# Finding Maximum Subgraphs with Relatively Large Vertex Connectivity

#### Oleg A. Prokopyev

Department of Industrial Engineering University of Pittsburgh

May 19, 2015



- Joint work with:
  - Alexander Veremyev University of Florida
  - Eduardo L. Pasiliao
     US Air Force Research Laboratory (AFRL)
  - Vladimir Boginski University of Florida
- Reference:
  - "Finding maximum subgraphs with relatively large vertex connectivity," *European Journal of Operational Research*, Vol. 239(2), pp. 349–362 (2014)

# Background: Vertex Connectivity

- ► The vertex connectivity of a graph G, referred to as κ(G), is defined as the minimum number of vertices of G whose removal results in a disconnected graph or a trivial graph (i.e., consisting of exactly one vertex)
- ► Graph G is k-vertex-connected if its vertex connectivity is at least k, i.e., κ(G) ≥ k
- Vertex connectivity and k-vertex connectivity of a given graph can be verified in polynomial time
- Vertex connectivity is among the fundamental graph properties and there is a considerable body of work on this topic

# **Background: Clique Properties**

- A clique is a very intuitive and simple concept of a cohesive subgraph with numerous important applications
- Cliques possess a number of "ideal" cohesiveness properties:
  - each vertex is connected to all other vertices
  - a clique has maximum possible edge density
  - a clique has maximum edge and vertex connectivity
  - distance between any pair of vertices is one, etc

# **Background: Clique Properties**

- A clique is a very intuitive and simple concept of a cohesive subgraph with numerous important applications
- Cliques possess a number of "ideal" cohesiveness properties:
  - each vertex is connected to all other vertices
  - a clique has maximum possible edge density
  - a clique has maximum edge and vertex connectivity
  - distance between any pair of vertices is one, etc
- In many practical scenarios cliques are overly restrictive
  - e.g., some links in the graph may be missing due to noisy observations or experimental errors

# Background: Taxonomy of Clique Relaxations

- Existing clique relaxation models are based on relaxing some of the *elementary clique-defining properties*, namely, distance, diameter, domination, degree, density and connectivity
  - Pattillo, Youssef, Butenko, "On clique relaxation models in network analysis," European Journal of Operational Research, 2013

# Background: Taxonomy of Clique Relaxations

- Existing clique relaxation models are based on relaxing some of the *elementary clique-defining properties*, namely, distance, diameter, domination, degree, density and connectivity
  - Pattillo, Youssef, Butenko, "On clique relaxation models in network analysis," European Journal of Operational Research, 2013
- Relaxations are further classified into *absolute* and *relative* ones

### Background: Absolute Clique Relaxations

- One example of an absolute relaxation is an s-club
  - A subset S ⊆ V such that the subgraph G[S] induced by S in G has diameter at most s ∈ Z<sub>>0</sub>, i.e., diam(G[S]) ≤ s
  - Clearly, requiring s = 1 results in a clique
  - ► The problem of finding maximum *s*-clubs is known to be *NP*-hard for any fixed *s* ≥ 2 (Balasundaram, et al., 2005)

### Background: Absolute Clique Relaxations

- One example of an absolute relaxation is an s-club
  - A subset S ⊆ V such that the subgraph G[S] induced by S in G has diameter at most s ∈ Z<sub>>0</sub>, i.e., diam(G[S]) ≤ s
  - Clearly, requiring s = 1 results in a clique
  - ► The problem of finding maximum *s*-clubs is known to be *NP*-hard for any fixed *s* ≥ 2 (Balasundaram, et al., 2005)
- Another example is a *k*-block
  - a subset S ⊆ V such that the subgraph G[S] induced by S in G has vertex connectivity at least k, i.e., κ(G[S]) ≥ k
  - Clearly, requiring k = n 1 results in a clique
  - In contrast to the above model, finding k-connected components can be performed in polynomial time (assuming fixed k)
    - e.g., finding a maximum 1-block corresponds to finding the largest connected component of a graph

### Background: Relative Clique Relaxations

- A classical example of a relative relaxation is a γ-quasi-clique
  - a subset S ⊆ V such that the subgraph G[S] induced by S in G has edge density at least γ, i.e., ρ(G[S]) = |(S × S) ∩ E|/(<sup>|S|</sup><sub>2</sub>) ≥ γ, where γ ∈ [0, 1] is a fixed constant parameter
  - Clearly, requiring  $\gamma = 1$  results in a clique
  - The problem of finding maximum *γ*-quasi-cliques is known to be *NP*-hard for any fixed *γ* = *p*/*q*, where *p*, *q* ∈ ℤ<sub>>0</sub> and *p* ≤ *q* (Patillo et al., 2013)

### Background: Relative Clique Relaxations

- A classical example of a relative relaxation is a γ-quasi-clique
  - a subset S ⊆ V such that the subgraph G[S] induced by S in G has edge density at least γ, i.e., ρ(G[S]) = |(S × S) ∩ E|/(<sup>|S|</sup><sub>2</sub>) ≥ γ, where γ ∈ [0, 1] is a fixed constant parameter
  - Clearly, requiring  $\gamma = 1$  results in a clique
  - The problem of finding maximum γ-quasi-cliques is known to be NP-hard for any fixed γ = p/q, where p, q ∈ Z<sub>>0</sub> and p ≤ q (Patillo et al., 2013)
- An alternative (degree-based) definition of a  $\gamma$ -quasi-clique
  - ▶ a subset  $S \subseteq V$  such that in the subgraph G[S] induced by S in G degree of every node is at least  $\gamma \cdot (|S| 1)$ , i.e.,  $\deg_{G[S]}(i) \ge \gamma \cdot (|S| 1)$  for any  $i \in S$ , where  $\gamma \in [0, 1]$  is a fixed constant parameter

## Background: Relative Clique Relaxations

- A classical example of a relative relaxation is a *γ*-quasi-clique
  - a subset S ⊆ V such that the subgraph G[S] induced by S in G has edge density at least γ, i.e., ρ(G[S]) = |(S × S) ∩ E|/(<sup>|S|</sup><sub>2</sub>) ≥ γ, where γ ∈ [0, 1] is a fixed constant parameter
  - Clearly, requiring  $\gamma = 1$  results in a clique
  - The problem of finding maximum γ-quasi-cliques is known to be NP-hard for any fixed γ = p/q, where p, q ∈ Z<sub>>0</sub> and p ≤ q (Patillo et al., 2013)
- An alternative (degree-based) definition of a γ-quasi-clique
  - ▶ a subset  $S \subseteq V$  such that in the subgraph G[S] induced by S in G degree of every node is at least  $\gamma \cdot (|S| 1)$ , i.e.,  $\deg_{G[S]}(i) \ge \gamma \cdot (|S| 1)$  for any  $i \in S$ , where  $\gamma \in [0, 1]$  is a fixed constant parameter
- Note that a γ-quasi-clique may be a disconnected graph, which is often mentioned as the key disadvantage of this relative clique relaxation model

Oleg A. Prokopyev (Pitt IE)

#### Definition

Given G = (V, E) and a fixed  $\gamma \in [0, 1]$ , a subgraph G[S],  $S \subseteq V$ , is called  $\gamma$ -relative-vertex-connected (or relative  $\gamma$ -vertex-connected) if the minimum number of vertices, whose removal disconnects G[S] (or results in a trivial subgraph with exactly one vertex), is at least  $\gamma(|S|-1)$ 

#### Definition

Given G = (V, E) and a fixed  $\gamma \in [0, 1]$ , a subgraph G[S],  $S \subseteq V$ , is called  $\gamma$ -relative-vertex-connected (or relative  $\gamma$ -vertex-connected) if the minimum number of vertices, whose removal disconnects G[S] (or results in a trivial subgraph with exactly one vertex), is at least  $\gamma(|S|-1)$ 



#### Definition

Given G = (V, E) and a fixed  $\gamma \in [0, 1]$ , a subgraph G[S],  $S \subseteq V$ , is called  $\gamma$ -relative-vertex-connected (or relative  $\gamma$ -vertex-connected) if the minimum number of vertices, whose removal disconnects G[S] (or results in a trivial subgraph with exactly one vertex), is at least  $\gamma(|S|-1)$ 

#### Lemma

Graph  $K_{(n,n)}$  is  $\frac{1}{2}$ -relative-vertex-connected

#### Definition

Given G = (V, E) and a fixed  $\gamma \in [0, 1]$ , a subgraph G[S],  $S \subseteq V$ , is called  $\gamma$ -relative-vertex-connected (or relative  $\gamma$ -vertex-connected) if the minimum number of vertices, whose removal disconnects G[S] (or results in a trivial subgraph with exactly one vertex), is at least  $\gamma(|S|-1)$ 

|              | max            | max – <i>s</i>   | $\gamma \cdot \max$          | k               |
|--------------|----------------|------------------|------------------------------|-----------------|
| Edge density | S ( S -1)/2    | s-defective      | $\gamma$ -quasi-clique       | —               |
|              |                | clique           |                              |                 |
| Min degree   | <i>S</i>   – 1 | <i>s</i> -plex   | $\gamma$ -quasi-clique       | k-core          |
| Connectivity | <i>S</i>   – 1 | <i>s</i> -bundle | $\gamma$ -relative-connected | <i>k</i> -block |

- s-defective clique is a subset S ⊆ V such that G[S] contains at least |S|(|S| − 1)/2 − s edges
- *s*-plex is a subset  $S \subseteq V$  such that  $\delta(G[S]) \ge |S| s$
- ▶ *s*-bundle is a subset  $S \subseteq V$  such that  $\kappa(G[S]) \ge |S| s$
- ▶ *k*-core is a subset  $S \subseteq V$  such that  $\delta(G[S]) \ge k$

# f-Vertex-Connected Subgraph

Definition

Given G = (V, E) and a function  $f(\cdot)$  such that  $f : \mathbb{Z}_{>0} \to \mathbb{R}_+$ , a subgraph G[S],  $S \subseteq V$ , is called *f*-vertex-connected if the minimum number of vertices, whose removal disconnects G[S] (or results in a trivial graph with exactly one vertex) is at least f(|S|)

|              | max            | max – <i>s</i>   | $\gamma \cdot \max$          | k       |
|--------------|----------------|------------------|------------------------------|---------|
| Edge density | S ( S -1)/2    | s-defective      | $\gamma$ -quasi-clique       | _       |
|              |                | clique           |                              |         |
| Min degree   | <i>S</i>   – 1 | <i>s</i> -plex   | $\gamma$ -quasi-clique       | k-core  |
| Connectivity | <i>S</i>   – 1 | <i>s</i> -bundle | $\gamma$ -relative-connected | k-block |

# f-Vertex-Connected Subgraph

Definition

Given G = (V, E) and a function  $f(\cdot)$  such that  $f : \mathbb{Z}_{>0} \to \mathbb{R}_+$ , a subgraph G[S],  $S \subseteq V$ , is called *f*-vertex-connected if the minimum number of vertices, whose removal disconnects G[S] (or results in a trivial graph with exactly one vertex) is at least f(|S|)

|              | max            | max – <i>s</i>   | $\gamma \cdot \max$          | k               |
|--------------|----------------|------------------|------------------------------|-----------------|
| Edge density | S ( S -1)/2    | s-defective      | $\gamma$ -quasi-clique       | _               |
|              |                | clique           |                              |                 |
| Min degree   | <i>S</i>   – 1 | <i>s</i> -plex   | $\gamma$ -quasi-clique       | k-core          |
| Connectivity | <i>S</i>   – 1 | <i>s</i> -bundle | $\gamma$ -relative-connected | <i>k</i> -block |

- clique:  $\gamma = 1$ , or f(|S|) = |S| 1
- ▶ k-block: f(|S|) = k
- s-bundle: f(|S|) = |S| s
- $\gamma$ -relative-vertex-connected:  $f(|S|) = \gamma(|S| 1)$

# **Optimization and Decision Problems**

- We consider the problem of finding a maximum (in terms of cardinality |S|, S ⊆ V) subgraph G[S] that is γ-relative-vertex-connected
  - γ = 0 corresponds to a polynomially solvable case as any graph G is 0-relative-vertex-connected
  - $\gamma = 1$  reduces to the classical maximum clique problem
- We refer to the decision version of this problem as the γ-RELATIVE-VERTEX-CONNECTED subgraph problem

# **Optimization and Decision Problems**

- We consider the problem of finding a maximum (in terms of cardinality |S|, S ⊆ V) subgraph G[S] that is γ-relative-vertex-connected
  - γ = 0 corresponds to a polynomially solvable case as any graph G is 0-relative-vertex-connected
  - $\gamma = 1$  reduces to the classical maximum clique problem
- We refer to the decision version of this problem as the γ-RELATIVE-VERTEX-CONNECTED subgraph problem
- Similarly, for a fixed function *f*(·) we consider the problem of finding a maximum (in terms of cardinality, |*S*|) *f*-vertex-connected subgraph *G*[*S*], *S* ⊆ *V*
- Its decision version is referred to as f-VERTEX-CONNECTED subgraph problem

Proposition

The  $\frac{1}{\ell}$ -RELATIVE-VERTEX-CONNECTED subgraph problem is NP-complete for any fixed positive integer  $\ell$ 

Proposition

The  $\frac{1}{\ell}$ -RELATIVE-VERTEX-CONNECTED subgraph problem is NP-complete for any fixed positive integer  $\ell$ 

Key idea of the proof:



#### Proposition

The  $\frac{p}{q}$ -RELATIVE-VERTEX-CONNECTED subgraph problem is NP-complete for any fixed positive integers p and q such that  $\frac{p}{q} \in (0, 1]$ 

Key idea of the proof:



#### Proposition

#### The f-VERTEX-CONNECTED subgraph problem is NP-complete for

(i) 
$$f(|S|) = |S|^{1-\alpha} - 1$$
 and any fixed  $\alpha$  such that  $\alpha \in [0, \frac{1}{2})$ 

(ii)  $f(|S|) = \gamma(|S| - |S|^{\alpha})$  and any fixed  $\alpha$  and  $\gamma$  such that  $\alpha \in [0, 1)$ and  $\gamma = \frac{p}{q} \in (0, 1]$ , where p and q are positive integers

- Recall that the problem of finding maximum
  - *k*-block, i.e., f(|S|) = k, is polynomially solvable
  - clique, i.e.,  $\gamma = 1$ , or f(|S|) = |S| 1, is *NP*-hard
  - *s*-bundle, i.e., f(|S|) = |S| s, is *NP*-hard
  - γ-relative-vertex-connected subgraph, i.e., f(|S|) = γ(|S| − 1), is
     NP-hard

### Flow-based MIP Model

► There should be at least γ(|S| - 1) vertex-disjoint paths between any pair of vertices in G[S]

$$(\gamma$$
-CP): max  $\sum_{k=1}^{|V|} x_k$ 

subject to

$$\begin{split} \sum_{j:(s,j)\in E} u_{sj}^{st} &-\sum_{i:(i,s)\in E} u_{is}^{st} \geq \gamma \left(\sum_{k=1}^{|V|} x_k - 1\right) + (\gamma |V| - 1)(x_s + x_t - 2) \quad \forall \ s < t \\ \sum_{i:(i,t)\in E} u_{it}^{st} &-\sum_{j:(t,j)\in E} u_{tj}^{st} \geq \gamma \left(\sum_{k=1}^{|V|} x_k - 1\right) + (\gamma |V| - 1)(x_s + x_t - 2) \quad \forall \ s < t \\ \sum_{j:(k,j)\in E} u_{kj}^{st} \leq x_k \qquad \qquad \forall s, t, \ s < t, \ \forall k \in V \setminus \{s,t\} \\ \sum_{j:(i,j)\in E} \left(u_{ij}^{st} - u_{ji}^{st}\right) = 0 \qquad \qquad \forall \ s, t, \ s < t, \ \forall i \in V \setminus \{s,t\} \\ x_k \in \{0,1\}, \ 0 \leq u_{ij}^{st} \leq 1 \qquad \qquad \forall s, t, \ s < t, \ \forall (i,j) \in E \end{split}$$

### Flow-based MIP Model: *f*-vertex-connected version

- We use value disjunctions to represent function  $f(\cdot)$
- Given  $f : \mathbb{Z}_{>0} \to \mathbb{R}_+$ , define  $c_k = \lceil f(k) \rceil$ ,  $k = 1, \dots, |V|$
- Let  $\bar{c} = \max_{1 \le k \le |V|} c_k$
- The modified model is referred to as *f*-CP, with the "key" constraints given by:

$$\sum_{j:(s,j)\in E} u_{sj}^{st} - \sum_{i:(i,s)\in E} u_{is}^{st} \ge \sum_{k=1}^{|V|} c_k z_k + \bar{c}(x_s + x_t - 2) \qquad \forall s, t \in V, \ s < t$$

$$\sum_{i:(i,t)\in E} u_{it}^{st} - \sum_{j:(t,j)\in E} u_{tj}^{st} \ge \sum_{k=1}^{|V|} c_k z_k + \bar{c}(x_s + x_t - 2) \qquad \forall s, t \in V, \ s < t$$

$$\sum_{k=1}^{|V|} x_k = \sum_{k=1}^{|V|} k z_k, \qquad \sum_{k=1}^{|V|} z_k = 1$$

## Flow-based MIP Model: *f*-vertex-connected version

- We use value disjunctions to represent function  $f(\cdot)$
- Given  $f : \mathbb{Z}_{>0} \to \mathbb{R}_+$ , define  $c_k = \lceil f(k) \rceil$ ,  $k = 1, \dots, |V|$
- Let  $\bar{c} = \max_{1 \le k \le |V|} c_k$
- The modified model is referred to as *f*-CP, with the "key" constraints given by:

$$\sum_{j:(s,j)\in E} u_{sj}^{st} - \sum_{i:(i,s)\in E} u_{is}^{st} \ge \sum_{k=1}^{|V|} c_k z_k + \bar{c}(x_s + x_t - 2) \qquad \forall s, t \in V, \ s < t$$

$$\sum_{i:(i,t)\in E} u_{it}^{st} - \sum_{j:(t,j)\in E} u_{tj}^{st} \ge \sum_{k=1}^{|V|} c_k z_k + \bar{c}(x_s + x_t - 2) \qquad \forall s, t \in V, \ s < t$$

$$\sum_{k=1}^{|V|} x_k = \sum_{k=1}^{|V|} k z_k, \qquad \sum_{k=1}^{|V|} z_k = 1$$

► The number of binary and continuous variables in the proposed formulations is O(|V|) and O(|V|<sup>2</sup>|E|), respectively; the number of constraints is O(|V|<sup>3</sup>)

- Simple observation:
  - Let  $L \in \{1, ..., |V|\}$
  - Given a subset S<sub>L</sub> ⊆ V, if a subgraph G[S<sub>L</sub>] is L-vertex-connected, i.e., κ(G[S<sub>L</sub>]) ≥ L, and f(|S<sub>L</sub>|) ≤ L, then G[S<sub>L</sub>] is also f-vertex-connected
  - Conversely, if a subgraph G[S] is *f*-vertex-connected, then there exists a non-negative integer *L* such that the vertex connectivity of G[S] is at least *L* and *f*(|S|) ≤ L
- ► Therefore, one should simply find the largest subgraph G[S<sub>L</sub>] such that its vertex connectivity is L and f(|S<sub>L</sub>|) ≤ L

# Exact Iterative Algorithm (EIA): f-CP(L)

$$f\text{-}\mathbf{CP}(\mathsf{L}): \max \sum_{k=1}^{|V|} x_k$$

subject to

$$\sum_{j:(s,j)\in E} u_{sj}^{st} - \sum_{i:(i,s)\in E} u_{is}^{st} \ge L(x_s + x_t - 1) \qquad \forall s, t \in V, s < t$$

$$\sum_{i:(i,t)\in E} u_{it}^{st} - \sum_{j:(t,j)\in E} u_{ij}^{st} \ge L(x_s + x_t - 1) \qquad \forall s, t \in V, s < t$$

$$\sum_{k=1}^{|V|} x_k \le \max\left\{i \mid f(i) \le L, i = 1, \dots, |V|\right\}$$

$$x_k \in \{0, 1\}, \ 0 \le u_{ij}^{st} \le 1, \qquad \forall s, t, k \in V, s < t \ \forall(i,j) \in E$$

Model f-CP(L) is simpler and easier to solve than f-CP due to the simpler structure of the constraint right-hand sides

#### Proposition

Given a graph G = (V, E) and a function  $f(\cdot)$  such that  $f : \mathbb{Z}_{>0} \to \mathbb{R}_+$ , let  $S_L \subseteq V$  be an optimal solution of f-**CP**(L), where  $L \in \{1, \ldots, |V|\}$ . Denote by  $S^*$  a subset of V that induces a maximum f-vertex-connected subgraph of G, i.e.,  $S^*$  is an optimal solution of f-**CP**. Then:

$$|\mathcal{S}^*| = \max_{L \in \{1,...,|\mathcal{V}|\}} \left\{ |\mathcal{S}_L| 
ight\}$$

Proposition

Given a graph G = (V, E) and a function  $f(\cdot)$  such that  $f : \mathbb{Z}_{>0} \to \mathbb{R}_+$ , let  $S_L \subseteq V$  be an optimal solution of f-**CP**(L), where  $L \in \{1, \ldots, |V|\}$ . Denote by  $S^*$  a subset of V that induces a maximum f-vertex-connected subgraph of G, i.e.,  $S^*$  is an optimal solution of f-**CP**. Then:

$$|\mathcal{S}^*| = \max_{L \in \{1, \dots, |\mathcal{V}|\}} \left\{ |\mathcal{S}_L| 
ight\}$$

• We iteratively decrease *L* starting with  $L = \max_{v \in V} \{ deg_G(v) \}$ 

#### Proposition

Given a graph G = (V, E) and a function  $f(\cdot)$  such that  $f : \mathbb{Z}_{>0} \to \mathbb{R}_+$ , let  $S_L \subseteq V$  be an optimal solution of f-**CP**(L), where  $L \in \{1, \ldots, |V|\}$ . Denote by  $S^*$  a subset of V that induces a maximum f-vertex-connected subgraph of G, i.e.,  $S^*$  is an optimal solution of f-**CP**. Then:

$$|S^*| = \max_{L \in \{1, \dots, |V|\}} \left\{ |S_L| 
ight\}$$

- We iteratively decrease *L* starting with  $L = \max_{v \in V} \{ deg_G(v) \}$
- We should consider all  $L \in \{1, ..., |V|\}$  for general  $f(\cdot)$

#### Proposition

Given a graph G = (V, E) and a function  $f(\cdot)$  such that  $f : \mathbb{Z}_{>0} \to \mathbb{R}_+$ , let  $S_L \subseteq V$  be an optimal solution of f-**CP**(L), where  $L \in \{1, \ldots, |V|\}$ . Denote by  $S^*$  a subset of V that induces a maximum f-vertex-connected subgraph of G, i.e.,  $S^*$  is an optimal solution of f-**CP**. Then:

$$|S^*| = \max_{L \in \{1,...,|V|\}} \{|S_L|\}$$

- We iteratively decrease *L* starting with  $L = \max_{v \in V} \{ deg_G(v) \}$
- We should consider all  $L \in \{1, ..., |V|\}$  for general  $f(\cdot)$
- If f(·) is non-decreasing, then we stop when the right-hand side of the "budget" constraint max {i | f(i) ≤ L, 1 ≤ i ≤ |V|} is equal or smaller than the size of the best solution identified at previous iterations

- 2-clubs ensure that there exists a very "short" path (of length at most 2) between any pair of vertices
- However, unlike cliques such graphs are potentially still vulnerable to specific vertex-targeted attacks (or errors)
- Example of a vulnerable 2-club:



- *R*-robust 2-club proposed (Veremyev and Boginski, 2012)
  - a subset S ⊆ V such that for any pair of vertices v and v' in S there exist at least R vertex-disjoint paths of length at most 2 connecting them in G[S]

- *R*-robust 2-club proposed (Veremyev and Boginski, 2012)
  - a subset S ⊆ V such that for any pair of vertices v and v' in S there exist at least R vertex-disjoint paths of length at most 2 connecting them in G[S]
- However, parameter R is fixed and does not depend on the size of the subgraph
- Thus, it is natural to consider more "robust" (i.e., vertex-attack tolerant) subgraphs that require a larger number of vertex-disjoint "short" paths as their sizes grow

- γ-relative-robust 2-club
  - Given a graph G = (V, E) and a fixed parameter γ ∈ (0, 1], a subset S, S ⊆ V, is called a γ-relative-robust 2-club if for any pair of vertices v and v' in S there exist at least γ(|S| − 1) vertex-disjoint paths of length at most 2 connecting them in G[S]

- γ-relative-robust 2-club
  - Given a graph G = (V, E) and a fixed parameter γ ∈ (0, 1], a subset S, S ⊆ V, is called a γ-relative-robust 2-club if for any pair of vertices v and v' in S there exist at least γ(|S| − 1) vertex-disjoint paths of length at most 2 connecting them in G[S]
- Observe that 1-relative-robust 2-club is a clique

- γ-relative-robust 2-club
  - Given a graph G = (V, E) and a fixed parameter γ ∈ (0, 1], a subset S, S ⊆ V, is called a γ-relative-robust 2-club if for any pair of vertices v and v' in S there exist at least γ(|S| − 1) vertex-disjoint paths of length at most 2 connecting them in G[S]
- Observe that 1-relative-robust 2-club is a clique

#### Proposition

For any fixed  $\gamma \in (0, 1]$ , if  $S \subseteq V$  is a  $\gamma$ -relative-robust 2-club, then G[S] is also a  $\gamma$ -relative-vertex-connected subgraph

- $\gamma$ -relative-robust 2-club
  - Given a graph G = (V, E) and a fixed parameter γ ∈ (0, 1], a subset S, S ⊆ V, is called a γ-relative-robust 2-club if for any pair of vertices v and v' in S there exist at least γ(|S| − 1) vertex-disjoint paths of length at most 2 connecting them in G[S]
- Observe that 1-relative-robust 2-club is a clique

#### Proposition

For any fixed  $\gamma \in (0, 1]$ , if  $S \subseteq V$  is a  $\gamma$ -relative-robust 2-club, then G[S] is also a  $\gamma$ -relative-vertex-connected subgraph

#### Proposition

For any fixed  $\gamma \in (1/2, 1]$  and  $S \subseteq V$ , if G[S] is a  $\gamma$ -relative-vertexconnected subgraph then S is also a  $2(\gamma - \frac{1}{2})$ -relative-robust 2-club

Proposition

The  $\frac{p}{q}$ -RELATIVE-ROBUST 2-CLUB problem is NP-complete for any fixed positive integers p and q such that  $\frac{p}{q} \in (0, 1]$ 

#### f-robust 2-club

Given a graph G = (V, E) and a function f(·) such that f : Z<sub>>0</sub> → [1, +∞), a subset S, S ⊆ V, is called an *f*-robust 2-club if for any pair of vertices v and v' in S there exist at least f(|S|) vertex-disjoint paths of length at most 2 connecting them in G[S]

#### Observe that

- If f(|S|) = R (i.e., constant) then we have *R*-robust 2-clubs
- If  $f(|S|) = \gamma(|S| 1)$  then we have  $\gamma$ -relative-robust 2-clubs

### $\gamma$ -relative-robust and *f*-robust 2-clubs: MIPs and EIA

$$(\gamma$$
-RCP): max  $\sum_{k=1}^{|V|} x_k$ 

subject to

$$\begin{split} \mathbb{1}_{\{(i,j)\in E\}} + & \sum_{k:\{(i,k),(k,j)\}\subseteq E} x_k \ge \gamma \left(\sum_{k=1}^{|V|} x_k - 1\right) + (\gamma|V| - 1)(x_i + x_j - 2) \qquad \qquad \forall i,j\in V\\ x_k \in \{0,1\} \qquad \qquad \forall k\in V \end{split}$$

### $\gamma$ -relative-robust and *f*-robust 2-clubs: MIPs and EIA

$$(\gamma$$
-**RCP**): max  $\sum_{k=1}^{|V|} x_k$ 

subject to

$$\begin{split} \mathbb{1}_{\{(i,j)\in E\}} + &\sum_{k:\{(i,k),(k,j)\}\subseteq E} x_k \geq \gamma \left(\sum_{k=1}^{|V|} x_k - 1\right) + (\gamma|V| - 1)(x_i + x_j - 2) \qquad \qquad \forall i,j\in V\\ x_k \in \{0,1\} \qquad \qquad \forall k\in V \end{split}$$

- Similar to the general case, we can derive an MIP formulation (referred to as *f*-**RCP**) for finding maximum *f*-robust 2-clubs using the value disjunction idea
- Furthermore, EIA (with minor modifications) can be used to solve f-RCP

# Illustrative Examples: Dolphins (|V| = 62, |E| = 159)



# Illustrative Examples: Dolphins (|V| = 62, |E| = 159)





(b) 0.2-relative-vertex-connected, |S| = 21

|S| = 9

# Illustrative Results: Sizes of the Maximum Subgraphs

| Netwo      | max    |     |     | $\gamma =$ |     |     |     |     |     |     |
|------------|--------|-----|-----|------------|-----|-----|-----|-----|-----|-----|
| Name       | Туре   | V   | E   | clique     | 0.6 | 0.5 | 0.4 | 0.3 | 0.2 | 0.1 |
| karate     | Social | 34  | 78  | 5          | 6   | 9   | 10  | 11  | 16  | 21  |
| chesapeake | Food   | 39  | 170 | 5          | 11  | 13  | 16  | 21  | 26  | 33  |
| huck       | Book   | 74  | 301 | 11         | 11  | 13  | 16  | 17  | 21  | 31  |
| miles250   | Geo    | 128 | 387 | 8          | 11  | 13  | 16  | 18  | 26  | 41  |

#### $\gamma$ -relative-vertex-connected subgraphs

#### $\gamma$ -relative-robust 2-clubs

| Network Parameters |               |          |          |     | $\gamma = \dots$ |     |     |     |     |  |
|--------------------|---------------|----------|----------|-----|------------------|-----|-----|-----|-----|--|
| Name               | Туре          | <i>V</i> | <i>E</i> | 0.6 | 0.5              | 0.4 | 0.3 | 0.2 | 0.1 |  |
| karate             | Social        | 34       | 78       | 6   | 6                | 6   | 7   | 11  | 12  |  |
| chesapeake         | Food          | 39       | 170      | 7   | 9                | 11  | 12  | 14  | 21  |  |
| huck               | Book          | 74       | 301      | 11  | 11               | 13  | 14  | 17  | 21  |  |
| miles250           | Geo           | 128      | 387      | 10  | 11               | 11  | 13  | 14  | 16  |  |
| miles500           | Geo           | 128      | 1170     | 26  | 27               | 28  | 31  | 32  | 36  |  |
| USAir97            | Transport     | 332      | 2126     | 34  | 36               | 39  | 43  | 49  | 55  |  |
| NetScience         | Collaboration | 1589     | 2742     | 20  | 20               | 20  | 20  | 20  | 21  |  |
| h.pylori           | Biological    | 1570     | 1399     | 4   | 5                | 6   | 7   | 7   | 11  |  |
| s.cerevisae        | Biological    | 2112     | 2203     | 7   | 7                | 7   | 7   | 11  | 12  |  |

Oleg A. Prokopyev (Pitt IE)

# Illustrative Results: EIA Running Times (in seconds)

 $\gamma$ -relative-vertex-connected subgraphs

|            |     |     | max    | $\gamma = \dots$ |       |       |        |        |        |
|------------|-----|-----|--------|------------------|-------|-------|--------|--------|--------|
| Graph      | V   | E   | clique | 0.6              | 0.5   | 0.4   | 0.3    | 0.2    | 0.1    |
| karate     | 34  | 78  | 0.1    | 0.8              | 0.2   | 0.2   | 3.2    | 3.2    | 14.9   |
| chesapeake | 39  | 170 | 0.1    | 5.9              | 8.3   | 29.7  | 22.0   | 4.6    | 19.4   |
| huck       | 74  | 301 | 51.3   | 182.2            | 400.7 | 365.5 | 1561.7 | 2929.8 | 2406.9 |
| miles250   | 128 | 387 | 1.5    | 7.7              | 34.6  | 30.1  | 64.9   | 166.2  | 7209.2 |

 $\gamma$ -relative-robust 2-clubs

|             |      |      | $\gamma = \dots$ |      |      |      |      |       |  |  |
|-------------|------|------|------------------|------|------|------|------|-------|--|--|
| Name        | V    | E    | 0.6              | 0.5  | 0.4  | 0.3  | 0.2  | 0.1   |  |  |
| karate      | 34   | 78   | 0.1              | 0.1  | 0.1  | 0.1  | 0.1  | 0.1   |  |  |
| chesapeake  | 39   | 170  | 0.1              | 0.1  | 0.1  | 0.1  | 0.1  | 0.2   |  |  |
| huck        | 74   | 301  | 0.1              | 0.2  | 0.3  | 0.3  | 0.3  | 0.5   |  |  |
| miles250    | 128  | 387  | 0.1              | 0.1  | 0.1  | 0.3  | 0.5  | 0.7   |  |  |
| miles500    | 128  | 1170 | 0.4              | 0.5  | 0.9  | 1.4  | 2.4  | 4.1   |  |  |
| USAir97     | 332  | 2126 | 2.7              | 2.8  | 3.4  | 4.4  | 5.8  | 9.6   |  |  |
| NetScience  | 1589 | 2742 | 0.5              | 0.6  | 1.2  | 2.2  | 56.7 | 761.9 |  |  |
| h.pylori    | 1570 | 1399 | 20.8             | 25.9 | 27.4 | 23.9 | 30.8 | 92.4  |  |  |
| s.cerevisae | 2112 | 2203 | 0.1              | 0.1  | 1.3  | 57.7 | 57.9 | 73.3  |  |  |

# Comparisons of EIA vs. MIPs

The numbers are given in ratios (MIP solution time)/(EIA solution time). If γ-CP does not find an optimal solution within the allotted time limit of 50000 seconds, the ratio 50000/(EIA time) is reported and ">" is placed in front of it.

|                      |          |      |       |       |         | $\gamma$      |         |          | Avera   | ige    |  |
|----------------------|----------|------|-------|-------|---------|---------------|---------|----------|---------|--------|--|
| Graph                | <i>V</i> | E    | 0.6   | 0.5   | 0.4     | 0.3           | 0.2     | 0.1      | Ratio   | # Iter |  |
| EIA vs. $\gamma$ -CP |          |      |       |       |         |               |         |          |         |        |  |
| karate               | 34       | 78   | 21.85 | 120.4 | 1.02    | 8.13          | 34.22   | 21.56    | 23.46   | 1.44   |  |
| chesapeake           | 39       | 170  | 18.22 | 30.75 | 8.22    | 3.79          | 67.11   | 30.75    | 19.1    | 1.67   |  |
| dolphins             | 62       | 159  | 34.67 | 21.05 | 12.08   | 12.05         | 35.16   | 5.74     | 16.63   | 1.11   |  |
| kreb                 | 62       | 153  | 3.12  | 36.1  | 17.28   | 15.34         | 33.54   | 13.67    | 18.08   | 2.11   |  |
|                      |          |      |       |       | EIA vs. | $\gamma$ -RCP |         |          |         |        |  |
| jazz                 | 198      | 2742 | 0.94  | 170.6 | 540.38  | 1876.82       | 2040.91 | >2183.41 | >757.05 | 13.89  |  |
| USAir97              | 332      | 2126 | 2.99  | 9.9   | 14.99   | 13.3          | 45.78   | 1184.79  | 141.97  | 10.78  |  |
| HarvardWeb           | 500      | 2043 | 0.63  | 0.76  | 0.52    | 57.43         | 188.21  | 2016.73  | 251.87  | 9.89   |  |
| emails               | 1133     | 5451 | 0.01  | 0.48  | 4.12    | 24.49         | >90.06  | >38.14   | >17.78  | 5.33   |  |

# **Concluding Remarks**

- We have proposed a family of flexible and intuitive clique relaxation models based on the concept of relative vertex connectivity and its functional generalizations
- Our work has been mostly focused on graph-theoretical modeling and computational complexity issues as well as MIP-based exact solution approaches
  - The computational results demonstrate that the proposed approach can handle reasonably large instances of sparse graphs as long as vertex connectivity with "short" paths is required
  - Development of more advanced solution methods for large-scale and dense graph problems with general vertex connectivity metrics is a promising direction of future research
- The overall framework can be naturally extended to consider relative edge connectivity