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Convex Polyhedra

De�nition

Convex polyhedron in R
d
is a set of solutions to a

�nite system of linear inequalities:

P =
{

x ∈ R
d : Ax ≥ b

}

Eah polyhedron an be represented in two ways:

Faet representation as a set of onstraints:

P =
{

x ∈ R
d : Ax ≥ b

}

Vertex representation as a set generators:

P = conv (v1, v2, . . . , vn) + cone (u1, u2, . . . , um)
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Example: Faet and Vertex Representations

Faet representation:

P =
{

x ∈ R
2 : Ax ≥ b

}

Vertex representation:

P = conv (v1, v2, v3, v4) +
cone (u1, u2)

Sergey Bastrakov (UNN) Constraint/Generator Removal NET 2015 4 / 19



Converting Between Representations

Vertex enumeration problem: given faet

representation, �nd vertex representation:

Ax ≥ b −→
v1, v2, . . . , vn
u1, u2, . . . , um

Faet enumeration problem: given vertex

representation, �nd faet representation:

v1, v2, . . . , vn
u1, u2, . . . , um

−→ Ax ≥ b

Faet/vertex enumeration problems an be redued to one

another using duality ⇒ essentially the same problem of

omputing dual representation
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Appliations

Vertex and faet representations are equivalent

desriptively, but not omputationally

Graphial appliations in 2D and 3D

Cutting plane algorithms, e.g. in ILP and DC

programming

Polyhedral method of loop nest optimization in

ompilers (e.g. Graphite for g, Polly for LLVM)

Dynami Groebner basis onstrution algorithms

Many others
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Double Desription Method

DDM [Motzkin, et., 1953℄ is one of the most widely

used algorithms for omputing dual representation

Operates with polyhedral ones. Homogenization:

P =
{

x ∈ R
d : Ax ≥ b

}

−→

C =
{

(x0, x) ∈ R
d+1 : Ax − bx0 ≥ 0, x0 ≥ 0

}

Input: C =
{

x ∈ R
d : Ax ≥ 0

}

Output: {u1, u2, . . . , un} : C = cone (u1, u2, . . . , un)

Inremental algorithm: start with a subsystem of

inequalities, proess one inequality per step.
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Step of DDM

Input: C = {x : Ax ≥ 0} = cone (U)

Output: U ′ : {x ∈ C : ax ≥ 0} = cone (U ′)

Classify extreme rays of C onto three groups:

U+ = {u ∈ U : au > 0}� feasible

U0 = {u ∈ U : au = 0}� boundary

U− = {u ∈ U : au < 0}� infeasible

For eah edge (u+, u−) ∈ U+ × U− make a

ombination u± = (−au−)u+ + (au+)u−
U ′ = U+ ∪ U0 ∪ U±, where U± is all ombinations
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Adjaeny Tests

The key operation is �nding all edges (u+, u−).

It is done using the inidene sets J+, J−: indies of

inequalities that are satis�ed as equalities

Pairwise tests:

Neessary ondition |A(J+ ∩ J−)| ≥ rank(A)− 2
Algebrai test: rank(A(J+ ∩ J−)) = rank(A)− 2
Combinatorial test:

6 ∃w ∈ U : w 6= u+,w 6= u−, J+ ∩ J− ⊆ Jw

Using trees to avoid pairwise enumeration

k-d trees: Terzer & Stelling'2008

We use a modi�ation of their approah
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qskeleton

Open soure implementation of DDM and

Fourier-Chernikov elimination algorithm

Hybrid DDM with ideas of Quikhull [Bastrakov &

Zolotykh, 2011℄

Graph modi�ation, k-d trees for adjaeny in DDM

and Fourier-Chernikov elimination

Support for parallel omputing

https://github.om/sbastrakov/qskeleton/
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Constraint/Generator Removal Problem

Given irreduible faet and vertex representations

(double desription) of a polyhedron P

Constraint removal problem: �nd vertex

representation of a polyhedron Q de�ned by a subset

of onstraints of P .

Generator removal problem: �nd faet

representation of a polyhedron Q generated by a

subset of generators of P .

The problems are dual to one another, onsider

generator removal problem

Important for polyhedral loop optimization
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Constraint Removal Algorithms

Naive algorithm

Solve vertex representation problem for Q

Ignore the given double desription of P

Inremental algorithm

Suggested by Amato, Sozzari & Za�anella'2014

Main idea: solve vertex representation problem for a

subset of onstraints of Q using DDM

We present a new algorithm

Does not involve solving vertex representation

problem

Uses faet and ray adjaeny information of P
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A new onstraint removal algorithm

Use homogenization to transform from polyhedron to

a polyhedral one

Remove onstraints one by one:

{x : Ax ≥ 0, αx ≥ 0} −→ {x : Ax ≥ 0}

Due to irreduibility, eah inequality de�nes a faet of

the one
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Removing a Constraint

Input: C = {Ax ≥ 0, ax ≥ 0} = cone (U)
Output: U ′ : C ′ = {Ax ≥ 0} = cone (U ′)

U+ := {u ∈ U : au > 0} ,U0 := ∅,U− := ∅

Fadj := {faets of C adjaent to the removed faet}

Eadj := {edges of C that interset the removed faet}

For eah (u, v) ∈ Eadj : au = 0, av > 0

Consider a ray that is a ontinuation to ax < 0
If it intersets a faet from Fadj , add the �rst

intersetion point to U−

Otherwise add u to U0

Return U+ ∪ U0 ∪ U−
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Proof of Corretness (Sketh)

Consider inverse operation: a step of DDM from

C ′ = {Ax ≥ 0} to C = {Ax ≥ 0, ax ≥ 0}

During DDM U ′ = U ′
+ ∪ U ′

0 ∪ U ′
−

Need to show that U+ = U ′
+, U0 = U ′

0, U− = U ′
−

U+ = U ′
+ is obvious

Proof of U0 = U ′
0 and U− = U ′

− relies on rules for

making ombinations in DDM, adjaeny onditions

and irreduibility of the double desription of C .
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Complexity

C =
{

x ∈ R
d : Ax ≥ 0

}

= cone (u1, u2, . . . , un) ,A ∈ R
m×d

Suppose we �nd Fadj and Eadj using pairwise Algebrai

test, all arithmeti operations take O(1)

Theorem

The omplexity of removing a onstraint of C is O(m2n2)
for every �xed d .

Theorem

The omplexity of sequential removing k onstraints of C

is O(k m2+2⌊(d−1)/2⌋) for every �xed d .
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Comparison to the Inremental Algorithm

Complexity of the proposed algorithm:

O(m2n2) for removing a single onstraint

O(k m2+2⌊(d−1)/2⌋) for removing k onstraints

Inremental algorithm mainly performs DDM on Fadj .

For standard DDM with pairwise Algebrai adjaeny

test the omplexity of the inremental algorithm is

O(|Fadj |
2+2⌊(d−1)/2⌋)

If |Fadj | ≈ m the naive algorithm is probably the best
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Computational Evaluation

Polyhedron ndel Tnaive [s℄ Tincr. [s℄ Tproposed [s℄

6 1 4.2 0.01 0.01

6 10 3.8 2.3 1.6

sampleh8 1 35.6 5.2 4.8

sampleh8 10 42.9 12.5 7.3

trun10 1 1.5 0.1 0.1

trun10 10 6.1 6.2 4.3

Ñ4(20) × Ñ4(20) 1 101.2 13.6 2.4

Ñ4(20) × Ñ4(20) 10 82.7 56.2 45.7

sphere6 1 15.4 0.3 0.7

sphere6 10 14.8 2.5 5.1
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Summary & Future Work

A new algorithm for onstraint/generator removal

Possible enhanements:

Use trees to speed up adjaeny tests

Use some aelerating data struture to �nd the

�rst intersetion points between ontinuations of

edges and faets of Fadj

Computational evaluation results:

The proposed algorithm is ompetitive to the

inremental

Naive algorithm is worse, but not nearly as bad

as in Amato, Sozzari & Za�anella paper
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