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Degree distribution

Real-world networks often have the power law degree
distribution:

#{v : deg(v) = d}
n

≈ c

dγ
,

where 2 < γ < 3.
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Clustering coefficient

Global clustering coefficient of a graph G:

C1(n) =
3#(triangles in G)

#(pairs of adjacent edges in G)
.

Average local clustering coefficient
T i is the number of edges between the neighbors of a vertex i
P i
2 is the number of pairs of neighbors

C(i) = T i

P i2
is the local clustering coefficient for a vertex i

C2(n) = 1
n

∑n
i=1 C(i) – average local clustering coefficient
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Preferential attachment

Idea of preferential attachment [Barabási, Albert]:
Start with a small graph
At every step we add new vertex with m edges
The probability that a new vertex will be connected to a vertex i is
proportional to the degree of i
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PA-class of models

Start from an arbitrary graph Gn0
m with n0 vertices and mn0 edges

We make Gn+1
m from Gn

m by adding a new vertex n+ 1 with m edges
PA-condition: the probability that the degree of a vertex i increases
by one equals

A
deg(i)

n
+B

1

n
+O

(
(deg(i))

2

n2

)

The probability of adding a multiple edge is O
(

(deg(i))2

n2

)
2mA+B = m, 0 ≤ A ≤ 1
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T -subclass

Triangles property:

The probability that the degree of two vertices i and j
increases by one equals

eij
D

mn
+O

(
dni d

n
j

n2

)
Here eij is the number of edges between vertices i and j in
Gn

m and D is a positive constant.
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Bollobás–Riordan, Buckley–Osthus, Móri, etc.

Fix some positive number a – "initial attractiveness".
(Bollobás–Riordan model: a = 1).
Start with a graph with one vertex and m loops.
At n-th step add one vertex with m edges.
We add m edges one by one. The probability to add an edge n→ i
at each step is proportional to indeg(i) + am.

Outdegree: m
Triangles property: D = 0

PA-condition: A = 1
1+a

Degree distribution: Power law with γ = 2 + a

Global clustering: (logn)2

n (a = 1), logn
n (a > 1)
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Degree distribution

Let Nn(d) be the number of vertices with degree d in Gn
m.

Expectation

For every d ≥ m we have

ENn(d) = c(m, d)
(
n+O

(
d2+

1
A

))
,

where

c(m, d) =
Γ
(
d+ B

A

)
Γ
(
m+ B+1

A

)
AΓ

(
d+ B+A+1

A

)
Γ
(
m+ B

A

) ∼ Γ
(
m+ B+1

A

)
d−1−

1
A

AΓ
(
m+ B

A

)
and Γ(x) is the gamma function.

Alexander Krot, Liudmila Ostroumova (Prokhorenkova) About the local clustering coefficient in preferential attachment graphs



Models based on preferential attachment
Analysis of PA-models

Conclusion

Degree distribution
Clustering coefficient
Local clustering

Degree distribution

Let Nn(d) be the number of vertices with degree d in Gn
m.

Expectation

For every d ≥ m we have

ENn(d) = c(m, d)
(
n+O

(
d2+

1
A

))
,

where

c(m, d) =
Γ
(
d+ B

A

)
Γ
(
m+ B+1

A

)
AΓ

(
d+ B+A+1

A

)
Γ
(
m+ B

A

) ∼ Γ
(
m+ B+1

A

)
d−1−

1
A

AΓ
(
m+ B

A

)
and Γ(x) is the gamma function.

Alexander Krot, Liudmila Ostroumova (Prokhorenkova) About the local clustering coefficient in preferential attachment graphs



Models based on preferential attachment
Analysis of PA-models

Conclusion

Degree distribution
Clustering coefficient
Local clustering

Degree distribution

Concentration

For every d = d(n) we have

P
(
|Nn(d)− ENn(d)| ≥ d

√
n log n

)
= O

(
n− logn

)
.

Therefore, for any δ > 0 there exists a function ϕ(n) = o(1) such that

lim
n→∞

P
(
∃ d ≤ n

A−δ
4A+2 : |Nn(d)− ENn(d)| ≥ ϕ(n) ENn(d)

)
= 0 .
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Global clustering

Let P2(n) be the number of all path of length 2 in Gn
m.

P2(n)

(1) If 2A < 1, then whp P2(n) ∼
(

2m(A+B) + m(m−1)
2

)
n

1−2A .

(2) If 2A = 1, then whp P2(n) ∝ n log(n) .

(3) If 2A > 1, then whp P2(n) ∝ n2A .

Triangles

Whp the number of triangles T (n) ∼ Dn .
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Global clustering

(1) If 2A < 1 then whp C1(n) ∼ 3(1−2A)D

(2m(A+B)+
m(m−1)

2 )
.

(2) If 2A = 1 then whp C1(n) ∝ (log n)−1 .

(2) If 2A > 1 then whp C1(n) ∝ n1−2A .
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Average local clustering

Average local clustering
Whp

C2(n) ≥
1

n

∑
i:deg(i)=m

C(i) ≥ 2cD

m(m+ 1)
.
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Local clustering: definition

Let Tn(d) be the number of triangles on the vertices of degree
d in Gn

m.

Let Nn(d) be the number of vertices of degree d in Gn
m.

Local clustering coefficient over vertices of degree d:

C(d) =
Tn(d)

Nn(d)
d(d−1)

2
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Local clustering: number of triangles

Let Tn(d) be the number of triangles on the vertices of degree d in Gn
m. Then

Expectation

If 2A < 1 then
ETn(d) = K(d)

(
n+ θ

(
C · d2+ 1

A

))
,

If 2A = 1 then

ETn(d) = K(d)
(
n+ θ

(
C · d2+ 1

A · log(n)
))

,

If 2A > 1 then

ETn(d) = K(d)
(
n+ θ

(
C · d2+ 1

A · n2A−1
))

,

where

K(d) =

[∑d
i=1

D(i−1)
m[A(i−1)+B]∑m

i=1
(i−1)

m[A(i−1)+B]

]
·c(m, d)d→∞ D

A·
∑m
i=1

(i−1)
[A(i−1)+B]

· Γ(m+B+1
A )

AΓ(m+B
A )
·d−

1
A

and θ(X) is some function such that |θ(X)| < X.
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Idea of the proof

The following recurrent formula holds:

ETn+1(d) = ETn(d)− ETn(d) ·
[
Ad+B

n
+O

(
d2

n2

)]
+

+ETn(d− 1) ·
[
A(d− 1) +B

n
+O

(
(d− 1)2

n2

)]
+

+
∑

j:j is a neighbor
of a vertex of degree d

(d− 1)Nn(d− 1)

[
D

mn
+O

(
(d− 1) · dj

n2

)]

Next we prove that ETn(d) = K(d) (n+ Θ(...)), where
K(d) = K(d− 1)Ad−A+B

Ad+B+1 + c(m, d− 1) D(d−1)
m(Ad+B+1)
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Number of triangles

Let Gn
m belong to T-subclass of PA-class. Then

Concentration
If 2A < 1 then

P
(
|Tn(d)− ETn(d)| ≥ d2

√
n log n

)
= O

(
n− logn

)
,

Therefore, for any δ > 0 there exists a function ϕ(n) = o(1) such that

lim
n→∞

P
(
∃ d ≤ n

A−δ
4A+2 : |Tn(d)− ETn(d)| ≥ ϕ(n) ETn(d)

)
= 0 .
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Concentration
If 2A = 1 then

P
(
|Tn(d)− ETn(d)| ≥ d2

√
n log2 n

)
= O

(
n− logn

)
,
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lim
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P
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Number of triangles

Concentration

If 1 < 2A < 3
2 then

P
(
|Tn(d)− ETn(d)| ≥ d2 n2A− 1

2 log n
)

= O
(
n− logn

)
,

Therefore, for any δ > 0 there exists a function ϕ(n) = o(1) such that

lim
n→∞

P
(
∃ d ≤ n

A(3−4A)−δ
4A+2 : |Tn(d)− ETn(d)| ≥ ϕ(n) ETn(d)

)
= 0 .
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Idea of the proof

Azuma, Hoeffding

Let (Xi)
n
i=0 be a martingale such that |Xi −Xi−1| ≤ ci for any

1 ≤ i ≤ n. Then

P (|Xn −X0| ≥ x) ≤ 2e
− x2

2
∑n
i=1

c2
i

for any x > 0.

Xi(d) = E(Tn(d) | Gi
m), i = 0, . . . , n.

Note that X0(d) = ETn(d) and Xn(d) = Tn(d).
Xn(d) is a martingale.
For any i = 0, . . . , n− 1: |Xi+1(d)−Xi(d)| ≤Md2 (for the case
2A < 1), where M > 0 is some constant.
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Idea of the proof

Fix 0 ≤ i ≤ n− 1 and some graph Gi
m.∣∣E (Tn(d) | Gi+1

m

)
− E

(
Tn(d) | Gi

m

)∣∣ ≤
≤ max

G̃i+1
m ⊃Gim

{
E
(
Tn(d) | G̃i+1

m

)}
− min

G̃i+1
m ⊃Gim

{
E
(
Tn(d) | G̃i+1

m

)}
.

Ĝi+1
m = arg max E(Tn(d) | G̃i+1

m ), Ḡi+1
m = arg min E(Tn(d) | G̃i+1

m ).

For i+ 1 ≤ t ≤ n put δit(d) = E(Tt(d) | Ĝi+1
m )− E(Tt(d) | Ḡi+1

m ) .

δit+1(d) ≤ δit(d)

(
1− Ad+B

t
+O

(
d2

t2

))
+

+δit(d− 1)

(
A(d− 1) +B

t
+O

(
d2

t2

))
+O

(
d2

t

)
.
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Degree distribution
Clustering coefficient
Local clustering

Local clustering

Let Gn
m belong to T-subclass of PA-class. Then

Local clustering coefficient

If 2A ≤ 1 then for any δ > 0 there exists a function ϕ(n) = o(1) such that

lim
n→∞

P

(
∃ d ≤ n

A−δ
4A+2 :

∣∣∣∣∣C(d)− 2D

A ·
∑m

i=1
(i−1)

[A(i−1)+B]

· 1
d

∣∣∣∣∣ ≥ ϕ(n) 1d
)

= 0

If 1 < 2A < 3
2
then for any δ > 0 there exists a function ϕ(n) = o(1) such that

lim
n→∞

P

(
∃ d ≤ n

A(3−4A)−δ
4A+2 :

∣∣∣∣∣C(d)− 2D

A ·
∑m

i=1
(i−1)

[A(i−1)+B]

· 1
d

∣∣∣∣∣ ≥ ϕ(n) 1d
)

= 0
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Generalized preferential attachment models:

Power law degree distribution with any exponent γ > 2

Constant global clustering coefficient only for γ > 3

Constant average local clustering coefficient

Local clustering C(d) ∼ C
d for γ > 7

3
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Thank You!
Questions?
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