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Clustering coefficient

Global clustering coefficient of a graph G:

C1(G) =
3#(triangles in G)

#(pairs of adjacent edges in G)

Average local clustering coefficient
T i is the number of connected neighbors of a vertex i
P i
2 is the number of pairs of neighbors
C(i) = T i

P i2
is the local clustering coefficient for a vertex i

C2(G) =
1
n

∑n
i=1C(i) – average local clustering

coefficient
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Motivation

Generalized preferential attachment models1:

Power-law degree distribution with parameter 1 + γ,
γ > 1

Constant average local clustering for any γ > 1

Constant global clustering coefficient for γ > 2

Challenge: suggest a model with power-law degree
distributions with 1 < γ < 2 and constant global clustering
coefficient

Answer: it is impossible

1L. Ostroumova, A. Ryabchenko, and E. Samosvat, Generalized
preferential attachment: tunable power-law degree distribution and
clustering coefficient, Proc. WAW’13, 2013.
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Scale-free graphs

We consider a sequence of graphs {Gn}
Each graph Gn has n vertices
The degrees ξi are i.i.d. random variables following a
regularly varying distribution:

1− F (x) = L(x)x−γ, x > 0,

where L(·) is a slowly varying function:
limx→∞

L(tx)
L(x)

= 1 for any t > 0

Consider only the case 1 < γ < 2

If
∑n

i=1 ξi is odd, then we replace ξn by ξn + 1
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Simple graphs: results

With high probability:

1 A simple graph Gn with such degree distribution exists

2 Global clustering coefficient tends to zero for any
sequence of such graphs
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Existence

Theorem
For any δ such that 1 < δ < γ with probability 1−O

(
n1−δ)

there exists a simple graph on n vertices with the degree
distribution defined above.

Theorem [Erdős–Gallai]

A sequence of non-negative integers d1 ≥ . . . ≥ dn can be
represented as the degree sequence of a finite simple graph on
n vertices if and only if

1 d1 + . . .+ dn is even;
2
∑k

i=1 di ≤ k(k − 1) +
∑n

i=k+1 min(di, k) holds for
1 ≤ k ≤ n.
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Global clustering coefficient: upper bound

Theorem
For any ε > 0 and any α such that 0 < α < 1

γ+1
with

probability 1−O(n−α)

C1(Gn) ≤ n−
(2−γ)
γ(γ+1)

+ε

Liudmila Ostroumova Prokhorenkova Global clustering coefficient in scale-free networks



Upper bound: proof

C1(Gn) =
3 · T (n)
P2(n)

For any x:

T (n) ≤ |{i : ξi > x}|3 +
∑
i:ξi≤x

ξ2i

With probability 1−O
(

xγ

nL(x)

)
:

|{i : ξi > x}| ≤ (1 + ε)nx−γL (x)∑
i:ξi≤x

ξ2i ≤ (1 + ε)
4− γ
2− γ

n x2−γL (x)
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Upper bound: proof

Fix x = n
1

γ+1 . For any δ > 0 with probability 1−O(n−α):

T (n) ≤ n
3

γ+1
+δ

P2(n) > n
2
γ
−δ

Taking small enough δ, we obtain

C1(Gn) ≤ nε−
2−γ

γ(γ+1)
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Karamata’s theorem

Theorem [Karamata]

Let L be slowly varying and locally bounded in [x0,∞] for
some x0 ≥ 0. Then

1 for α > −1∫ x

x0

tαL(t)dt = (1 + o(1))(α + 1)−1xα+1L(x), x→∞ .

2 for α < −1∫ ∞
x

tαL(t)dt = −(1+o(1))(α+1)−1xα+1L(x), x→∞ .
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Global clustering coefficient: lower bound

Theorem
For any ε > 0 and any α, 0 < α < min{ γε

γ+2
, 1
γ+1

, γ − 1}, with
probability 1−O(n−α) there exists a graph with the required
degree distribution and

C1(Gn) ≥ n−
(2−γ)
γ(γ+1)

−ε
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Idea of the proof

P
(
P2(n) ≤ n

2
γ
+δ
)
= 1−O (n−α)

Let us order the degrees: d1 ≥ . . . ≥ dn

dk ≈
(
n
k

) 1
γ , so dk ≈ k for k ≈ n

1
γ+1

With probability 1−O (n−α) we can construct a clique of
size n

1
γ+1
−δ

3 · T (n) ≥ n
3

γ+1
−3δ

Finally, C1(Gn) =
3·T (n)
P2(n)

≥ n
3

γ+1−3δ

n
2
γ+δ

= n−
(2−γ)
γ(γ+1)

−ε

Note: we have to prove that after we constructed a clique,
whp we still can construct a graph without loops and multiple
edges
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Global clustering in weighted graphs

Global clustering coefficient for weighted graphs2:

C1(G) =
total value of closed triplets

total value of triplets

Value of a triplet:
arithmetic mean of the weights of the ties
geometric mean
maximum or minimum value
product

2T. Opsahl, P. Panzarasa, Clustering in weighted networks,
Social Networks, 31(2), pp. 155–163 (2009)
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Global clustering in weighted graphs

Theorem

Fix any δ > 0. For any α, 0 < α < γ−1
γ+1

, with probability
1−O (n−α) there exists a multigraph with the required degree
distribution and

C1(Gn) ≥
2− γ
10− 3γ

− δ

This theorem holds for any definition of global clustering
coefficient
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Idea of the proof

Whp we can construct a clique on the set A of n
1

γ+1

vertices with largest degrees
In addition, we connect all vertices from the set A only to
each other

The total value of closed triplets is at least n
3

γ+1

The total value of all remaining triplets is at most n
3

γ+1
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Concluding remarks

In unweighted scale-free graphs with 1 < γ < 2 the global
clustering coefficient tends to zero

We proposed a constructing procedure which allows to
reach the obtained upper bound

It is possible to construct a sequence of weighted
scale-free graphs with an asymptotically constant global
clustering coefficient
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Thank you!

Questions?
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