Global clustering coefficient in scale-free networks

Liudmila Ostroumova Prokhorenkova

Yandex

NET 2015

Liudmila Ostroumova Prokhorenkova Global clustering coefficient in scale-free networks

Global clustering coefficient of a graph G:

$$C_1(G) = \frac{3\#(\text{triangles in } G)}{\#(\text{pairs of adjacent edges in } G)}$$

Global clustering coefficient of a graph G:

$$C_1(G) = \frac{3\#(\text{triangles in } G)}{\#(\text{pairs of adjacent edges in } G)}$$

Average local clustering coefficient

- T^i is the number of connected neighbors of a vertex i
- P_2^i is the number of pairs of neighbors
- $C(i) = \frac{T^i}{P_2^i}$ is the local clustering coefficient for a vertex i
- $C_2(G) = \frac{1}{n} \sum_{i=1}^n C(i)$ average local clustering coefficient

Motivation

Generalized preferential attachment models¹:

- Power-law degree distribution with parameter $1+\gamma$, $\gamma>1$
- $\bullet\,$ Constant average local clustering for any $\gamma>1$
- $\bullet\,$ Constant global clustering coefficient for $\gamma>2$

¹L. Ostroumova, A. Ryabchenko, and E. Samosvat, *Generalized* preferential attachment: tunable power-law degree distribution and clustering coefficient, Proc. WAW'13, 2013.

Liudmila Ostroumova Prokhorenkova Global clustering coefficient in scale-free networks

Motivation

Generalized preferential attachment models¹:

- Power-law degree distribution with parameter $1+\gamma$, $\gamma>1$
- $\bullet\,$ Constant average local clustering for any $\gamma>1$
- $\bullet\,$ Constant global clustering coefficient for $\gamma>2$

Challenge: suggest a model with power-law degree distributions with $1<\gamma<2$ and constant global clustering coefficient

¹L. Ostroumova, A. Ryabchenko, and E. Samosvat, *Generalized* preferential attachment: tunable power-law degree distribution and clustering coefficient, Proc. WAW'13, 2013.

Liudmila Ostroumova Prokhorenkova Global clustering coefficient in scale-free networks

Motivation

Generalized preferential attachment models¹:

- Power-law degree distribution with parameter $1+\gamma$, $\gamma>1$
- $\bullet\,$ Constant average local clustering for any $\gamma>1$
- $\bullet\,$ Constant global clustering coefficient for $\gamma>2$

Challenge: suggest a model with power-law degree distributions with $1<\gamma<2$ and constant global clustering coefficient

Answer: it is impossible

¹L. Ostroumova, A. Ryabchenko, and E. Samosvat, *Generalized* preferential attachment: tunable power-law degree distribution and clustering coefficient, Proc. WAW'13, 2013.

Scale-free graphs

- We consider a sequence of graphs $\{G_n\}$
- Each graph G_n has n vertices
- The degrees ξ_i are i.i.d. random variables following a regularly varying distribution:

$$1 - F(x) = L(x)x^{-\gamma}, \quad x > 0,$$

where $L(\cdot)$ is a slowly varying function: $\lim_{x\to\infty}\frac{L(tx)}{L(x)}=1~~{\rm for}~{\rm any}~t>0$

Scale-free graphs

- We consider a sequence of graphs $\{G_n\}$
- Each graph G_n has n vertices
- The degrees ξ_i are i.i.d. random variables following a regularly varying distribution:

$$1 - F(x) = L(x)x^{-\gamma}, \quad x > 0,$$

where $L(\cdot)$ is a slowly varying function: $\lim_{x\to\infty}\frac{L(tx)}{L(x)}=1$ for any t>0

• Consider only the case $1 < \gamma < 2$

Scale-free graphs

- We consider a sequence of graphs $\{G_n\}$
- Each graph G_n has n vertices
- The degrees ξ_i are i.i.d. random variables following a regularly varying distribution:

$$1 - F(x) = L(x)x^{-\gamma}, \quad x > 0,$$

where $L(\cdot)$ is a slowly varying function: $\lim_{x\to\infty}\frac{L(tx)}{L(x)}=1$ for any t>0

- Consider only the case $1 < \gamma < 2$
- If $\sum_{i=1}^{n} \xi_i$ is odd, then we replace ξ_n by $\xi_n + 1$

With high probability:

- **(**) A simple graph G_n with such degree distribution exists
- Global clustering coefficient tends to zero for any sequence of such graphs

Theorem

For any δ such that $1 < \delta < \gamma$ with probability $1 - O(n^{1-\delta})$ there exists a simple graph on n vertices with the degree distribution defined above.

Theorem

For any δ such that $1 < \delta < \gamma$ with probability $1 - O(n^{1-\delta})$ there exists a simple graph on n vertices with the degree distribution defined above.

Theorem [Erdős–Gallai]

A sequence of non-negative integers $d_1 \ge \ldots \ge d_n$ can be represented as the degree sequence of a finite simple graph on n vertices if and only if

$$d_1 + \ldots + d_n$$
 is even;
 $\sum_{i=1}^k d_i \le k(k-1) + \sum_{i=k+1}^n \min(d_i, k)$ holds for
 $1 \le k \le n$.

Global clustering coefficient: upper bound

Theorem

For any $\varepsilon > 0$ and any α such that $0 < \alpha < \frac{1}{\gamma+1}$ with probability $1 - O(n^{-\alpha})$

$$C_1(G_n) \le n^{-\frac{(2-\gamma)}{\gamma(\gamma+1)}+\varepsilon}$$

$$C_1(G_n) = \frac{3 \cdot T(n)}{P_2(n)}$$

・ロト ・部ト ・ヨト ・ヨト

$$C_1(G_n) = \frac{3 \cdot T(n)}{P_2(n)}$$

For any x:

$$T(n) \le |\{i: \xi_i > x\}|^3 + \sum_{i:\xi_i \le x} \xi_i^2$$

▲圖▶ ▲ 国▶ ▲ 国▶

$$C_1(G_n) = \frac{3 \cdot T(n)}{P_2(n)}$$

For any x:

$$T(n) \le |\{i: \xi_i > x\}|^3 + \sum_{i:\xi_i \le x} \xi_i^2$$

With probability $1 - O\left(\frac{x^{\gamma}}{nL(x)}\right)$: $|\{i:\xi_i > x\}| \le (1+\varepsilon)n x^{-\gamma}L(x)$ $\sum_{i:\xi_i \le x} \xi_i^2 \le (1+\varepsilon)\frac{4-\gamma}{2-\gamma}n x^{2-\gamma}L(x)$

Fix $x = n^{\frac{1}{\gamma+1}}$. For any $\delta > 0$ with probability $1 - O(n^{-\alpha})$:

$$T(n) \le n^{\frac{3}{\gamma+1}+\delta}$$

Fix $x = n^{\frac{1}{\gamma+1}}$. For any $\delta > 0$ with probability $1 - O(n^{-\alpha})$:

$$T(n) \le n^{\frac{3}{\gamma+1}+\delta}$$

$$P_2(n) > n^{\frac{2}{\gamma} - \delta}$$

(目) (ヨ) (ヨ) (ヨ)

Fix $x = n^{\frac{1}{\gamma+1}}$. For any $\delta > 0$ with probability $1 - O(n^{-\alpha})$:

$$T(n) \le n^{\frac{3}{\gamma+1}+\delta}$$

$$P_2(n) > n^{\frac{2}{\gamma} - \delta}$$

Taking small enough δ , we obtain

$$C_1(G_n) \le n^{\varepsilon - \frac{2-\gamma}{\gamma(\gamma+1)}}$$

Theorem [Karamata]

Let L be slowly varying and locally bounded in $[x_0, \infty]$ for some $x_0 \ge 0$. Then

• for
$$\alpha > -1$$

$$\int_{x_0}^x t^{\alpha} L(t) dt = (1 + o(1))(\alpha + 1)^{-1} x^{\alpha + 1} L(x), \quad x \to \infty.$$

2 for $\alpha < -1$

$$\int_{x}^{\infty} t^{\alpha} L(t) dt = -(1+o(1))(\alpha+1)^{-1} x^{\alpha+1} L(x), \quad x \to \infty.$$

Global clustering coefficient: lower bound

Theorem

For any $\varepsilon > 0$ and any α , $0 < \alpha < \min\{\frac{\gamma\varepsilon}{\gamma+2}, \frac{1}{\gamma+1}, \gamma-1\}$, with probability $1 - O(n^{-\alpha})$ there exists a graph with the required degree distribution and

$$C_1(G_n) \ge n^{-\frac{(2-\gamma)}{\gamma(\gamma+1)}-\varepsilon}$$

•
$$\mathsf{P}\left(P_{2}(n) \le n^{\frac{2}{\gamma}+\delta}\right) = 1 - O(n^{-\alpha})$$

・ロト ・部ト ・ヨト ・ヨト

•
$$\mathsf{P}\left(P_2(n) \le n^{\frac{2}{\gamma}+\delta}\right) = 1 - O\left(n^{-\alpha}\right)$$

• Let us order the degrees: $d_1 \ge \ldots \ge d_n$ • $d_k \approx \left(\frac{n}{k}\right)^{\frac{1}{\gamma}}$, so $d_k \approx k$ for $k \approx n^{\frac{1}{\gamma+1}}$

•
$$\mathsf{P}\left(P_2(n) \le n^{\frac{2}{\gamma}+\delta}\right) = 1 - O\left(n^{-\alpha}\right)$$

- Let us order the degrees: $d_1 \ge \ldots \ge d_n$
- $d_k \approx \left(\frac{n}{k}\right)^{\frac{1}{\gamma}}$, so $d_k \approx k$ for $k \approx n^{\frac{1}{\gamma+1}}$
- $\bullet\,$ With probability $1-O\left(n^{-\alpha}\right)$ we can construct a clique of size $n^{\frac{1}{\gamma+1}-\delta}$

•
$$\mathsf{P}\left(P_2(n) \le n^{\frac{2}{\gamma}+\delta}\right) = 1 - O\left(n^{-\alpha}\right)$$

- Let us order the degrees: $d_1 \ge \ldots \ge d_n$
- $d_k \approx \left(\frac{n}{k}\right)^{\frac{1}{\gamma}}$, so $d_k \approx k$ for $k \approx n^{\frac{1}{\gamma+1}}$
- $\bullet\,$ With probability $1-O\left(n^{-\alpha}\right)$ we can construct a clique of size $n^{\frac{1}{\gamma+1}-\delta}$

•
$$3 \cdot T(n) \ge n^{\frac{3}{\gamma+1}-3\delta}$$

•
$$\mathsf{P}\left(P_2(n) \le n^{\frac{2}{\gamma}+\delta}\right) = 1 - O\left(n^{-\alpha}\right)$$

- Let us order the degrees: $d_1 \ge \ldots \ge d_n$
- $d_k \approx \left(\frac{n}{k}\right)^{\frac{1}{\gamma}}$, so $d_k \approx k$ for $k \approx n^{\frac{1}{\gamma+1}}$
- $\bullet\,$ With probability $1-O\left(n^{-\alpha}\right)$ we can construct a clique of size $n^{\frac{1}{\gamma+1}-\delta}$

•
$$3 \cdot T(n) \ge n^{\frac{3}{\gamma+1}-3\delta}$$

• Finally,
$$C_1(G_n) = \frac{3 \cdot T(n)}{P_2(n)} \ge \frac{n^{\frac{3}{\gamma+1}-3\delta}}{n^{\frac{2}{\gamma}+\delta}} = n^{-\frac{(2-\gamma)}{\gamma(\gamma+1)}-\varepsilon}$$

•
$$\mathsf{P}\left(P_{2}(n) \le n^{\frac{2}{\gamma}+\delta}\right) = 1 - O(n^{-\alpha})$$

- Let us order the degrees: $d_1 \geq \ldots \geq d_n$
- $d_k \approx \left(\frac{n}{k}\right)^{\frac{1}{\gamma}}$, so $d_k \approx k$ for $k \approx n^{\frac{1}{\gamma+1}}$
- $\bullet\,$ With probability $1-O\left(n^{-\alpha}\right)$ we can construct a clique of size $n^{\frac{1}{\gamma+1}-\delta}$

•
$$3 \cdot T(n) \ge n^{\frac{3}{\gamma+1}-3\delta}$$

• Finally,
$$C_1(G_n) = \frac{3 \cdot T(n)}{P_2(n)} \ge \frac{n^{\frac{3}{\gamma+1}-3\delta}}{n^{\frac{2}{\gamma}+\delta}} = n^{-\frac{(2-\gamma)}{\gamma(\gamma+1)}-\varepsilon}$$

Note: we have to prove that after we constructed a clique, **whp** we still can construct a graph without loops and multiple edges

Global clustering coefficient for weighted graphs²:

 $C_1(G) = \frac{\text{total value of closed triplets}}{\text{total value of triplets}}$

²T. Opsahl, P. Panzarasa, Clustering in weighted networks, Social Networks, 31(2), pp. 155–163 (2009)

Liudmila Ostroumova Prokhorenkova Global clustering coefficient in scale-free networks

Global clustering coefficient for weighted graphs²:

$$C_1(G) = \frac{\text{total value of closed triplets}}{\text{total value of triplets}}$$

Value of a triplet:

- arithmetic mean of the weights of the ties
- geometric mean
- maximum or minimum value

 $^2 T.$ Opsahl, P. Panzarasa, Clustering in weighted networks, Social Networks, 31(2), pp. 155–163 (2009) \leftarrow

Liudmila Ostroumova Prokhorenkova Global clustering coefficient in scale-free networks

Global clustering coefficient for weighted graphs²:

$$C_1(G) = \frac{\text{total value of closed triplets}}{\text{total value of triplets}}$$

Value of a triplet:

- arithmetic mean of the weights of the ties
- geometric mean
- maximum or minimum value
- product

²T. Opsahl, P. Panzarasa, Clustering in weighted networks, Social Networks, 31(2), pp. 155–163 (2009)

Theorem

Fix any $\delta > 0$. For any α , $0 < \alpha < \frac{\gamma - 1}{\gamma + 1}$, with probability $1 - O(n^{-\alpha})$ there exists a multigraph with the required degree distribution and

$$C_1(G_n) \ge \frac{2-\gamma}{10-3\gamma} - \delta$$

This theorem holds for any definition of global clustering coefficient

- Whp we can construct a clique on the set A of $n^{\frac{1}{\gamma+1}}$ vertices with largest degrees
- $\bullet\,$ In addition, we connect all vertices from the set A only to each other

- Whp we can construct a clique on the set A of $n^{\frac{1}{\gamma+1}}$ vertices with largest degrees
- $\bullet\,$ In addition, we connect all vertices from the set A only to each other
- The total value of closed triplets is at least $n^{rac{3}{\gamma+1}}$

- Whp we can construct a clique on the set A of $n^{\frac{1}{\gamma+1}}$ vertices with largest degrees
- In addition, we connect all vertices from the set A only to each other
- The total value of closed triplets is at least $n^{rac{3}{\gamma+1}}$
- The total value of all remaining triplets is at most $n^{rac{3}{\gamma+1}}$

- $\bullet\,$ In unweighted scale-free graphs with $1<\gamma<2$ the global clustering coefficient tends to zero
- We proposed a constructing procedure which allows to reach the obtained upper bound
- It is possible to construct a sequence of weighted scale-free graphs with an asymptotically constant global clustering coefficient

Thank you!

Questions?

Liudmila Ostroumova Prokhorenkova Global clustering coefficient in scale-free networks

・吊り ・ヨト ・ヨト