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Background: Vertex Connectivity

I The vertex connectivity of a graph G, referred to as κ(G), is
defined as the minimum number of vertices of G whose removal
results in a disconnected graph or a trivial graph (i.e., consisting of
exactly one vertex)

I Graph G is k -vertex-connected if its vertex connectivity is at least
k , i.e., κ(G) ≥ k

I Vertex connectivity and k -vertex connectivity of a given graph can
be verified in polynomial time

I Vertex connectivity is among the fundamental graph properties
and there is a considerable body of work on this topic
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Background: Clique Properties

I A clique is a very intuitive and simple concept of a cohesive
subgraph with numerous important applications

I Cliques possess a number of “ideal” cohesiveness properties:

I each vertex is connected to all other vertices
I a clique has maximum possible edge density
I a clique has maximum edge and vertex connectivity
I distance between any pair of vertices is one, etc

I In many practical scenarios cliques are overly restrictive
I e.g., some links in the graph may be missing due to noisy

observations or experimental errors
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Background: Taxonomy of Clique Relaxations

I Existing clique relaxation models are based on relaxing some of
the elementary clique-defining properties, namely, distance,
diameter, domination, degree, density and connectivity

I Pattillo, Youssef, Butenko, “On clique relaxation models in network
analysis,” European Journal of Operational Research, 2013

I Relaxations are further classified into absolute and relative ones
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Background: Absolute Clique Relaxations

I One example of an absolute relaxation is an s-club

I a subset S ⊆ V such that the subgraph G[S] induced by S in G has
diameter at most s ∈ Z>0, i.e., diam(G[S]) ≤ s

I Clearly, requiring s = 1 results in a clique

I The problem of finding maximum s-clubs is known to be NP-hard
for any fixed s ≥ 2 (Balasundaram, et al., 2005)

I Another example is a k -block

I a subset S ⊆ V such that the subgraph G[S] induced by S in G has
vertex connectivity at least k , i.e., κ(G[S]) ≥ k

I Clearly, requiring k = n − 1 results in a clique
I In contrast to the above model, finding k -connected components

can be performed in polynomial time (assuming fixed k )

I e.g., finding a maximum 1-block corresponds to finding the largest
connected component of a graph
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Background: Relative Clique Relaxations
I A classical example of a relative relaxation is a γ-quasi-clique

I a subset S ⊆ V such that the subgraph G[S] induced by S in G has
edge density at least γ, i.e., ρ(G[S]) = |(S × S) ∩ E |/

(|S|
2

)
≥ γ,

where γ ∈ [0,1] is a fixed constant parameter
I Clearly, requiring γ = 1 results in a clique

I The problem of finding maximum γ-quasi-cliques is known to be
NP-hard for any fixed γ = p/q, where p, q ∈ Z>0 and p ≤ q (Patillo
et al., 2013)

I An alternative (degree-based) definition of a γ-quasi-clique

I a subset S ⊆ V such that in the subgraph G[S] induced by S in
G degree of every node is at least γ · (|S| − 1), i.e., degG[S](i) ≥ γ ·
(|S|−1) for any i ∈ S, where γ ∈ [0,1] is a fixed constant parameter

I Note that a γ-quasi-clique may be a disconnected graph, which is
often mentioned as the key disadvantage of this relative clique
relaxation model
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γ-Relative-Vertex-Connected Subgraph

Definition
Given G = (V ,E) and a fixed γ ∈ [0,1], a subgraph G[S], S ⊆ V ,
is called γ-relative-vertex-connected (or relative γ-vertex-connected) if
the minimum number of vertices, whose removal disconnects G[S] (or
results in a trivial subgraph with exactly one vertex), is at least γ(|S|−1)

1 2

5 3

4

6 7

10 8

9
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γ-Relative-Vertex-Connected Subgraph
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Lemma
Graph K(n,n) is 1

2 -relative-vertex-connected
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γ-Relative-Vertex-Connected Subgraph

Definition
Given G = (V ,E) and a fixed γ ∈ [0,1], a subgraph G[S], S ⊆ V ,
is called γ-relative-vertex-connected (or relative γ-vertex-connected) if
the minimum number of vertices, whose removal disconnects G[S] (or
results in a trivial subgraph with exactly one vertex), is at least γ(|S|−1)

max max−s γ ·max k
Edge density |S|(|S| − 1)/2 s-defective γ-quasi-clique −

clique
Min degree |S| − 1 s-plex γ-quasi-clique k -core
Connectivity |S| − 1 s-bundle γ-relative-connected k -block

I s-defective clique is a subset S ⊆ V such that G[S] contains at
least |S|(|S| − 1)/2− s edges

I s-plex is a subset S ⊆ V such that δ(G[S]) ≥ |S| − s
I s-bundle is a subset S ⊆ V such that κ(G[S]) ≥ |S| − s
I k -core is a subset S ⊆ V such that δ(G[S]) ≥ k
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f -Vertex-Connected Subgraph

Definition
Given G = (V ,E) and a function f (·) such that f : Z>0 → R+, a
subgraph G[S], S ⊆ V , is called f -vertex-connected if the minimum
number of vertices, whose removal disconnects G[S] (or results in a
trivial graph with exactly one vertex) is at least f (|S|)

max max−s γ ·max k
Edge density |S|(|S| − 1)/2 s-defective γ-quasi-clique −

clique
Min degree |S| − 1 s-plex γ-quasi-clique k -core
Connectivity |S| − 1 s-bundle γ-relative-connected k -block

I clique: γ = 1, or f (|S|) = |S| − 1
I k -block: f (|S|) = k
I s-bundle: f (|S|) = |S| − s
I γ-relative-vertex-connected: f (|S|) = γ(|S| − 1)
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Optimization and Decision Problems

I We consider the problem of finding a maximum (in terms of cardi-
nality |S|, S ⊆ V ) subgraph G[S] that is γ-relative-vertex-connected

I γ = 0 corresponds to a polynomially solvable case as any
graph G is 0-relative-vertex-connected

I γ = 1 reduces to the classical maximum clique problem

I We refer to the decision version of this problem as the γ-
RELATIVE-VERTEX-CONNECTED subgraph problem

I Similarly, for a fixed function f (·) we consider the problem of finding
a maximum (in terms of cardinality, |S|) f -vertex-connected
subgraph G[S], S ⊆ V

I Its decision version is referred to as f -VERTEX-CONNECTED
subgraph problem
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Computational Complexity

Proposition

The 1
` -RELATIVE-VERTEX-CONNECTED subgraph problem is

NP-complete for any fixed positive integer `

I Key idea of the proof:

i 

i 

i 

i 

i 

G1 

G2 G3 

G4 

Gl 
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Computational Complexity

Proposition
The p

q -RELATIVE-VERTEX-CONNECTED subgraph problem is
NP-complete for any fixed positive integers p and q such that p

q ∈ (0,1 ]

I Key idea of the proof:

i 

i 

i 

i 

i 

G1 

G2 G3 

G4 

Gl 

CLIQUE, |Vl+1|=(lp-q)k  

Gl+1 
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Computational Complexity

Proposition

The f -VERTEX-CONNECTED subgraph problem is NP-complete for
(i) f (|S|) = |S|1−α − 1 and any fixed α such that α ∈ [0, 1

2)

(ii) f (|S|) = γ(|S| − |S|α) and any fixed α and γ such that α ∈ [0,1)
and γ = p

q ∈ (0,1], where p and q are positive integers

I Recall that the problem of finding maximum

I k -block, i.e., f (|S|) = k , is polynomially solvable
I clique, i.e., γ = 1, or f (|S|) = |S| − 1, is NP-hard
I s-bundle, i.e., f (|S|) = |S| − s, is NP-hard
I γ-relative-vertex-connected subgraph, i.e., f (|S|) = γ(|S| − 1), is

NP-hard
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Flow-based MIP Model

I There should be at least γ(|S| − 1) vertex-disjoint paths between
any pair of vertices in G[S]

(γ-CP) : max
|V |∑
k=1

xk

subject to

∑
j:(s,j)∈E

ust
sj −

∑
i:(i,s)∈E

ust
is ≥ γ

 |V |∑
k=1

xk − 1

+ (γ|V | − 1)(xs + xt − 2) ∀ s < t

∑
i:(i,t)∈E

ust
it −

∑
j:(t,j)∈E

ust
tj ≥ γ

 |V |∑
k=1

xk − 1

+ (γ|V | − 1) (xs + xt − 2) ∀ s < t

∑
j:(k,j)∈E

ust
kj ≤ xk ∀s, t , s < t , ∀k ∈ V \ {s, t}

∑
j:(i,j)∈E

(
ust

ij − ust
ji

)
= 0 ∀s, t , s < t , ∀i ∈ V \ {s, t}

xk ∈ {0, 1}, 0 ≤ ust
ij ≤ 1 ∀s, t , k , s < t , ∀(i , j) ∈ E
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Flow-based MIP Model: f -vertex-connected version

I We use value disjunctions to represent function f (·)
I Given f : Z>0 → R+, define ck = df (k)e, k = 1, . . . , |V |
I Let c̄ = max1≤k≤|V | ck

I The modified model is referred to as f -CP, with the “key”
constraints given by:

∑
j:(s,j)∈E

ust
sj −

∑
i:(i,s)∈E

ust
is ≥

|V |∑
k=1

ck zk + c̄(xs + xt − 2) ∀s, t ∈ V , s < t

∑
i:(i,t)∈E

ust
it −

∑
j:(t,j)∈E

ust
tj ≥

|V |∑
k=1

ck zk + c̄(xs + xt − 2) ∀s, t ∈ V , s < t

|V |∑
k=1

xk =

|V |∑
k=1

kzk ,

|V |∑
k=1

zk = 1

I The number of binary and continuous variables in the proposed formulations is
O(|V |) and O(|V |2|E |), respectively; the number of constraints is O(|V |3)
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Exact Iterative Algorithm (EIA): Idea

I Simple observation:

I Let L ∈ {1, . . . , |V |}

I Given a subset SL ⊆ V , if a subgraph G[SL] is L-vertex-connected,
i.e., κ(G[SL]) ≥ L, and f (|SL|) ≤ L, then G[SL] is also
f -vertex-connected

I Conversely, if a subgraph G[S] is f -vertex-connected, then there
exists a non-negative integer L such that the vertex connectivity of
G[S] is at least L and f (|S|) ≤ L

I Therefore, one should simply find the largest subgraph G[SL] such
that its vertex connectivity is L and f (|SL|) ≤ L
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Exact Iterative Algorithm (EIA): f -CP(L)

f -CP(L) : max
|V |∑
k=1

xk

subject to∑
j:(s,j)∈E

ust
sj −

∑
i:(i,s)∈E

ust
is ≥ L(xs + xt − 1) ∀s, t ∈ V , s < t

∑
i:(i,t)∈E

ust
it −

∑
j:(t,j)∈E

ust
tj ≥ L(xs + xt − 1) ∀s, t ∈ V , s < t

|V |∑
k=1

xk ≤ max
{

i
∣∣ f (i) ≤ L, i = 1, . . . , |V |

}
xk ∈ {0, 1}, 0 ≤ ust

ij ≤ 1, ∀s, t , k ∈ V , s < t ∀(i , j) ∈ E

I Model f -CP(L) is simpler and easier to solve than f -CP due to the
simpler structure of the constraint right-hand sides
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Exact Iterative Algorithm (EIA)

Proposition

Given a graph G = (V ,E) and a function f (·) such that f : Z>0 → R+,
let SL ⊆ V be an optimal solution of f -CP(L) , where L ∈ {1, . . . , |V |}.
Denote by S∗ a subset of V that induces a maximum f -vertex-connec-
ted subgraph of G, i.e., S∗ is an optimal solution of f -CP. Then:

|S∗| = max
L∈{1,...,|V |}

{
|SL|

}

I We iteratively decrease L starting with L = max
v∈V
{degG(v)}

I We should consider all L ∈ {1, . . . , |V |} for general f (·)
I If f (·) is non-decreasing, then we stop when the right-hand side

of the “budget” constraint max
{

i
∣∣ f (i) ≤ L, 1 ≤ i ≤ |V |

}
is equal

or smaller than the size of the best solution identified at previous
iterations

Oleg A. Prokopyev (Pitt IE) Relative Vertex Connectivity May 19, 2015 19 / 31



Exact Iterative Algorithm (EIA)

Proposition

Given a graph G = (V ,E) and a function f (·) such that f : Z>0 → R+,
let SL ⊆ V be an optimal solution of f -CP(L) , where L ∈ {1, . . . , |V |}.
Denote by S∗ a subset of V that induces a maximum f -vertex-connec-
ted subgraph of G, i.e., S∗ is an optimal solution of f -CP. Then:

|S∗| = max
L∈{1,...,|V |}

{
|SL|

}
I We iteratively decrease L starting with L = max

v∈V
{degG(v)}

I We should consider all L ∈ {1, . . . , |V |} for general f (·)
I If f (·) is non-decreasing, then we stop when the right-hand side

of the “budget” constraint max
{

i
∣∣ f (i) ≤ L, 1 ≤ i ≤ |V |

}
is equal

or smaller than the size of the best solution identified at previous
iterations

Oleg A. Prokopyev (Pitt IE) Relative Vertex Connectivity May 19, 2015 19 / 31



Exact Iterative Algorithm (EIA)

Proposition

Given a graph G = (V ,E) and a function f (·) such that f : Z>0 → R+,
let SL ⊆ V be an optimal solution of f -CP(L) , where L ∈ {1, . . . , |V |}.
Denote by S∗ a subset of V that induces a maximum f -vertex-connec-
ted subgraph of G, i.e., S∗ is an optimal solution of f -CP. Then:

|S∗| = max
L∈{1,...,|V |}

{
|SL|

}
I We iteratively decrease L starting with L = max

v∈V
{degG(v)}

I We should consider all L ∈ {1, . . . , |V |} for general f (·)

I If f (·) is non-decreasing, then we stop when the right-hand side
of the “budget” constraint max

{
i
∣∣ f (i) ≤ L, 1 ≤ i ≤ |V |

}
is equal

or smaller than the size of the best solution identified at previous
iterations

Oleg A. Prokopyev (Pitt IE) Relative Vertex Connectivity May 19, 2015 19 / 31



Exact Iterative Algorithm (EIA)

Proposition

Given a graph G = (V ,E) and a function f (·) such that f : Z>0 → R+,
let SL ⊆ V be an optimal solution of f -CP(L) , where L ∈ {1, . . . , |V |}.
Denote by S∗ a subset of V that induces a maximum f -vertex-connec-
ted subgraph of G, i.e., S∗ is an optimal solution of f -CP. Then:

|S∗| = max
L∈{1,...,|V |}

{
|SL|

}
I We iteratively decrease L starting with L = max

v∈V
{degG(v)}

I We should consider all L ∈ {1, . . . , |V |} for general f (·)
I If f (·) is non-decreasing, then we stop when the right-hand side

of the “budget” constraint max
{

i
∣∣ f (i) ≤ L, 1 ≤ i ≤ |V |

}
is equal

or smaller than the size of the best solution identified at previous
iterations

Oleg A. Prokopyev (Pitt IE) Relative Vertex Connectivity May 19, 2015 19 / 31



Special Case: γ-relative-robust and f -robust 2-clubs

I 2-clubs ensure that there exists a very “short” path (of length at
most 2) between any pair of vertices

I However, unlike cliques such graphs are potentially still vulnerable
to specific vertex-targeted attacks (or errors)

I Example of a vulnerable 2-club:

1 2

5 3

4

6
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Special Case: γ-relative-robust and f -robust 2-clubs

I R-robust 2-club proposed (Veremyev and Boginski, 2012)

I a subset S ⊆ V such that for any pair of vertices v and v ′ in S there
exist at least R vertex-disjoint paths of length at most 2 connecting
them in G[S]

I However, parameter R is fixed and does not depend on the size of
the subgraph

I Thus, it is natural to consider more “robust” (i.e., vertex-attack
tolerant) subgraphs that require a larger number of vertex-disjoint
“short” paths as their sizes grow
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Special Case: γ-relative-robust and f -robust 2-clubs

I γ-relative-robust 2-club
I Given a graph G = (V ,E) and a fixed parameter γ ∈ (0,1], a

subset S, S ⊆ V , is called a γ-relative-robust 2-club if for any pair of
vertices v and v ′ in S there exist at least γ(|S| − 1) vertex-disjoint
paths of length at most 2 connecting them in G[S]

I Observe that 1-relative-robust 2-club is a clique

Proposition
For any fixed γ ∈ (0,1], if S ⊆ V is a γ-relative-robust 2-club, then G[S]
is also a γ-relative-vertex-connected subgraph

Proposition
For any fixed γ ∈ (1/2,1] and S ⊆ V, if G[S] is a γ-relative-vertex-
connected subgraph then S is also a 2(γ − 1

2)-relative-robust 2-club
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Special Case: γ-relative-robust and f -robust 2-clubs

Proposition
The p

q -RELATIVE-ROBUST 2-CLUB problem is NP-complete for any
fixed positive integers p and q such that p

q ∈ (0,1]
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Special Case: γ-relative-robust and f -robust 2-clubs

I f -robust 2-club
I Given a graph G = (V ,E) and a function f (·) such that

f : Z>0 → [1,+∞), a subset S, S ⊆ V , is called an f -robust 2-club if
for any pair of vertices v and v ′ in S there exist at least f (|S|)
vertex-disjoint paths of length at most 2 connecting them in G[S]

I Observe that

I If f (|S|) = R (i.e., constant) then we have R-robust 2-clubs
I If f (|S|) = γ(|S| − 1) then we have γ-relative-robust 2-clubs
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γ-relative-robust and f -robust 2-clubs: MIPs and EIA

(γ-RCP) : max
|V |∑
k=1

xk

subject to

1{(i,j)∈E} +
∑

k :{(i,k),(k,j)}⊆E

xk ≥ γ

 |V |∑
k=1

xk − 1

+ (γ|V | − 1)(xi + xj − 2) ∀i , j ∈ V

xk ∈ {0, 1} ∀k ∈ V

I Similar to the general case, we can derive an MIP formulation
(referred to as f -RCP) for finding maximum f -robust 2-clubs using
the value disjunction idea

I Furthermore, EIA (with minor modifications) can be used to solve
f -RCP
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Illustrative Examples: Dolphins (|V | = 62, |E | = 159)

(a) 0.3-relative-robust 2-club,
|S| = 7

(b) 0.3-relative-vertex-connected,
|S| = 14
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Illustrative Examples: Dolphins (|V | = 62, |E | = 159)

(a) 0.2-relative-robust 2-club,
|S| = 9

(b) 0.2-relative-vertex-connected,
|S| = 21

Oleg A. Prokopyev (Pitt IE) Relative Vertex Connectivity May 19, 2015 27 / 31



Illustrative Results: Sizes of the Maximum Subgraphs

Table: γ-relative-vertex-connected subgraphs
Network Parameters max γ = . . .

Name Type |V | |E | clique 0.6 0.5 0.4 0.3 0.2 0.1
karate Social 34 78 5 6 9 10 11 16 21
chesapeake Food 39 170 5 11 13 16 21 26 33
huck Book 74 301 11 11 13 16 17 21 31
miles250 Geo 128 387 8 11 13 16 18 26 41

Table: γ-relative-robust 2-clubs
Network Parameters γ = . . .

Name Type |V | |E | 0.6 0.5 0.4 0.3 0.2 0.1
karate Social 34 78 6 6 6 7 11 12
chesapeake Food 39 170 7 9 11 12 14 21
huck Book 74 301 11 11 13 14 17 21
miles250 Geo 128 387 10 11 11 13 14 16
miles500 Geo 128 1170 26 27 28 31 32 36
USAir97 Transport 332 2126 34 36 39 43 49 55
NetScience Collaboration 1589 2742 20 20 20 20 20 21
h.pylori Biological 1570 1399 4 5 6 7 7 11
s.cerevisae Biological 2112 2203 7 7 7 7 11 12
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Illustrative Results: EIA Running Times (in seconds)

Table: γ-relative-vertex-connected subgraphs
max γ = . . .

Graph |V | |E | clique 0.6 0.5 0.4 0.3 0.2 0.1
karate 34 78 0.1 0.8 0.2 0.2 3.2 3.2 14.9
chesapeake 39 170 0.1 5.9 8.3 29.7 22.0 4.6 19.4
huck 74 301 51.3 182.2 400.7 365.5 1561.7 2929.8 2406.9
miles250 128 387 1.5 7.7 34.6 30.1 64.9 166.2 7209.2

Table: γ-relative-robust 2-clubs
γ = . . .

Name |V | |E | 0.6 0.5 0.4 0.3 0.2 0.1
karate 34 78 0.1 0.1 0.1 0.1 0.1 0.1
chesapeake 39 170 0.1 0.1 0.1 0.1 0.1 0.2
huck 74 301 0.1 0.2 0.3 0.3 0.3 0.5
miles250 128 387 0.1 0.1 0.1 0.3 0.5 0.7
miles500 128 1170 0.4 0.5 0.9 1.4 2.4 4.1
USAir97 332 2126 2.7 2.8 3.4 4.4 5.8 9.6
NetScience 1589 2742 0.5 0.6 1.2 2.2 56.7 761.9
h.pylori 1570 1399 20.8 25.9 27.4 23.9 30.8 92.4
s.cerevisae 2112 2203 0.1 0.1 1.3 57.7 57.9 73.3
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Comparisons of EIA vs. MIPs

I The numbers are given in ratios (MIP solution time)/(EIA solution time). If
γ-CP does not find an optimal solution within the allotted time limit of 50000
seconds, the ratio 50000/(EIA time) is reported and “>” is placed in front of it.

γ Average
Graph |V | |E | 0.6 0.5 0.4 0.3 0.2 0.1 Ratio # Iter

EIA vs. γ-CP
karate 34 78 21.85 120.4 1.02 8.13 34.22 21.56 23.46 1.44
chesapeake 39 170 18.22 30.75 8.22 3.79 67.11 30.75 19.1 1.67
dolphins 62 159 34.67 21.05 12.08 12.05 35.16 5.74 16.63 1.11
kreb 62 153 3.12 36.1 17.28 15.34 33.54 13.67 18.08 2.11

EIA vs. γ-RCP
jazz 198 2742 0.94 170.6 540.38 1876.82 2040.91>2183.41>757.05 13.89
USAir97 332 2126 2.99 9.9 14.99 13.3 45.78 1184.79 141.97 10.78
HarvardWeb 500 2043 0.63 0.76 0.52 57.43 188.21 2016.73 251.87 9.89
emails 1133 5451 0.01 0.48 4.12 24.49 >90.06 >38.14 >17.78 5.33
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Concluding Remarks

I We have proposed a family of flexible and intuitive clique
relaxation models based on the concept of relative vertex
connectivity and its functional generalizations

I Our work has been mostly focused on graph-theoretical modeling
and computational complexity issues as well as MIP-based exact
solution approaches

I The computational results demonstrate that the proposed approach
can handle reasonably large instances of sparse graphs as long as
vertex connectivity with “short” paths is required

I Development of more advanced solution methods for large-scale
and dense graph problems with general vertex connectivity metrics
is a promising direction of future research

I The overall framework can be naturally extended to consider
relative edge connectivity
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