Network effects in economics and finance

A. Leonidov
P.N. Lebedev Physical Institute, Moscow
Russian Endowment for Education and Science, Moscow
Moscow Institute of Physics and Technology

Outline

(1) Global corporate network
(2) World input-output network
(3) Bank - firm credit network
(4) Russian interbank network
(5) Spillovers in international trade

Global corporate network

S. Vitali et al., $(2011,2014)$

Network characteristics:

- 43060 TCNs, 600508 nodes, 1006987 links
- 77456 SHs, 43060 TNCs, 479992 PCs

THE NETWORK OF GLOBAL CORPORATE CONTROL

- Degree distribution

Global corporate network

- Let W be an ownership matrix such that $W_{i j}$ is the percentage of ownership that an owner i holds in firm j. Ownership can be direct and indirect:

Global corporate network

- Complication: cross-ownership (loops), important for the analysis of control structure

Global corporate network

- Control structure defined as a matrix $C_{i j}=\theta\left(W_{i j}-0.5\right)$

Global corporate network

- Bow-tie structure of the network: In-section (IN), out-section (OUT), strongly connected component (SCC), tubes and tendrils (T \& T)

Flow of control

Global corporate network

- Bow-tie structure of the corporate network:

Table: Bow-tie statistics. Percentage of total TNC operating revenue (OR) and number (\#) of nodes in the sections of the bow-tie. Economic actors types are: shareholders (SH), participated companies (PC).

	TNC (\#)	SH (\#)	PC (\#)	OR (\%)
LCC	15491	47819	399696	94.17
IN	282	5205	129	2.18
SCC	295	0	1023	18.68
OUT	6488	0	318073	59.85
T\&T	8426	42614	80471	13.46
OCC	27569	29637	80296	5.83

Global corporate network

- Bow-tie structure of the largest connected component (LCC) and other connected components (OCC)

Global corporate network

- Left: strongly connected cluster (SCC) layout (1318 nodes, 12191 links). Right: Zoom on some major TNCs in the financial sector

Global corporate network

- Let v_{i} be the value of the firm i
- Direct control: $C_{i j} v_{j}$
- Total controlled amount:

$$
c_{i}^{\mathrm{net}}=\sum_{j} C_{i j} v_{j}+\sum_{j} C_{i j} c_{j}^{\mathrm{net}}
$$

- Total controlled amount:

$$
c^{\text {net }}=(I-C)^{-1} C v \equiv \tilde{C} v
$$

- \tilde{C} is C - related centrality

Global corporate network

- The above-defined procedure heavily overestimates network - related effects in the presence of loops (e.g. in the SCC).
- In the original scheme the matrix \tilde{C} satisfies the following equation:

$$
\tilde{C}=C+\tilde{C} \cdot C \Rightarrow \tilde{C}=(I-C)^{-1} \cdot C
$$

- Corrected procedure:

$$
\hat{C}_{i j}=C_{i j}+\sum_{k \neq i} \hat{C}_{i k} C_{k j}
$$

where

$$
\hat{C}=\operatorname{diag}\left((I-C)^{-1}\right)^{-1} \cdot \tilde{C}
$$

Global corporate network

- Concentration of network control and operating revenue. 737 top holders have 80% control over the cumulative value of TCN!

Global corporate network: community structure

Global corporate network: DebtRank

Blue points: financial sector removed

World input-output network: composition

Blue: industries (sectors); red: value added; green: final demand

World input-output intersector network: 1995

World input-output intersector network: 2011

Input-output network: Leontieff inverse, etc

- Production balance:

$$
x=Z \cdot 1+f \equiv A \cdot x+f
$$

where x : total output, Z : inter industrial transaction matrix; f: final demand; A : matrix of technical coefficients (matrix Z with columns normalized by x)

- Leontieff inverse

$$
x=(I-A)^{-1} f \equiv L \cdot f
$$

- Leontieff inverse is clearly just centrality measuring backward linkage effects for final demand driven direct and indirect effects
- Other centrality measures (Page rank, community coreness, ...) are also of interest. Different centrality measures give different results especially important for developing dynamical picture of shock propagation through macroeconomic networks.

Banks and firms: bipartite network

> J. De Masi et al. (2010)

- Consider a bipartite credit network of banks and firms, where banks credit firms, but there is no interbank borrowing
(a)

(b)

(c)

Banks and firms: MST cofinancing network

Russian interbank network: data description

$$
\text { A.L., E. Rumyantsev }(2011,2013,2014)
$$

- Uncollaterized interbank rouble deposits of all maturities in the period from January 11, 2011 till December 30, 2013 are considered.
- Interbank network for N banks is fully characterized by an oriented weighted graph $G^{W}=(N, W)$, where $W=\left\{w_{i j}\right\}$ is an $N \times N$ matrix of $w_{i j}>0$ of liabilities of the bank i with respect to the bank j.
- By definition the outgoing links correspond to liabilities, the incoming ones - to claims.
- The interbank network graph is scale-free in both in- and out- degrees and is characterized by significant clustering.

Russian interbank market

Russian interbank market: bow-tie structure

Systemic risks: theoretical modeling

- Mathematical modeling of default propagation uses as its basic input the probability of having at least one incoming link capable of transmitting contagion from adjacent nodes to the node under consideration.
- The probability of default propagation depends on both on the weighted network topology around the node under consideration and characteristics of its balance sheet.
- The choice of mathematical formalism is crucially determined by the characteristic topology of default clusters. Our study shows that, despite of significant clustering of the original network, it is predominantly treelike, so one can use the formalism of generating functions generalized to take explicit account of the bow-tie topology of the interbank network.

Definition of vulnerability

- Solvency coefficient $H 1$ as defined by CBRF:

$$
H 1=\frac{K}{\sum_{i} A_{i} K p_{i}+P P+O P+\text { others }}
$$

- Here K is capital, $K p_{i}$ - risk coefficients, PP - market risk, OP operational risk, others - other contributions
- A default condition is

$$
H 1=\frac{K}{\sum_{i} A_{i} K p_{i}+P P+O P+\text { others }}<H 1^{*}
$$

Main input: empirical default distributions

- Probability that at least one incoming link is vulnerable:

Out \rightarrow In-Out

In-Out \rightarrow In-Out

Strongly connected component

- There exists a strongly connected component
- The weight of this component did significantly increase

Contagion tree In-Out \rightarrow In-Out \& In

$$
\begin{aligned}
& \text { In-Out } \\
& M_{k, l}(x, N(y))=\sum_{u, t, s, r}^{\infty} P_{\text {ln-Out } / I n-O u t}(u, t, s, r \mid k, l) \\
& \text { * }\left[\left(1-v_{r}^{\text {ln-Out } / \ln -\text { Out }}\right)+x v_{r}^{\text {ln-Out } / I n-O u t} M_{u, t}^{u}(x, N(y)) N_{u, t}^{t}(y)\right]
\end{aligned}
$$

Contagion clusters In-Out $\rightarrow \operatorname{In}$-Out \& In

- Let $F(x, y)$ be the generation function for the probability for a bank from In-Out being linked with In-Out and In components:

$$
F(x, y)=\sum_{i, j=0}^{\infty} p_{i j}^{\operatorname{lnO} O t} x^{i} y^{j}
$$

- The generation function for default cluster originating in In-Out then reads:

$$
\mathcal{G}_{\operatorname{lnOut}}(x, y)=F(M(x, N(y)), N(y))
$$

- The average size of default clusters is given by

$$
\left.\frac{d \mathcal{G}_{\ln O u t}(x, x)}{d x}\right|_{x=1}=1
$$

Simulation: dependence upon out-degree

Simulation: default cluster size distribution

Theory: comparison with simulations

Systemic risk: no giant cluster

- For the (tree-like) graph of vulnerable nodes existence/non-existence of giant cluster can be studied using the matrix

$$
A_{(k, l)(u, t)}=\sum_{r}^{\infty} u P^{\mathrm{IO} \rightarrow \mathrm{IO}}(u, t, r \mid k, l) v^{\mathrm{IO} \rightarrow \mathrm{IO}}(u, t, r \mid k, l)
$$

- In the simplest form giant cluster appears if

$$
\lambda_{\max }(A)>1
$$

Systemic risk: no giant cluster

Conclusions

- Taking into account the bow-tie structure of the interbank network is very essential.
- Despite of the complicated topology of the original graph, the default clusters are (almost) always tree-like.
- This allows to describe default clusters in terms of generating functions taking into account the bow-tie structure of the original interbank network graph.
- The realistic contagion in the RF interbank market is a relatively small effect, nothing dramatic. Giant cluster is not formed.

Spillovers in international trade

A.L., A. Kireev (2015)

- International trade network is defined by the matrix W where $w_{i j}$ is a volume of export from country i to country j.
- Spillover is an epidemic-type spreading of fluctuation of import/export in a given country over the network to first neighbors and beyond.

Spillover in international trade: cascade step

A cascade step is a process of transforming initial import shock into a secondary one. Schematically each step of the cascade is a composition of two steps:
(1) Initial import shock $\left(\Delta M_{1}, \cdots, \Delta M_{N}\right)$ is (proportionally) distributed among exporters and, by definition, creates a vector of export shocks $\left(\Delta X_{1}, \cdots, \Delta X_{N}\right)$.

$$
\left(\Delta M_{1}, \cdots, \Delta M_{N}\right) \quad \rightarrow \quad\left(\Delta X_{1}, \cdots, \Delta X_{N}\right)
$$

(2) Export shocks create secondary import shocks $\left(\Delta \tilde{M}_{1}, \cdots, \Delta \tilde{M}_{N}\right)$

$$
\left(\Delta X_{1}, \cdots, \Delta X_{N}\right) \quad \rightarrow \quad\left(\Delta \tilde{M}_{1}, \cdots, \Delta \tilde{M}_{N}\right)
$$

Spillover in international trade: cascade step

(1) First step: $\Delta \vec{M} \rightarrow \Delta \vec{X}$:

$$
\Delta \vec{X}=\Omega \cdot \Delta \vec{M}, \quad \Omega_{i j}=\frac{w_{i j}}{\sum_{j} w_{i j}}, \quad W \rightarrow W-\Delta W
$$

(2 Second step: $\Delta \vec{X} \rightarrow \Delta \overrightarrow{\tilde{M}}$:

$$
\begin{gathered}
\log \left(\frac{M_{i}-\Delta \tilde{M}_{i}}{M_{i}}\right)=\alpha_{i}+\beta_{i} \log \left(\frac{X_{i}-\Delta X_{i}}{X_{i}}\right)+\varepsilon_{i} \\
\Delta \tilde{M}_{i}=M_{i}\left(1-e^{\alpha_{i}} \cdot\left(1-\frac{\Delta X_{i}}{X_{i}}\right)^{\beta_{i}}\right)
\end{gathered}
$$

Spillover in international trade: cascade step

Spillover in international trade: example

A. Leonidov (LPI, REES, MIPT)

NET 2015
19.05.2015

Spillover in international trade: example

