional

to their electrical conductivity coefficient, to

absolute temperature and universal constant.



2. The anomalous thermal conductivity

Let us write the equations for a stationary temperature jump with developed ion-acoustic turbulence (Braginsky, 1963; Rudakov and
Korablev 1966; Vedenov and Ryutov 1972; Bakhareva and Trakhtengerts 1983) and Coulomb collisions (Kovalev and Korolev 1981;
Gomes and Mauas 1992) in the quasi-linear approximation outside any sources of heat
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The ion-acoustic oscillations have the known dispersion relation:
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where v s  pirD , pi  is the plasma ion frequency and rD  is the Debye radius.
Similar equations are valid for some regimes of the plasma cloud turbulent dispersion
 (Bespalov and Trakhtengerts 1974; Bespalov and Efremova 1993)

For many applications it is important to know the

coefficient of the turbulent plasma thermal

conductivity.  If the magnetic field is not substantial,

plasma non-isothermal, and turbulence presents in

form of ion-acoustic oscillations, one-dimensional in

the coordinate space problem is reduced to the

analysis of the following system of quasilinear

equations. Here f  is the distribution function

of electrons, kε  the power spectral density

of ion acoustic oscillations, the last term in

the kinetic equation corresponds to

Coulomb collisions.



3. The anomalous electrical conductivity

We will use the results of studying the well-known problem of the anomalous electrical conductivity for a nonisothermal plasma with
developed ion-acoustic turbulence. The classical problem of the anomalous electrical conductivity can be solved using the system of
equations (Rudakov and Korablev 1966; Vedenov and Ryutov 1972; Galeev and Sagdeev 1973; Kadomtsev, 1977):
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where E is the electric field, Stk is operator that takes into account the scattering of suprathermal electrons by ion-acoustic waves with
a spectral energy density k  .  In this case, the instability growth rate ˆ( )fγ  defined by the equation the foregoing slide.

A relation that are important for the problem of the anomalous resistivity follows from preveous equations
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where we introduced the total and effective electrical conductivities.

On the other hand the problem of
anomalous plasma conductivity with ion
acoustic turbulence is known.  Many
famous scientists studied this
problem in connection with the
works on plasma heating.  Here
collision term and increment are
determined by the same expressions
as on the foregoing slide.



4. The generalized Wiedemann–Franz law for a plasma with ion-acoustic turbulence and
Culomb collisions (Bespalov, Savina, 2007)

We found the relationship between the solutions of two mentioned problems. We will now examine this question in more detail.  

Let us assume that the problem of the plasma layer anomalous resistivity has a solution the first two terms of whose Legendre polynomial

expansion can be written as,

fx , v  f ∘v  f1 vx ,
where |f1 | f ∘  under conditions of developed instability.

 Let us now return to the problem of the anomalous thermal conductivity for the same layer of plasma between the two grounded planes
with different temperatures. We will restrict our analysis to a sufficiently thin layer of the temperature jump compared to the mean free
path.  We will seek a solution of this problem in the form:
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where z is counted off from the center of the thin temperature jump.  Here, f ∘  and f1v are the same functions as those in the solution of
the problem of the anomalous electrical conductivity. We verified that the function v could be chosen in such a way that this
equation will give the first two terms of the Legendre polynomial expansion of the solution to problem of the anomalous thermal
conductivity.

First, for any differentiable bounded function f , the following
condition is satisfied
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Second, after substituting f  into equation for the growth rate
of ion-acoustic instability, the growth rate is found to be the
same as that in the problem of the anomalous electrical
conductivity.  Identical will be the power spectral densities of
the ion-acoustic oscillation in both layers

Thirdly, let us define the dependence v so that, kinetic
equation would be carried out with an accuracy to the first two
terms of expansion in terms of Legendre's polynomials.

 With the aid of this condition we obtain ( 1( ) 0f v ≠  for the speeds
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anomalous thermal conductivity problem if we select function Φ
in the form.    



Let us now write the expression for the heat flux
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where  is a numerical coefficient of the order of unity; the brackets 〈. . .  denote an averaging.  Given definition is reduced to the Fourier
formula
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 where we introduced the total and effective thermal conductivities
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The effective electrical conductivity itself in the problem of the anomalous electrical conductivity is known to be a function of Ez  .
Comparing two problems, we can verify that in equation for χ , Ez  in eff  should be replaced by the expression −3/2e∂T/∂z .

The heat flux is
reduced to the
Fourier formula



The derived expression formally differs from the standard Wiedemann–Franz law (see, e.g., Ashcroft and Mermin 1976) only by the
numerical coefficient.  A significant functional difference between two equations is that equation contains a non-linear characteristic of the
medium that has been studied in many papers —the anomalous electrical conductivity of a plasma with ion-acoustic tu rbulence effEz.

This figure shows the typical dependence of electric current density
on electric field.  Knowing this dependence we immediately obtain
the connection of heat flux from the temperature and its gradient in
the different regimes of thermal conductivity.  
The connection of two examined problems in the compressed form is
explained on the following slide.
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The anomalous electrical conductivity in
the layer of the plasma

The anomalous thermal conductivity in the
same layer of the plasma
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5. The Solar transition region

Gibson «Quit Sun», 1977

Solar Maximum Mission and the Solar and Heliospheric
Observatory(SOHO)
The Transition Region and Coronal Explorer (TRACE)
mission.

The images from the SUMER instrument on the SOHO
Mission.

The left image (green) is emission from Carbon IV at
temperatures of about 100,000ºC. The right image (red) is
emission from Sulfur VI at temperatures of about 200,000ºC.

We applied the obtained results for explaining the properties of
narrow temperature jump in the transition region of solar atmosphere
between the corona and the chromosphere.  In this region temperature
falls from 55 10⋅  to 45 10⋅  grad at a distance smaller than of one hundred
kilometers, and according to some data even by several kilometers.   



6. Model solution of the heat transfer equation for the lower corona and the solar transition
region  (Bespalov and Savina 2008)

The results of our calculations were obtained by assumption that the heat flux is constant and equal to (Gibson 1973)

q  5  105 erg  cm−2  s−1 .
As the boundary conditions for the heat conduction equation in the corona at z  z1 , we will take the temperature T1  2  106 K  and the electron
density n1  108 cm−3 .  It is easy to verify that the boundary conditions correspond to a heat flux below the critical one.  Therefore, to determine
the co-ordinate dependence of the temperature, we should use equation, which corresponds to the conservation of the heat flux
transferred by electron Coulomb collisions.
  If  plasma is isothermal, then the heat flux transferred by ions is lower approximately by a factor of 1/2( / )im m .  We will disregard the
heat flux transferred by ions.  Hence
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 the temperature distribution does not depend on the height profile of the density.  In accordance with this equation, the temperature
in the lower corona decreases:

            where

The temperature will decrease until the constant heat flux becomes critical at some depth.  We showed that this position exactly coincides
with the upper edge of the transition region.  The functional dependence of heat flux on the gradient of temperature changes in the
transition region. Therefore temperature falls almost exponentially with the scale determined by Debye radius.
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 Here, we do not set the goal of determining the density distribution in the lower corona. Therefore, for a preliminary determination of
the density distribution, let us write the local condition for pressure balance:

P  2nT  const .

The electron plasma density in the lower corona changes in accordance with this equation and accepted boundary conditions:
nz
n1 

T1

Tz
.

The temperature will decrease until the constant heat flux becomes critical at some depth and the transition region. corresponding to
developed ion-acoustic turbulence.  According to these equations, we have
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From this relation, we can find z  z2  for which the constant heat flux reaches its critical value. Numerically solving the system of
equations yields T  T2  5.5  105 K , n  n2  4  108 cm−3 , and z2 − z1  4.95  1010 cm . These parameters are close to those obtained above and we will take
them as the basis in calculating the parameters of the transition region..
Developed ion-acoustic turbulence takes place in the region of the temperature jump at z2  z.  Therefore, as the dependence of the heat
flux on the temperature and its gradient should be used equation points to a jump in temperature gradient at z  z2 .  The subsequent
nearly exponential decrease in temperature and increase in density are defined by equations    

Consequently, in the transition region

where rD2  is the Debye radius at the boundary of the transition region.
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 7. Preliminary comparison of the calculation results with the experimental data about the
Solar atmosphere transition region  (Bespalov and Savina 2008)

The electron density at the boundary of the jump increases from the polar to equatorial latitudes and lies within the range n2  2.3  6.3  108 cm−3  (Gallagher et al. 1999).
The temperature at the boundary of the temperature jump is T2  5  105 K . For definiteness, we will take protons as the ions, although, in reality, the ion mass is several
times larger.
Substituting all parameters into formulas yields an estimate of q  2.1  5.6  105 erg  cm−2  s−1 .



Note that we do not know any direct proofs of the existence of ion-acoustic turbulence in the Solar transition region.  Turbulence of
this type was invoked in connection with the problem of suprathermal particle acceleration and with the solution of the question about
the conversion of electrostatic oscillations into electromagnetic ones (Zheleznyakov et al. 1996).

 So, we determined the relationship between the coefficients of anomalous thermal and electrical conductivities for a certain class of
turbulent plasma tasks.
The results of the model calculations of the high-altitude temperature profile in the lower corona and the Solar transition region explain
rather well the known experimental data.   



 The given graphs many years serve as the object of serious searches.  There is no doubt that higher than transition regions are
significant heat sources.  Actually heat balance in the Solar atmosphere depends on the absorption of hydromagnetic waves, braking
of the particle fluxes, ohmic heating and radiation losses.  On each of these questions there is an extensive literature.

The local temperature minimum observed in the chromosphere cannot be explained without including the radiative losses. Shmeleva
and Syrovatskii (1973) showed that the ultraviolet radiation of the medium affects the height profile of the temperature in the solar
atmosphere.  Taking into account this effect and the ordinary thermal conductivity, the authors managed to explain the possibility of
the formation of a temperature jump with a scale length of the order of 4  106  4  107 cm  . The experimental results of more recent
observations give an appreciably smaller thickness of the Solar transition region. The scale length of the temperature variations in the
lower corona obtained by Shmeleva and Syrovatskii (1973), 108 cm, is close to its observed value.

A fundamental problem is to explain the details of the temperature jump between the chromosphere and the corona.  The temperature
in the Solar transition region increases from a value of less than 104 K to 5  105 K at a height of 2000km above the convection zone (Gibson
1973; Aschwander). The jump has a small thickness compared to the particle mean free path, no more than 100km and, according to
some data, of the order of several kilometers.

The existence of a temperature jump was associated with the height variations in the ionization state of the medium when the non-
Maxwellian distribution function of the particles responsible for the ionization of the medium was taken into account (Dupre 1980a,
1980b).  Subsequently, experimenters pointed out that their data were difficult to explain in terms of the ionization equilibrium model
(Doschek et al. 1997).  A model of the transition region that included the effects of gravity, thermal conduction, heating, and radiative
cooling was considered by Woods et al. (1990), who obtained their main results by assuming a nearbalance between heating and
cooling, i.e., far from the main temperature jump.  The radiative losses were measured, calculated, and taken into account in many
papers (see, e.g., Fontenla et al. 1999).  In recent years, researchers have returned to a discussion of the possibility that the magnetic
field affects the processes near the temperature jump.  The magnetic field in the Solar transition region outside active regions is weak
(1  5G) and highly nonuniform.

Observations of the Solar transition region showed that the hydrogen temperature rises relatively slowly compared to the electron
temperature even at slightly larger heights (Marsch et al. 2000).  This suggests that the ion temperature in the Solar transition region
is much lower than the electron one.



8. Conclusion

The relationship between the coefficients of anomalous thermal and electrical
conductivities is examined for a certain class of turbulent plasma tasks.

It is checked, that the heat flux through the Solar transition region correspond
precisely to critical value.

 The results of the model calculations of the high-altitude temperature profile in
the lower corona and the Solar transition region explain rather well the known
experimental data.


