An Algorithm for Constraint/Generator Removal from Double Description of Polyhedra

Sergey Bastrakov ${ }^{\text {a }}$, Nikolai Zolotykh ${ }^{a, b}$
a Lobachevsky State University of Nizhni Novgorod
${ }^{b}$ HSE Branch in Nizhny Novgorod

NET 2015

Contents

(1) Convex Polyhedra

2 Double Description Method

(3) Constraint/Generator Removal

Convex Polyhedra

Definition

Convex polyhedron in \mathbb{R}^{d} is a set of solutions to a finite system of linear inequalities:

$$
P=\left\{x \in \mathbb{R}^{d}: A x \geq b\right\}
$$

Each polyhedron can be represented in two ways:

- Facet representation as a set of constraints:

$$
P=\left\{x \in \mathbb{R}^{d}: A x \geq b\right\}
$$

- Vertex representation as a set generators:

$$
P=\operatorname{conv}\left(v_{1}, v_{2}, \ldots, v_{n}\right)+\operatorname{cone}\left(u_{1}, u_{2}, \ldots, u_{m}\right)
$$

Example: Facet and Vertex Representations

Facet representation:

$$
P=\left\{x \in \mathbb{R}^{2}: A x \geq b\right\}
$$

Vertex representation:

$$
\begin{gathered}
P=\operatorname{conv}\left(v_{1}, v_{2}, v_{3}, v_{4}\right)+ \\
\operatorname{cone}\left(u_{1}, u_{2}\right)
\end{gathered}
$$

Converting Between Representations

- Vertex enumeration problem: given facet representation, find vertex representation:

$$
A x \geq b \longrightarrow \begin{gathered}
v_{1}, v_{2}, \ldots, v_{n} \\
u_{1}, u_{2}, \ldots, u_{m}
\end{gathered}
$$

- Facet enumeration problem: given vertex representation, find facet representation:

$$
\begin{aligned}
& v_{1}, v_{2}, \ldots, v_{n} \\
& u_{1}, u_{2}, \ldots, u_{m}
\end{aligned} \longrightarrow A x \geq b
$$

Facet/vertex enumeration problems can be reduced to one another using duality \Rightarrow essentially the same problem of computing dual representation

Applications

Vertex and facet representations are equivalent descriptively, but not computationally

- Graphical applications in 2D and 3D
- Cutting plane algorithms, e.g. in ILP and DC programming
- Polyhedral method of loop nest optimization in compilers (e.g. Graphite for gcc, Polly for LLVM)
- Dynamic Groebner basis construction algorithms
- Many others

Double Description Method

- DDM [Motzkin, etc., 1953] is one of the most widely used algorithms for computing dual representation
- Operates with polyhedral cones. Homogenization:

$$
\begin{aligned}
& P=\left\{x \in \mathbb{R}^{d}: A x \geq b\right\} \longrightarrow \\
& \quad C=\left\{\left(x_{0}, x\right) \in \mathbb{R}^{d+1}: A x-b x_{0} \geq 0, x_{0} \geq 0\right\}
\end{aligned}
$$

- Input: $C=\left\{x \in \mathbb{R}^{d}: A x \geq 0\right\}$
- Output: $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}: C=\operatorname{cone}\left(u_{1}, u_{2}, \ldots, u_{n}\right)$
- Incremental algorithm: start with a subsystem of inequalities, process one inequality per step.

Step of DDM

- Input: $C=\{x: A x \geq 0\}=\operatorname{cone}(U)$
- Output: $U^{\prime}:\{x \in C: a x \geq 0\}=$ cone $\left(U^{\prime}\right)$
- Classify extreme rays of C onto three groups:

$$
\begin{aligned}
& U_{+}=\{u \in U: a u>0\}-\text { feasible } \\
& U_{0}=\{u \in U: a u=0\}-\text { boundary } \\
& U_{-}=\{u \in U: a u<0\}-\text { infeasible }
\end{aligned}
$$

- For each edge $\left(u_{+}, u_{-}\right) \in U_{+} \times U_{-}$make a combination $u_{ \pm}=\left(-a u_{-}\right) u_{+}+\left(a u_{+}\right) u_{-}$
- $U^{\prime}=U_{+} \cup U_{0} \cup U_{ \pm}$, where $U_{ \pm}$is all combinations

Adjacency Tests

- The key operation is finding all edges $\left(u_{+}, u_{-}\right)$.
- It is done using the incidence sets J_{+}, J_{-}: indices of inequalities that are satisfied as equalities
- Pairwise tests:
- Necessary condition $\left|A\left(J_{+} \cap J_{-}\right)\right| \geq \operatorname{rank}(A)-2$
- Algebraic test: $\operatorname{rank}\left(A\left(J_{+} \cap J_{-}\right)\right)=\operatorname{rank}(A)-2$
- Combinatorial test:

$$
\nexists w \in U: w \neq u_{+}, w \neq u_{-}, J_{+} \cap J_{-} \subseteq J_{w}
$$

- Using trees to avoid pairwise enumeration
- k-d trees: Terzer \& Stelling'2008
- We use a modification of their approach

qskeleton

- Open source implementation of DDM and Fourier-Chernikov elimination algorithm
- Hybrid DDM with ideas of Quickhull [Bastrakov \& Zolotykh, 2011]
- Graph modification, k-d trees for adjacency in DDM and Fourier-Chernikov elimination
- Support for parallel computing
- https://github.com/sbastrakov/qskeleton/

Constraint/Generator Removal Problem

- Given irreducible facet and vertex representations (double description) of a polyhedron P
- Constraint removal problem: find vertex representation of a polyhedron Q defined by a subset of constraints of P.
- Generator removal problem: find facet representation of a polyhedron Q generated by a subset of generators of P.
- The problems are dual to one another, consider generator removal problem
- Important for polyhedral loop optimization

Constraint Removal Algorithms

Naive algorithm

- Solve vertex representation problem for Q
- Ignore the given double description of P

Incremental algorithm

- Suggested by Amato, Scozzari \& Zaffanella'2014
- Main idea: solve vertex representation problem for a subset of constraints of Q using DDM
We present a new algorithm
- Does not involve solving vertex representation problem
- Uses facet and ray adjacency information of P

A new constraint removal algorithm

- Use homogenization to transform from polyhedron to a polyhedral cone
- Remove constraints one by one:

$$
\{x: A x \geq 0, \alpha x \geq 0\} \longrightarrow\{x: A x \geq 0\}
$$

- Due to irreducibility, each inequality defines a facet of the cone

Removing a Constraint

Input: $C=\{A x \geq 0, a x \geq 0\}=\operatorname{cone}(U)$
Output: $U^{\prime}: C^{\prime}=\{A x \geq 0\}=\operatorname{cone}\left(U^{\prime}\right)$

- $U_{+}:=\{u \in U: a u>0\}, U_{0}:=\emptyset, U_{-}:=\emptyset$
- $F_{\text {adj }}:=\{$ facets of C adjacent to the removed facet $\}$
- $E_{a d j}:=$ \{edges of C that intersect the removed facet $\}$
- For each $(u, v) \in E_{a d j}: a u=0, a v>0$
- Consider a ray that is a continuation to $a x<0$
- If it intersects a facet from $F_{a d j}$, add the first intersection point to U_{-}
- Otherwise add u to U_{0}
- Return $U_{+} \cup U_{0} \cup U_{-}$

Proof of Correctness (Sketch)

- Consider inverse operation: a step of DDM from $C^{\prime}=\{A x \geq 0\}$ to $C=\{A x \geq 0, a x \geq 0\}$
- During DDM $U^{\prime}=U_{+}^{\prime} \cup U_{0}^{\prime} \cup U_{-}^{\prime}$
- Need to show that $U_{+}=U_{+}^{\prime}, U_{0}=U_{0}^{\prime}, U_{-}=U_{-}^{\prime}$
- $U_{+}=U_{+}^{\prime}$ is obvious
- Proof of $U_{0}=U_{0}^{\prime}$ and $U_{-}=U_{-}^{\prime}$ relies on rules for making combinations in DDM, adjacency conditions and irreducibility of the double description of C.

Complexity

$C=\left\{x \in \mathbb{R}^{d}: A x \geq 0\right\}=\operatorname{cone}\left(u_{1}, u_{2}, \ldots, u_{n}\right), A \in \mathbb{R}^{m \times d}$
Suppose we find $F_{\text {adj }}$ and $E_{\text {adj }}$ using pairwise Algebraic test, all arithmetic operations take $O(1)$

Theorem

The complexity of removing a constraint of C is $O\left(m^{2} n^{2}\right)$ for every fixed d.

Theorem

The complexity of sequential removing k constraints of C is $O\left(k m^{2+2\lfloor(d-1) / 2\rfloor}\right)$ for every fixed d.

Comparison to the Incremental Algorithm

- Complexity of the proposed algorithm:
- $O\left(m^{2} n^{2}\right)$ for removing a single constraint
- $O\left(k m^{2+2\lfloor(d-1) / 2\rfloor}\right)$ for removing k constraints
- Incremental algorithm mainly performs DDM on $F_{\text {adj }}$.
- For standard DDM with pairwise Algebraic adjacency test the complexity of the incremental algorithm is

$$
O\left(\left|F_{a d j}\right|^{2+2\lfloor(d-1) / 2\rfloor}\right)
$$

- If $\left|F_{a d j}\right| \approx m$ the naive algorithm is probably the best

Computational Evaluation

Polyhedron ccc6 ccc6
sampleh8
sampleh8
trunc10
trunc10
C4(20) \times C4(20)
C4(20) \times C4(20)
sphere6
sphere6
$\mathbf{n}_{\text {del }} \quad \mathbf{T}_{\text {naive }}[\mathrm{s}] \quad \mathbf{T}_{\text {incr. }}[\mathrm{s}] \quad \mathbf{T}_{\text {proposed }}[\mathrm{s}]$
0.01
1.6
4.8
7.3
0.1
4.3
2.4
45.7
0.7
5.1

Summary \& Future Work

- A new algorithm for constraint/generator removal
- Possible enhancements:
- Use trees to speed up adjacency tests
- Use some accelerating data structure to find the first intersection points between continuations of edges and facets of $F_{\text {adj }}$
- Computational evaluation results:
- The proposed algorithm is competitive to the incremental
- Naive algorithm is worse, but not nearly as bad as in Amato, Scozzari \& Zaffanella paper

