An Algorithm for Constraint/Generator Removal from Double Description of Polyhedra

Sergey Bastrakov^a, Nikolai Zolotykh^{a, b}

^a Lobachevsky State University of Nizhni Novgorod ^b HSE Branch in Nizhny Novgorod

NET 2015

Contents

2 Double Description Method

Convex Polyhedra

Definition

Convex polyhedron in \mathbb{R}^d is a set of solutions to a finite system of linear inequalities:

$$P = \left\{ x \in \mathbb{R}^d : Ax \ge b \right\}$$

Each polyhedron can be represented in two ways:

- Facet representation as a set of constraints: $P = \{x \in \mathbb{R}^d : Ax \ge b\}$
- Vertex representation as a set generators: $P = \operatorname{conv}(v_1, v_2, \ldots, v_n) + \operatorname{cone}(u_1, u_2, \ldots, u_m)$

Example: Facet and Vertex Representations

Converting Between Representations

• Vertex enumeration problem: given facet representation, find vertex representation:

$$Ax \geq b \longrightarrow rac{v_1, v_2, \ldots, v_n}{u_1, u_2, \ldots, u_m}$$

• Facet enumeration problem: given vertex representation, find facet representation:

$$v_1, v_2, \ldots, v_n \longrightarrow Ax \ge b$$

 u_1, u_2, \ldots, u_m

Facet/vertex enumeration problems can be reduced to one another using duality \Rightarrow essentially the same **problem of computing dual representation**

Sergey Bastrakov (UNN)

Vertex and facet representations are equivalent descriptively, but not computationally

- Graphical applications in 2D and 3D
- Cutting plane algorithms, e.g. in ILP and DC programming
- Polyhedral method of loop nest optimization in compilers (e.g. Graphite for gcc, Polly for LLVM)
- Dynamic Groebner basis construction algorithms
- Many others

Double Description Method

- **DDM** [Motzkin, etc., 1953] is one of the most widely used algorithms for computing dual representation
- Operates with polyhedral cones. Homogenization:

$$P = \left\{ x \in \mathbb{R}^d : Ax \ge b
ight\} \longrightarrow$$

 $C = \left\{ (x_0, x) \in \mathbb{R}^{d+1} : Ax - bx_0 \ge 0, x_0 \ge 0
ight\}$

- Input: $C = \left\{ x \in \mathbb{R}^d : Ax \ge 0 \right\}$
- Output: $\{u_1, u_2, ..., u_n\}$: $C = \operatorname{cone}(u_1, u_2, ..., u_n)$
- Incremental algorithm: start with a subsystem of inequalities, process one inequality per step.

Step of DDM

• Input:
$$C = \{x : Ax \ge 0\} = \operatorname{cone}(U)$$

- Output: $U': \{x \in C : ax \ge 0\} = \operatorname{cone}(U')$
- Classify extreme rays of C onto three groups:

$$U_+ = \{u \in U : au > 0\} - feasible$$

$$U_0 = \{u \in U : au = 0\} - \text{boundary}$$
$$U_- = \{u \in U : au < 0\} - \text{infeasible}$$

- For each edge $(u_+, u_-) \in U_+ imes U_-$ make a combination $u_\pm = (-au_-)u_+ + (au_+)u_-$
- $U' = U_+ \cup U_0 \cup U_\pm$, where U_\pm is all combinations

Adjacency Tests

- The key operation is finding all edges (u_+, u_-) .
- It is done using the incidence sets J₊, J₋: indices of inequalities that are satisfied as equalities
- Pairwise tests:
 - Necessary condition $|A(J_+ \cap J_-)| \ge \operatorname{rank}(A) 2$
 - Algebraic test: $rank(A(J_+ \cap J_-)) = rank(A) 2$
 - Combinatorial test:

 $\not\exists w \in U : w \neq u_+, w \neq u_-, J_+ \cap J_- \subseteq J_w$

- Using trees to avoid pairwise enumeration
 - *k*-d trees: Terzer & Stelling'2008
 - We use a modification of their approach

- Open source implementation of DDM and Fourier-Chernikov elimination algorithm
- Hybrid DDM with ideas of Quickhull [Bastrakov & Zolotykh, 2011]
- Graph modification, *k*-d trees for adjacency in DDM and Fourier-Chernikov elimination
- Support for parallel computing
- https://github.com/sbastrakov/qskeleton/

Constraint/Generator Removal Problem

- Given irreducible facet and vertex representations (double description) of a polyhedron *P*
- **Constraint removal problem**: find vertex representation of a polyhedron *Q* defined by a subset of constraints of *P*.
- Generator removal problem: find facet representation of a polyhedron *Q* generated by a subset of generators of *P*.
- The problems are dual to one another, consider generator removal problem
- Important for polyhedral loop optimization

Constraint Removal Algorithms

Naive algorithm

- $\bullet\,$ Solve vertex representation problem for Q
- Ignore the given double description of *P*

Incremental algorithm

- Suggested by Amato, Scozzari & Zaffanella'2014
- Main idea: solve vertex representation problem for a subset of constraints of *Q* using DDM

We present a **new algorithm**

- Does not involve solving vertex representation problem
- Uses facet and ray adjacency information of *P*

A new constraint removal algorithm

- Use homogenization to transform from polyhedron to a polyhedral cone
- Remove constraints one by one:

$$\{x: Ax \ge 0, \alpha x \ge 0\} \longrightarrow \{x: Ax \ge 0\}$$

• Due to irreducibility, each inequality defines a facet of the cone

Removing a Constraint

Input:
$$C = \{Ax \ge 0, ax \ge 0\} = \text{cone}(U)$$

Output: $U' : C' = \{Ax \ge 0\} = \text{cone}(U')$

•
$$U_+ := \{ u \in U : au > 0 \}, U_0 := \emptyset, U_- := \emptyset$$

•
$$F_{adj} := \{ \text{facets of } C \text{ adjacent to the removed facet} \}$$

- $E_{adj} := \{ edges of C that intersect the removed facet \}$
- For each $(u, v) \in E_{adj}$: au = 0, av > 0
 - Consider a ray that is a continuation to ax < 0
 - If it intersects a facet from F_{adj} , add the first intersection point to U_{-}
 - Otherwise add u to U_0
- Return $U_+ \cup U_0 \cup U_-$

Proof of Correctness (Sketch)

- Consider inverse operation: a step of DDM from $C' = \{Ax \ge 0\}$ to $C = \{Ax \ge 0, ax \ge 0\}$
- During DDM $U' = U'_+ \cup U'_0 \cup U'_-$
- Need to show that $U_+=U_+^\prime$, $U_0=U_0^\prime$, $U_-=U_-^\prime$
- $U_+ = U_+'$ is obvious
- Proof of $U_0 = U'_0$ and $U_- = U'_-$ relies on rules for making combinations in DDM, adjacency conditions and irreducibility of the double description of C.

Complexity

$$C = \left\{ x \in \mathbb{R}^d : Ax \ge 0 \right\} = \operatorname{cone} \left(u_1, u_2, \dots, u_n \right), A \in \mathbb{R}^{m \times d}$$

Suppose we find F_{adj} and E_{adj} using pairwise Algebraic test, all arithmetic operations take O(1)

Theorem

The complexity of removing a constraint of C is $O(m^2n^2)$ for every fixed d.

Theorem

The complexity of sequential removing k constraints of C is $O(k m^{2+2\lfloor (d-1)/2 \rfloor})$ for every fixed d.

Comparison to the Incremental Algorithm

• Complexity of the proposed algorithm:

- $O(m^2n^2)$ for removing a single constraint
- $O(k m^{2+2\lfloor (d-1)/2 \rfloor})$ for removing k constraints
- Incremental algorithm mainly performs DDM on F_{adj} .
- For standard DDM with pairwise Algebraic adjacency test the complexity of the incremental algorithm is

$$O(|F_{adj}|^{2+2\lfloor (d-1)/2\rfloor})$$

• If $|F_{adj}| pprox m$ the naive algorithm is probably the best

Polyhedron	n _{del}	$T_{naive}[s]$	$\mathbf{T}_{incr.}[s]$	$T_{proposed}[s]$
сссб	1	4.2	0.01	0.01
сссб	10	3.8	2.3	1.6
sampleh8	1	35.6	5.2	4.8
sampleh8	10	42.9	12.5	7.3
trunc10	1	1.5	0.1	0.1
trunc10	10	6.1	6.2	4.3
$C4(20) \times C4(20)$	1	101.2	13.6	2.4
$C4(20) \times C4(20)$	10	82.7	56.2	45.7
sphere6	1	15.4	0.3	0.7
sphere6	10	14.8	2.5	5.1

Summary & Future Work

- A new algorithm for constraint/generator removal
- Possible enhancements:
 - Use trees to speed up adjacency tests
 - Use some accelerating data structure to find the first intersection points between continuations of edges and facets of F_{adj}
- Computational evaluation results:
 - The proposed algorithm is competitive to the incremental
 - Naive algorithm is worse, but not nearly as bad as in Amato, Scozzari & Zaffanella paper