A branch and bound algorithm for the cell formation problem

I. Utkina M. Batsyn
National Research University Higher School of Economics Laboratory of Algorithms and Technologies for Network Analysis

The 5th International Conference on Network Analysis, 2015

Overview

(1) Introduction

- Formulation
- Cell Formation Problem
- Definitions
(2) Branch and Bound
- Branching
- Upper Bound
- Theorems
- Example
- Answer
(3) Results
(4) References

Formulation

$$
\left.\begin{array}{l}
\quad \\
\hline 1
\end{array} \left\lvert\, 1 \begin{array}{lllllll}
2 & 3 & 4 & 5 & 6 & 7 \\
\hline 2 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 \\
3 & 1 & 0 & 1 & 0 & 0 & 0 \\
0
\end{array}\right.\right]
$$

Goal is to find the optimal partitioning of machines and parts into groups (production cells, or shops), in order to minimize the inter-cell movement of parts from one cell to another and to maximize intra-cell processing operations

Restrictions:
(1) Each part and each machine must be assigned to only one cell;
(2) All parts and machines must be partitioned into groups.

	2	4	5	6	1	3	7
1	1	1	1	1	0	0	0
4	1	1	0	1	0	0	0
1	0	0	0	0	1	1	0
3	0	0	0	0	1	1	1
5	0	0	0	0	1	0	1

Definitions

- $A(m \times p)$ - an input matrix;
- $M(1 \times m)$ - a vector, which contains the assignment of machines to cells;
- $P(1 \times p)$ - a vector, which contains the assignment of parts to cells;
- f^{*} - is the optimal value of function f;
n_{1} - the number of ones in the input matrix, n_{0} - the number of zeroes in the input matrix,
$f=\frac{n_{1}^{i n}}{n_{1}+n_{0}^{i n}}$
$n_{1}^{i n}$ - the number of ones inside cells,
$n_{1}^{\text {out }}$ - the number of ones outside cells,
$n_{0}^{i n}$ - the number of zeroes inside cells,
$n_{0}^{\text {out }}$ - the number of zeroes outside cells.

Branching

	1	3	5	6	4	2	7	8
2	1	1	1	1	1	0	0	1
4	1	1	0	1	0	0	0	1
1	0	0	1	0	1	1	1	0
3	1	0	1	1	1	0	1	0
5	0	0	0	0	0	0	1	1

	1	3	5	6	4	2	7	8
2	1	1	1	1	1	0	0	1
4	1	1	0	1	0	0	0	1
1	0	0	1	0	1	1	1	0
3	1	0	1	1	1	0	1	0
5	0	0	0	0	0	0	1	1

	1	3	5	6	4	2	7	8
2	1	1	1	1	1	0	0	1
4	1	1	0	1	0	0	0	1
1	0	0	1	0	1	1	1	0
3	1	0	1	1	1	0	1	0
5	0	0	0	0	0	0	1	1

	1	3	5	6	4	2	7	8
2	1	1	1	1	1	0	0	1
4	1	1	0	1	0	0	0	1
1	0	0	1	0	1	1	1	0
3	1	0	1	1	1	0	1	0
5	0	0	0	0	0	0	1	1

a_{1} - the number of " 1 " inside cells for first alternative b_{1} - the number of " 0 " inside cells for first alternative a_{2} - the number of " 1 " inside cells for second alternative b_{2} - the number of " 0 " inside cells for second alternative
a_{1} - the number of " 1 " inside cells for first alternative b_{1} - the number of " 0 " inside cells for first alternative a_{2} - the number of " 1 " inside cells for second alternative b_{2} - the number of " 0 " inside cells for second alternative

$$
\frac{a^{\prime}}{b^{\prime}}=\frac{16}{21} \approx 0.76>\frac{a}{b}=\frac{18}{24}=0.75
$$

a_{1} - the number of " 1 " inside cells for first alternative b_{1} - the number of " 0 " inside cells for first alternative a_{2} - the number of " 1 " inside cells for second alternative b_{2} - the number of " 0 " inside cells for second alternative

$$
\begin{gathered}
\frac{a^{\prime}}{b^{\prime}}=\frac{16}{21} \approx 0.76>\frac{a}{b}=\frac{18}{24}=0.75 \\
\frac{a^{\prime}+a_{1}}{b^{\prime}+b_{1}}=\frac{16+1}{21+31} \approx 0.326<\frac{a^{\prime}+a_{2}}{b^{\prime}+b_{2}}=\frac{16+2}{21+34} \approx 0.327
\end{gathered}
$$

a_{1} - the number of " 1 " inside cells for first alternative b_{1} - the number of " 0 " inside cells for first alternative a_{2} - the number of " 1 " inside cells for second alternative b_{2} - the number of " 0 " inside cells for second alternative

$$
\begin{gathered}
\frac{a^{\prime}}{b^{\prime}}=\frac{16}{21} \approx 0.76>\frac{a}{b}=\frac{18}{24}=0.75 \\
\frac{a^{\prime}+a_{1}}{b^{\prime}+b_{1}}=\frac{16+1}{21+31} \approx 0.326<\frac{a^{\prime}+a_{2}}{b^{\prime}+b_{2}}=\frac{16+2}{21+34} \approx 0.327 \\
\frac{a+a_{1}}{b+b_{1}}=\frac{18+1}{24+31} \approx 0.345>\frac{a+a_{2}}{b+b_{2}}=\frac{18+2}{24+34} \approx 0.344
\end{gathered}
$$

Theorem (Theorem 1)

For positive numbers $a, b, a^{\prime}, b^{\prime}$ and non-negative a_{0}, b_{0} if we have:

$$
\begin{gather*}
\frac{a^{\prime}}{b^{\prime}}>\frac{a}{b}, \tag{1}\\
\frac{a^{\prime}+a_{0}}{b^{\prime}+b_{0}}>\frac{a^{\prime}}{b^{\prime}} \tag{2}
\end{gather*}
$$

then the following inequality is true:

$$
\begin{equation*}
\frac{a^{\prime}+a_{0}}{b^{\prime}+b_{0}}>\frac{a+a_{0}}{b+b_{0}} \tag{3}
\end{equation*}
$$

Theorem (Theorem 2)

If the unknown maximum value of the objective function $\frac{a}{b}$ for the relaxed CFP problem without assignment of machine i (considering all its ones and zeroes to be outside cells) can be estimated as $\frac{a}{b} \in[I, u], b \in\left[b_{l}, b_{u}\right]$, then alternative (a_{1}, b_{1}) for machine i is better than alternative $\left(a_{2}, b_{2}\right)$ if:

$$
\begin{equation*}
b_{l}\left(l-\frac{\Delta a}{\Delta b}\right) \geq b_{1} \frac{\Delta a}{\Delta b}-a_{1} \tag{4}
\end{equation*}
$$

and is worse than $\left(a_{2}, b_{2}\right)$ if:

$$
\begin{equation*}
b_{u}\left(u-\frac{\Delta a}{\Delta b}\right) \leq b_{1} \frac{\Delta a}{\Delta b}-a_{1} \tag{5}
\end{equation*}
$$

Here $\Delta a=a_{2}-a_{1}, \Delta b=b_{2}-b_{1}>0$ (if $\Delta b<0$ we can always swap the alternatives).

$$
\begin{gathered}
I=\frac{a_{c}}{b_{c}} \\
u=\frac{n_{1}-\bar{n}_{1}^{\text {out }}-n_{1}^{i}}{b_{c}}
\end{gathered}
$$

$$
\begin{array}{llllllllll}
& 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
2 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
3 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 \\
4 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
\hline \\
5 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\
\cline { 2 - 2 } & & 0 & 0 &
\end{array}
$$

$$
n_{1}^{\text {in }}=11, n_{0}^{\text {in }}=1, \bar{n}_{1}^{\text {out }}=0, \bar{n}_{0}^{\text {out }}=9, n_{1}=19, n_{0}=26, a_{c}=11, b_{c}=20
$$

	Alt 1	Alt 2	Alt 3
4			
5			

$$
\begin{array}{llllllllll|}
& 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
2 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
3 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
4 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
\hline \\
5 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
\hline
\end{array}
$$

$$
n_{1}^{i n}=11, n_{0}^{\text {in }}=1, \bar{n}_{1}^{\text {out }}=0, \bar{n}_{0}^{\text {out }}=9, n_{1}=19, n_{0}=26, a_{c}=11, b_{c}=20
$$

	Alt 1	Alt 2	Alt 3
4	$(4,3)$		
5			

$$
\begin{array}{llllllllll}
& 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
2 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
3 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
\hline
\end{array}
$$

$$
n_{1}^{\text {in }}=11, n_{0}^{\text {in }}=1, \bar{n}_{1}^{\text {out }}=0, \bar{n}_{0}^{\text {out }}=9, n_{1}=19, n_{0}=26, a_{c}=11, b_{c}=20
$$

	Alt 1	Alt 2	Alt 3
4	$(4,3)$	$(2,2)$	
5			

$$
\begin{array}{llllllllll}
& 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
2 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
3 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
\hline \\
4 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\
5 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\
\cline { 2 - 2 } & &
\end{array}
$$

$$
n_{1}^{\text {in }}=11, n_{0}^{\text {in }}=1, \bar{n}_{1}^{\text {out }}=0, \bar{n}_{0}^{\text {out }}=9, n_{1}=19, n_{0}=26, a_{c}=11, b_{c}=20
$$

	Alt 1	Alt 2	Alt 3
4	$(4,3)$	$(2,2)$	$(2,0)$
5			

$$
\begin{array}{llllllllll}
& 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
2 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
3 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
4 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\
5 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
\hline
\end{array}
$$

$$
n_{1}^{\text {in }}=11, n_{0}^{\text {in }}=1, \bar{n}_{1}^{\text {out }}=0, \bar{n}_{0}^{\text {out }}=9, n_{1}=19, n_{0}=26, a_{c}=11, b_{c}=20
$$

	Alt 1	Alt 2	Alt 3
4	$(4,3)$	$(2,2)$	$(2,0)$
5	$(2,4)$		

$$
n_{1}^{\text {in }}=11, n_{0}^{\text {in }}=1, \bar{n}_{1}^{\text {out }}=0, \bar{n}_{0}^{\text {out }}=9, n_{1}=19, n_{0}=26, a_{c}=11, b_{c}=20
$$

	Alt 1	Alt 2	Alt 3
4	$(4,3)$	$(2,2)$	$(2,0)$
5	$(2,4)$	$(2,1)$	

$$
\begin{array}{llllllllll}
& 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
2 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
3 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 \\
4 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
\hline \\
5 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\
\cline { 2 - 2 } & & 0 &
\end{array}
$$

$$
n_{1}^{\text {in }}=11, n_{0}^{\text {in }}=1, \bar{n}_{1}^{\text {out }}=0, \bar{n}_{0}^{\text {out }}=9, n_{1}=19, n_{0}=26, a_{c}=11, b_{c}=20
$$

	Alt 1	Alt 2	Alt 3
4	$(4,3)$	$(2,2)$	$(2,0)$
5	$(2,4)$	$(2,1)$	$(1,0)$

So we need to compare only two alternatives $\left(a_{1}, b_{1}\right)=(2,0)$ and $\left(a_{2}, b_{2}\right)=(4,3)$. We have:
$n_{1}^{i}=4, n_{0}^{i}=5, \Delta a=2, \Delta b=3, I=a_{c} / b_{c}=11 / 20, u=$
$\left(n_{1}-\bar{n}_{1}^{\text {out }}-n_{1}^{i}\right) / b_{c}=15 / 20, b_{l}=20, b_{u}=n_{1}+n_{0}-\bar{n}_{0}^{\text {out }}-n_{0}^{i}=31$. And the values we need to apply theorem 2 are:

$$
b_{1} \frac{\Delta a}{\Delta b}-a_{1}=-2, \quad b_{l}\left(1-\frac{\Delta a}{\Delta b}\right)=-\frac{7}{3}, \quad b_{u}\left(u-\frac{\Delta a}{\Delta b}\right)=\frac{31}{12}
$$

So neither of the conditions in theorem 2 is satisfied and we cannot determine which alternative is better. In this case we build an alternative ($\max \left(a_{1}, a_{2}\right), \min \left(b_{1}, b_{2}\right)$), which is better than both incomparable alternatives, and use it to obtain an upper bound on the solution of the relaxed CFP problem. In our example it is alternative (4,0).

It is clear that alternative $(2,4)$ is worse than $(2,1)$. For $\left(a_{1}, b_{1}\right)=(1,0)$ and $\left(a_{2}, b_{2}\right)=(2,1)$ we have:

$$
b_{1} \frac{\Delta a}{\Delta b}-a_{1}=-1, \quad b_{l}\left(1-\frac{\Delta a}{\Delta b}\right)=-9, \quad b_{u}\left(u-\frac{\Delta a}{\Delta b}\right)=-6
$$

So $b_{u}\left(u-\frac{\Delta a}{\Delta b}\right) \leq b_{1} \frac{\Delta a}{\Delta b}-a_{1}$ and by theorem 2 alternative $\left(a_{2}, b_{2}\right)=(2,1)$ is better. Thus $(2,1)$ is the best alternative for machine 5 .

$$
\begin{array}{llllllllll}
& 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
2 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
3 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 \\
4 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
\hline \\
5 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\
\cline { 2 - 2 } & & 0 & 0 &
\end{array}
$$

$$
n_{1}^{\text {in }}=11, n_{0}^{\text {in }}=1, \bar{n}_{1}^{\text {out }}=0, \bar{n}_{0}^{\text {out }}=9, n_{1}=19, n_{0}=26, a_{c}=11, b_{c}=20
$$

	Alt 1	Alt 2	Alt 3
8			
9			

$$
\begin{array}{llllllllll}
& 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
2 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
3 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 \\
4 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
1 \\
5 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
\hline
\end{array}
$$

$$
n_{1}^{\text {in }}=11, n_{0}^{\text {in }}=1, \bar{n}_{1}^{\text {out }}=0, \bar{n}_{0}^{\text {out }}=9, n_{1}=19, n_{0}=26, a_{c}=11, b_{c}=20
$$

	Alt 1	Alt 2	Alt 3
8	$(0,2)$		
9			

$$
\begin{array}{llllllllll|}
& 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
2 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
3 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
\hline
\end{array}
$$

$$
n_{1}^{\text {in }}=11, n_{0}^{\text {in }}=1, \bar{n}_{1}^{\text {out }}=0, \bar{n}_{0}^{\text {out }}=9, n_{1}=19, n_{0}=26, a_{c}=11, b_{c}=20
$$

	Alt 1	Alt 2	Alt 3
8	$(0,2)$	$(0,1)$	
9			

$$
\begin{array}{llllllllll|}
& 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
2 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
3 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
\hline \\
4 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
1 \\
5 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
\hline
\end{array}
$$

$$
n_{1}^{\text {in }}=11, n_{0}^{\text {in }}=1, \bar{n}_{1}^{\text {out }}=0, \bar{n}_{0}^{\text {out }}=9, n_{1}=19, n_{0}=26, a_{c}=11, b_{c}=20
$$

	Alt 1	Alt 2	Alt 3
8	$(0,2)$	$(0,1)$	$(0,0)$
9			

$$
\begin{array}{llllllllll}
& 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
2 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
3 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
\hline \\
4 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
\hline \\
5 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\
\cline { 2 - 2 } & &
\end{array}
$$

$$
n_{1}^{\text {in }}=11, n_{0}^{\text {in }}=1, \bar{n}_{1}^{\text {out }}=0, \bar{n}_{0}^{\text {out }}=9, n_{1}=19, n_{0}=26, a_{c}=11, b_{c}=20
$$

	Alt 1	Alt 2	Alt 3
8	$(0,2)$	$(0,1)$	$(0,0)$
9	$(1,1)$		

$$
\begin{array}{llllllllll}
& 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
2 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
3 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 \\
4 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\
5 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\
\cline { 2 - 2 } & &
\end{array}
$$

$$
n_{1}^{\text {in }}=11, n_{0}^{\text {in }}=1, \bar{n}_{1}^{\text {out }}=0, \bar{n}_{0}^{\text {out }}=9, n_{1}=19, n_{0}=26, a_{c}=11, b_{c}=20
$$

	Alt 1	Alt 2	Alt 3
8	$(0,2)$	$(0,1)$	$(0,0)$
9	$(1,1)$	$(0,1)$	

$$
\begin{array}{llllllllll|}
& 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
2 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
3 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 \\
4 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
1 \\
5 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
\hline
\end{array}
$$

$$
n_{1}^{\text {in }}=11, n_{0}^{\text {in }}=1, \bar{n}_{1}^{\text {out }}=0, \bar{n}_{0}^{\text {out }}=9, n_{1}=19, n_{0}=26, a_{c}=11, b_{c}=20
$$

	Alt 1	Alt 2	Alt 3
8	$(0,2)$	$(0,1)$	$(0,0)$
9	$(1,1)$	$(0,1)$	$(0,0)$

$$
U B=\frac{11+4+2+1}{20+0+1+1}=\frac{18}{22} \approx 0.82
$$

$\#$	Size	Best-known solution	f	Time, s	Bychkov, Time, s
1	5×7	0.8235	0.8235	0.00	0.63
2	5×7	0.6957	0.6957	0.00	2.29
3	5×18	0.7959	0.7959	0.00	5.69
4	6×8	0.7692	0.7692	0.00	1.86
5	7×11	0.6087	0.6087	0.00	9.14
6	7×11	0.7083	0.7083	0.00	5.15
7	8×12	0.6944	0.6944	0.00	13.37
8	8×20	0.8525	0.8525	0.00	18.33
9	10×10	0.5872	0.5872	0.19	208.36
10	10×15	0.7500	0.7500	0.00	6.25
11	10×15	0.9200	0.9200	0.00	2.93
12	14×24	0.7206	0.7206	2.89	259.19
13	14×24	0.7183	0.7183	5.51	259.19
14	16×24	0.5326	0.5326	97117.43	$b_{20829.38}$
15	16×30	${ }^{c} 0.6899$	0.6899	837.93	$b_{13719.99}$
16	16×43	0.5753	0.5753	7045.64	$b_{24930.93}$
17	18×24	0.5773	0.5773	5668.25	$b_{13250.01}$
18	20×20	0.4345	${ }^{a} 0.4211$	100800.00	$b_{43531.77}$
19	20×23	0.5081	${ }^{a} 0.4697$	100800.00	b_{33020}
20	20×35	0.7791	0.7791	88.62	b_{113}
21	20×35	0.5798	${ }^{a} 0.5615$	100800.00	b_{333}
22	24×40	1.000	1.000	0.00	0.00
23	24×40	0.8511	0.8511	33.70	$b_{6} 616.24$
24	24×40	0.7351	0.7351	86007.93	b_{14408}
25	24×40	0.5329	${ }^{a} 0.5185$	100800.00	$b_{34524.47}$

${ }^{a}$ The problem was not solved to optimality within the time limit of 28 hours
${ }^{b}$ Bychkov did not solve these problems.
${ }^{c}$ In some papers there was mistaken value of best-known solution.

$\#$	Size	Best-known solution	f	Time, s	Bychkov, Time, s
26	24×40	0.4895	${ }^{a} 0.4648$	100800.00	${ }^{b} 41140.94$
27	24×40	0.4726	${ }^{a} 0.4468$	100800.00	$b_{4} 4126.76$
28	27×27	0.5482	${ }^{a} 0.5017$	100800.00	$b_{22627.28}$
29	28×46	0.4706	${ }^{a} 0.4569$	100800.00	$b_{71671.08}$
30	30×41	0.6331	${ }^{a} 0.5942$	100800.00	$b_{22594.20}$
31	30×50	0.6012	${ }^{a} 0.5789$	100800.00	$b_{31080.82}$
32	30×50	0.5083	${ }^{a} 0.4860$	100800.00	$b_{48977.01}$
33	30×90	0.4775	${ }^{a} 0.4684$	100800.00	$b_{99435.64}$
34	37×53	0.6064	${ }^{a} 0.5680$	100800.00	$b_{47744.04}$
35	40×100	0.8403	${ }^{a} 0.8403$	100800.00	$b_{24167.76}$

${ }^{a}$ The problem was not solved to optimality within the time limit of 28 hours
${ }^{b}$ Bychkov did not solve these problems.
${ }^{c}$ In some papers there was mistaken value of best-known solution.

固 Askin, R. G., Subramanian, S. P. (1987). A cost-based heuristic for group technology configuration. International Journal of Production Research, 25(1), 101-113.

目 Ballakur, A., \& Steudel, H. J. (1987). A within cell utilization based heuristic for designing cellular manufacturing systems. International Journal of Production Research, 25, 639-655.
Boctor, F. F. (1991). A linear formulation of the machine-part cell formation problem. International Journal of Production Research, 29(2), 343-356.

Boe, W., Cheng, C. H. (1991). A close neighbor algorithm for designing cellular manufacturing systems. International Journal of Production Research, 29(10), 2097-2116.
Burbidge, J. L. (1961). The new approach to production. Prod. Eng., December, 3-19.

围 Busygin，S．，Prokopyev，O．，Pardalos，P．M．（2008）．Biclustering in data mining．Computers \＆Operations Research 35（9），2964－2987．
Rychkov，I．，Batsyn，M．，Sukhov，P．（2013）Heuristic Algorithm for the Cell Formation Problem．Models，Algorithms，and Technologies for Network Analysis（Eds．Goldengorin B．I．，Kalyagin V．A．，Pardalos P． M．）Springer Proceedings in Mathematics \＆Statistics 59，43－69．

固 Bychkov，I．，Batsyn，M．，Pardalos，P．（2014）．Exact model for the cell formation problem．Springer Berlin Heidelberg．2203－2210．

目 Carrie，S．（1973）．Numerical taxonomy applied to group technology and plant layout．International Journal of Production Research，11， 399－416．

Chan, H. M., Milner, D. A., (1982). Direct clustering algorithm for group formation in cellular manufacture. Journal of Manufacturing Systems 1 (1), 64-76.
R Chandrasekharan M. P., Rajagopalan R. (1986a). MODROC: an extension of rank order clustering for group technology. International Journal of Production Research, 24(5), 1221-1233.
© Chandrasekharan M. P., Rajagopalan R. (1986b). An ideal seed non-hierarchical clustering algorithm for cellular manufacturing. International Journal of Production Research, 24(2), 451-464.

國 Chandrasekharan, M. P., Rajagopalan, R. (1987). ZODIAC: An algorithm for concurrent formation of part families and machine cells. International Journal of Production Research, 25(6), 835-850.

围 Chandrasekharan, M. P., Rajagopalan, R. (1989). Groupability: Analysis of the properties of binary data matrices for group technology. International Journal of Production Research, 27(6), 1035-1052.
Elbenani, B., Ferland, J. A. (2012). Cell Formation Problem Solved Exactly with the Dinkelbach Algorithm. Montreal, Quebec. CIRRELT-2012-07, 1-14.
Ehosh, S., Mahanti, A., Nagi, R., Nau, D. S. (1996). Manufacturing cell formation by state-space search. Annals of Operations Research, 65(1), 35-54.
围 Goldengorin, B., Krushinsky D., Pardalos, P. M. (2013). Cell Formation in Industrial Engineering. Theory, Algorithms and Experiments. Springer Optimization and Its Applications 79, 206 p.

回 Goncalves，J．F．，Resende，M．G．C．（2004）．An evolutionary algorithm for manufacturing cell formation．Computers \＆Industrial Engineering 47，247－273．
回 Hsu，C．P．（1990）．Similarity coefficient approaches to machine－component cell formation in cellular manufacturing：A comparative study．PhD Thesis，Department of Industrial and Manufacturing Engineering，University of Wisconsin Milwaukee．
围 James，T．L．，Brown，E．C．，Keeling，K．B．（2007）．A hybrid grouping genetic algorithm for the cell formation problem．Computers \＆ Operations Research，34（7），2059－2079．

國 King，J．R．（1980）．Machine－component grouping in production flow analysis：An approach using a rank order clustering algorithm． International Journal of Production Research，18（2），213－232．

围 King, J. R., Nakornchai, V. (1982). Machine-component group formation in group technology: Review and extension. International Journal of Production Research, 20(2), 117-133.

Rumar, K. R., Kusiak, A., Vannelli, A. (1986). Grouping of parts and components in flexible manufacturing systems. European Journal of Operations Research, 24, 387-397.

- Kumar, K. R., Chandrasekharan, M. P. (1990). Grouping efficacy: A quantitative criterion for goodness of block diagonal forms of binary matrices in group technology. International Journal of Production Research, 28(2), 233-243.

國 Kumar, K. R., Vannelli, A. (1987). Strategic subcontracting for efficient disaggregated manufacturing. International Journal of Production Research, 25(12), 1715-1728.

雷 Kusiak，A．（1987）．The generalized group technology concept． International Journal of Production Research，25（4），561－569．
囯 Kusiak，A．，Chow，W．S．（1987）．Efficient solving of the group technology problem．Journal of Manufacturing Systems，6（2）， 117－124．
目 McCormick，W．T．，Schweitzer，P．J．，White，T．W．（1972）．Problem decomposition and data reorganization by a clustering technique． Operations Research 20（5），993－1009．

Mitrofanov，S．P．（1959）．Nauchnye osnovy gruppovoy tekhnologii． Lenizdat，Leningrad，Russia，1959． 435 pages．（in Russian）．

囯 Mosier，C．T．，Taube，L．（1985a）．The facets of group technology and their impact on implementation，OMEGA，13（6），381－391．

固 Mosier，C．T．，Taube，L．（1985b）．Weighted similarity measure heuristics for the group technology machine clustering problem． OMEGA，13（6），577－583．
围 Paydar，M．M．，Saidi－Mehrabad，M．（2013）．A hybrid genetic－variable neighborhood search algorithm for the cell formation problem based on grouping efficacy．Computers \＆Operations Research，40（4），980－990．
固 Seifoddini，H．（1989）．A note on the similarity coefficient method and the problem of improper machine assignment in group technology applications．International Journal of Production Research，27（7）， 1161－1165．
Seifoddini，H．，Wolfe，P．M．（1986）．Application of the similarity coefficient method in group technology．IIE Transactions，18（3）， 271－277．

比 Srinivasan, G., Narendran, T. T., Mahadevan, B. (1990). An assignment model for the part-families problem in group technology. International Journal of Production Research, 28(1), 145-152.

- Stanfel, L. (1985). Machine clustering for economic production. Engineering Costs and Production Economics, 9, 73-81.
围 Waghodekar, P. H., Sahu, S. (1984). Machine-component cell formation in group technology MACE. International Journal of Production Research 22, 937-948.
Flanders, R. E., 1925. Design manufacture and production control of a standard machine, Transactions of ASME, 46, 691-738.

Rilinskas, J., Goldengorin, B., Pardalos, P. M. (2015). Pareto-optimal front of cell formation problem in group technology. Journal of Global Optimization 61(1), 91-108.

