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Model formulation: random walks

1 Query number q ∈ 1, . . . , Q.

2 Sq � user session which is started from q.

3 User browsing graph Gq = (Vq, Eq): Vq = V 1
q t V 2

q , V
1
q � queries,

V 2
q � pages, |V 1

q | = pq, |V
2
q | = nq.

4 NB: nq ∼= 109

5 ϕ = (ϕ1, ϕ2)T ∈ Rm1+m2 � unknown vector of parameters which
helps to convert web-sites properties to their importance.

6 Example [Gao, Liu, Huazhong, Wang, Li, 2011]: Vi ∈ Rl, Eij ∈ Rs
� such factors as number of visits, average time spent on a page,
number of transitions, etc.

7 Importance given by fq(ϕ1, i) = 〈ϕ1, Vi〉 and
gq(ϕ2, i→ j) = 〈ϕ2, Eij〉.

8 m = m1 +m2
∼= 103.
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Markov chain
Probability for choosing query i, being at any vertex:

[π0
q (ϕ)]i =

fq(ϕ1, i)∑
ĩ∈V 1

q
fq(ϕ1, ĩ)

Probability of transition ĩ→ i:

gq(ϕ2, ĩ→ i)∑
j :̃i→j gq(ϕ2, ĩ→ j)

Finally, probability of being at i at the step t+ 1, t = 0, 1, ... equals

[πq(t+1)]i = α
fq(ϕ1, i)∑
ĩ∈V 1

q
fq(ϕ1, ĩ)

+(1−α)
∑

ĩ:̃i→i∈Eq

gq(ϕ2, ĩ→ i)∑
j :̃i→j gq(ϕ2, ĩ→ j)

[πq(t)]̃i

Stationary distribution of Markov chain de�nes the p-th web-page rank:
[π∗q (ϕ)]p.

π∗q (ϕ) = απ0
q (ϕ) + (1− α)P Tq (ϕ)π∗q (ϕ).
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gq(ϕ2, ĩ→ i)∑
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j :̃i→j gq(ϕ2, ĩ→ j)
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Learning problem

We have some pool of experts who give score from 1 to k to
web-pages for Q queries.

For every query q we have sets of pages P 1
q , P

2
q , ..., P

k
q which are

ordered from the most relevant to irrelevant pages.
∑k

i=1

∣∣P iq ∣∣ = rq.

We choose loss function h(i, j, x) = max{x+ bij , 0}2, where
1 ≤ i < j ≤ k, bij > 0 is some threshold.

The idea is that loss is positive if the MC ranking di�ers from
experts' ranking.

To �nd ϕ we minimize

f(ϕ) =
1

Q

Q∑
q=1

∑
1≤i<j≤k

∑
p1∈P i

q ,p2∈P
j
q

h(i, j, [πq]p2 − [πq]p1)
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Problem reformulation

f(ϕ) =
1

Q

Q∑
q=1

‖(Aqπ
∗
q (ϕ) + bq)+‖22 → min

π∗q (ϕ) = α
[
I − (1− α)PT

q (ϕ)
]−1

π0
q(ϕ)⇔ ‖π − π∗q (ϕ)‖1 → min .

[Nemirovski, Nesterov, 2012]: ‖π̃Nq (ϕ)−π∗q (ϕ)‖1 ≤ 2(1−α)N+1 holds for

π̃Nq (ϕ) =
α

1− (1− α)N+1

N∑
i=0

(1− α)i
[
P Tq (ϕ)

]i
π0
q (ϕ)

To obtain vector π̃Nq (ϕ) s.t. ‖π̃Nq (ϕ)− π∗q (ϕ)‖1 ≤ ∆ we need
sq(pq+nq)

α ln 2
∆ a.o. and

fδ(ϕ) =
1

Q

Q∑
q=1

‖(Aqπ̃Nq (ϕ) + bq)+‖22

satis�es |fδ(ϕ)− f(ϕ)| ≤ ∆
√

2r(2
√

2r+ 2b), where r = maxq rq , b = maxq ‖bq‖2
.
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Notation

1 E � m-dimensional real vector space,

2 ‖ · ‖ � Euclidean norm on E, ‖ · ‖∗ is its dual:

‖x‖ =
√
〈x, x〉, x ∈ E, ‖g‖∗ =

√
〈g, g〉, g ∈ E∗.

3 f ∈ C1,1
L if ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, x ∈ E. This is equivalent

to

|f(x)− f(y)− 〈∇f(y), x− y〉| ≤ L

2
‖x− y‖2, x, y ∈ E

4 f(x) is smooth strongly convex function if for any x, y ∈ E

f(x) ≥ f(y) + 〈∇f(y), x− y〉+
µ

2
‖x− y‖2,
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Problem formulation

The main problem we are going to consider is

min
x∈E

f(x),

where

1 f(x) ∈ C1,1
L and either,

1 convex

2 strongly convex

2 we use only function values measured with error

fδ(x) = f(x) + δ̃(x),

δ̃(x) � oracle error satisfying |δ̃(x)| ≤ δ ∀x ∈ E.
3 Sometimes we additionally assume that δ̃(x) ≡ δ̃ and is a random

variable which is independent on everything.
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Some history of random gradient-free methods

1 Such methods are well known since 1960-s. (e.g. J.Matyas, 1965)

2 Fast Automatic Di�erentiation (e.g. Yu. G. Evtushenko, Yu.E.
Nesterov et al.).

3 Some estimates for the rate of convergence: V.G. Karmanov
(1975), B.T. Polyak (1983).

4 Some notes on the errors of the oracle in such methods by A.S.
Nemirovski, D.B. Yudin (1979), B.T. Polyak (1983)

5 The current state of the art is covered by A.Conn, K.Scheinberg,
and L.Vicente (2009).

6 Our work based on the article by Yu. Nesterov (2011), here the
fast gradient scheme also was proposed.

7 Main our contribution - considering oracle error.
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Smoothing the function
Consider smoothing:

fτ (x) = Ebf(x+ τb) =
1

VB

∫
B
f(x+ τb)db,

where

1 b is a uniformly distributed over unit ball B = {x ∈ E : ‖x‖ ≤ 1}
random vector,

2 VB is the volume of the unit ball B,
3 τ ≥ 0 is the smoothing parameter.

It turns out that

∇fτ (x) =
m

τ
Es(f(x+ τs)− f(x))s =

m

τVS

∫
S

(f(x+ τs)− f(x))sdσ(s),

where
1 s is a uniformly distributed over unit sphere
S = {x ∈ E : ‖x‖ = 1} random vector,

2 VS is the volume of the unit sphere S,
3 dσ(s) is unnormalized spherical measure.
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Some properties

1 fτ (x) ≥ f(x), ∀x ∈ E.

2 If f(x) is convex, then fτ (x) is also convex.

3 If f ∈ C1,1
L then fτ ∈ C1,1

L .

4 If f ∈ C1,1
L then |fτ (x)− f(x)| ≤ Lτ2

2 , ∀x ∈ E.
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Random gradient-free oracle

De�ne random gradient-free oracle

gτ (x) =
m

τ
(f(x+ τs)− f(x))s,

where s is uniformly distributed vector over the unit sphere S.

One can show that
Esgτ (x) = ∇fτ (x).

Due to error we can calculate only

gτ,δ(x) =
m

τ
(fδ(x+ τs)− fδ(x))s.
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Some properties

Let f ∈ C1,1
L . Then

‖gτ,δ(x)‖2∗ ≤
≤ m2τ2L2 + 4m2(〈∇f(x), s〉)2 + 8δ2m2

τ2

≤ m2τ2L2 + 4m2‖∇f(x)‖2∗ + 8δ2m2

τ2

Es‖gτ,δ(x)‖2∗ ≤ m2τ2L2 + 4m‖∇f(x)‖2∗ + 8δ2m2

τ2
.

Main observation:
If ∇f(x∗) = 0, then we can ensure that ‖gτ,δ(x)‖ decreases as x→ x∗

and we can obtain better convergence rate than is given by lower
bound for general stochastic convex optimization.
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Gradient-type method
We consider the problem

min
x∈E

f(x).

Assume that we know point x0 and number R such that ‖x0 − x∗‖ ≤ R,
where x∗ is the solution of the problem.
De�ne Q = {x ∈ E : ‖x− x0‖ ≤ 2R}.
Then we can solve the problem

min
x∈Q

f(x).

Gradient-type method

Input: The point x0, number R such that ‖x0−x∗‖ ≤ R, stepsize h > 0.
Output: The point xk.

1 Generate sk and corresponding gτ,δ(xk).

2 Calculate xk+1 = πQ(xk − hgτ,δ(xk)) .

Alexander Gasnikov (PreMoLab) PageRank Model Learning 20.05.2015 16 / 27



Gradient-type method
We consider the problem

min
x∈E

f(x).

Assume that we know point x0 and number R such that ‖x0 − x∗‖ ≤ R,
where x∗ is the solution of the problem.

De�ne Q = {x ∈ E : ‖x− x0‖ ≤ 2R}.
Then we can solve the problem

min
x∈Q

f(x).

Gradient-type method

Input: The point x0, number R such that ‖x0−x∗‖ ≤ R, stepsize h > 0.
Output: The point xk.

1 Generate sk and corresponding gτ,δ(xk).

2 Calculate xk+1 = πQ(xk − hgτ,δ(xk)) .

Alexander Gasnikov (PreMoLab) PageRank Model Learning 20.05.2015 16 / 27



Gradient-type method
We consider the problem

min
x∈E

f(x).

Assume that we know point x0 and number R such that ‖x0 − x∗‖ ≤ R,
where x∗ is the solution of the problem.
De�ne Q = {x ∈ E : ‖x− x0‖ ≤ 2R}.

Then we can solve the problem

min
x∈Q

f(x).

Gradient-type method

Input: The point x0, number R such that ‖x0−x∗‖ ≤ R, stepsize h > 0.
Output: The point xk.

1 Generate sk and corresponding gτ,δ(xk).

2 Calculate xk+1 = πQ(xk − hgτ,δ(xk)) .

Alexander Gasnikov (PreMoLab) PageRank Model Learning 20.05.2015 16 / 27



Gradient-type method
We consider the problem

min
x∈E

f(x).

Assume that we know point x0 and number R such that ‖x0 − x∗‖ ≤ R,
where x∗ is the solution of the problem.
De�ne Q = {x ∈ E : ‖x− x0‖ ≤ 2R}.
Then we can solve the problem

min
x∈Q

f(x).

Gradient-type method

Input: The point x0, number R such that ‖x0−x∗‖ ≤ R, stepsize h > 0.
Output: The point xk.

1 Generate sk and corresponding gτ,δ(xk).

2 Calculate xk+1 = πQ(xk − hgτ,δ(xk)) .

Alexander Gasnikov (PreMoLab) PageRank Model Learning 20.05.2015 16 / 27



Gradient-type method
We consider the problem

min
x∈E

f(x).

Assume that we know point x0 and number R such that ‖x0 − x∗‖ ≤ R,
where x∗ is the solution of the problem.
De�ne Q = {x ∈ E : ‖x− x0‖ ≤ 2R}.
Then we can solve the problem

min
x∈Q

f(x).

Gradient-type method

Input: The point x0, number R such that ‖x0−x∗‖ ≤ R, stepsize h > 0.

Output: The point xk.

1 Generate sk and corresponding gτ,δ(xk).

2 Calculate xk+1 = πQ(xk − hgτ,δ(xk)) .

Alexander Gasnikov (PreMoLab) PageRank Model Learning 20.05.2015 16 / 27



Gradient-type method
We consider the problem

min
x∈E

f(x).

Assume that we know point x0 and number R such that ‖x0 − x∗‖ ≤ R,
where x∗ is the solution of the problem.
De�ne Q = {x ∈ E : ‖x− x0‖ ≤ 2R}.
Then we can solve the problem

min
x∈Q

f(x).

Gradient-type method

Input: The point x0, number R such that ‖x0−x∗‖ ≤ R, stepsize h > 0.
Output: The point xk.

1 Generate sk and corresponding gτ,δ(xk).

2 Calculate xk+1 = πQ(xk − hgτ,δ(xk)) .

Alexander Gasnikov (PreMoLab) PageRank Model Learning 20.05.2015 16 / 27



Gradient-type method
We consider the problem

min
x∈E

f(x).

Assume that we know point x0 and number R such that ‖x0 − x∗‖ ≤ R,
where x∗ is the solution of the problem.
De�ne Q = {x ∈ E : ‖x− x0‖ ≤ 2R}.
Then we can solve the problem

min
x∈Q

f(x).

Gradient-type method

Input: The point x0, number R such that ‖x0−x∗‖ ≤ R, stepsize h > 0.
Output: The point xk.

1 Generate sk and corresponding gτ,δ(xk).

2 Calculate xk+1 = πQ(xk − hgτ,δ(xk)) .

Alexander Gasnikov (PreMoLab) PageRank Model Learning 20.05.2015 16 / 27



Gradient-type method
We consider the problem

min
x∈E

f(x).

Assume that we know point x0 and number R such that ‖x0 − x∗‖ ≤ R,
where x∗ is the solution of the problem.
De�ne Q = {x ∈ E : ‖x− x0‖ ≤ 2R}.
Then we can solve the problem

min
x∈Q

f(x).

Gradient-type method

Input: The point x0, number R such that ‖x0−x∗‖ ≤ R, stepsize h > 0.
Output: The point xk.

1 Generate sk and corresponding gτ,δ(xk).

2 Calculate xk+1 = πQ(xk − hgτ,δ(xk)) .

Alexander Gasnikov (PreMoLab) PageRank Model Learning 20.05.2015 16 / 27



Convergence rate
Denote Uk = (s0, . . . , sk) the history of realizations of the vectors sk,
generated on each iteration of the method, φ0 = f(x0), and
φk = EUk−1

(f(xk−1)), k ≥ 1.

Let f ∈ C1,1
L and the sequence xk be generated by the Algorithm above

with h = 1
8mL . Then for any N ≥ 0, we have

1

N + 1

N∑
i=0

(φi − f∗) ≤
8mLR2

N + 1
+
τ2L(m+ 8)

8
+

8δmR

τ
+
δ2m

Lτ2
.

If additionally f is strongly convex, then

φN − f∗ ≤
1

2
L

(
δτ +

(
1− µ

16mL

)N
(R2 − δτ )

)
,

where δτ = τ2L(m+8)
4µ + 16mδR

µτ + 2mδ2

µτ2L
.
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Discussion
To achieve desired accuracy ε we need to choose on average.

In convex case with |δ̃(x)| ≤ δ

N = O

(
mLR2

ε

)
, τ = O

(√
ε

Lm

)
, δ = O

(
min

{( ε
m

) 3
2 · 1√

LR2
,
ε

m

})
.

In convex case with δ̃(x) random and independent

N = O

(
mLR2

ε

)
, τ = O

(√
ε

Lm

)
, δ = O

( ε
m

)
.

In strongly convex case with |δ̃(x)| ≤ δ

N = O

(
mL

µ
ln
LR2

ε

)
, τ = O

(√
ε

Lm
· µ
L

)
, δ = O

(
min

{( εµ
mL

) 3
2 · 1√

LR2
,
εµ

mL

})
.

In strongly convex case with δ̃(x) random and independent

N = O

(
mL

µ
ln
LR2

ε

)
, τ = O

(√
ε

Lm
· µ
L

)
, δ = O

( εµ
mL

)
.
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Fast gradient-type method

We consider the problem
min
x∈E

f(x),

where f ∈ C1,1
L and is a strongly convex function with parameter µ ≥ 0.

We di�ne θ = 1
64m2L

and h = 1
8mL and consider the following method.

Fast Gradient Method Modi�ed

Input: The point x0, number γ0 ≥ µ.
Output: The point xk.
Set v0 = x0.

1 Compute αk > 0 satisfying
α2
k
θ = (1− αk)γk + αkµ ≡ γk+1.

2 Set λk = αk
γk+1

µ, βk = αkγk
γk+αkµ

, and yk = (1− βk)xk + βkvk.

3 Generate sk and corresponding gτ,δ(yk).

4 Calculate xk+1 = yk − hgτ,δ(yk),
vk+1 = (1− λk)vk + λkyk − θ

αk
gτ,δ(yk).

Alexander Gasnikov (PreMoLab) PageRank Model Learning 20.05.2015 19 / 27



Fast gradient-type method

We consider the problem
min
x∈E

f(x),

where f ∈ C1,1
L and is a strongly convex function with parameter µ ≥ 0.

We di�ne θ = 1
64m2L

and h = 1
8mL and consider the following method.

Fast Gradient Method Modi�ed

Input: The point x0, number γ0 ≥ µ.
Output: The point xk.
Set v0 = x0.

1 Compute αk > 0 satisfying
α2
k
θ = (1− αk)γk + αkµ ≡ γk+1.

2 Set λk = αk
γk+1

µ, βk = αkγk
γk+αkµ

, and yk = (1− βk)xk + βkvk.

3 Generate sk and corresponding gτ,δ(yk).

4 Calculate xk+1 = yk − hgτ,δ(yk),
vk+1 = (1− λk)vk + λkyk − θ

αk
gτ,δ(yk).

Alexander Gasnikov (PreMoLab) PageRank Model Learning 20.05.2015 19 / 27



Fast gradient-type method

We consider the problem
min
x∈E

f(x),

where f ∈ C1,1
L and is a strongly convex function with parameter µ ≥ 0.

We di�ne θ = 1
64m2L

and h = 1
8mL and consider the following method.

Fast Gradient Method Modi�ed

Input: The point x0, number γ0 ≥ µ.
Output: The point xk.
Set v0 = x0.

1 Compute αk > 0 satisfying
α2
k
θ = (1− αk)γk + αkµ ≡ γk+1.

2 Set λk = αk
γk+1

µ, βk = αkγk
γk+αkµ

, and yk = (1− βk)xk + βkvk.

3 Generate sk and corresponding gτ,δ(yk).

4 Calculate xk+1 = yk − hgτ,δ(yk),
vk+1 = (1− λk)vk + λkyk − θ

αk
gτ,δ(yk).

Alexander Gasnikov (PreMoLab) PageRank Model Learning 20.05.2015 19 / 27



Convergence rate
De�ne κ = µ

L . In the case when δ̃(x) is random and independent we
have for all k ≥ 0

EUk−1
f(xk)− f∗ ≤ ψk

(
f(x0)− f∗ +

γ0

2
‖x0 − x∗‖2

)
+

+ Ck

(
5τ2L

64
+

δ2

4τ2L

)
+ τ2L,

where ψk ≤ min

{(
1−

√
κ

8m

)k
,
(

1 + k
16m

√
γ0
L

)−2
}
, Ck ≤ min

{
k, 8m√

κ

}
.

Then for µ = 0 to obtain the accuracy ε we need to choose on average

N = O

(
m

√
LR2

ε

)
, τ = O

√ ε

mL

√
ε

LR2

 , δ = O

(
ε

m

√
ε

LR2

)

For µ > 0 to obtain the accuracy ε we need to choose on average

N = O

(
m

√
L

µ
ln

(
µR2

ε

))
, τ = O

√ ε

mL

√
µ

L

 , δ = O

(
ε

m

√
µ

L

)
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Discussion

1 We have considered two random gradient-free methods with error
in the oracle value: gradient-type scheme and fast-gradient-type
scheme.

2 We have obtained their mean rate of convergence and bounds on
the oracle error (µ = 0):

PGM : N = O

(
mLR2

ε

)
, δ = O

( ε
m

)
.

FGM : N = O

(
m

√
LR2

ε

)
, δ = O

(
ε

m

√
ε

LR2

)
.
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Outline

1 Learning problem formulation

2 Random gradient-free methods with inexact oracle

3 Bi-level method for learning problem
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Recall the problem

f(ϕ) =
1

Q

Q∑
q=1

‖(Aqπ
∗
q (ϕ) + bq)+‖22 → min

π∗q (ϕ) = α
[
I − (1− α)PT

q (ϕ)
]−1

π0
q(ϕ)⇔ ‖π − π∗q (ϕ)‖1 → min .

To obtain vector π̃Nq (ϕ) s.t. ‖π̃Nq (ϕ)− π∗q (ϕ)‖1 ≤ ∆ we need
sq(pq+nq)

α ln 2
∆ a.o. and

fδ(ϕ) =
1

Q

Q∑
q=1

‖(Aqπ̃Nq (ϕ) + bq)+‖22

satis�es |fδ(ϕ)− f(ϕ)| ≤ ∆
√

2r(2
√

2r + 2b).
Idea: use [Nemirovski, Nesterov, 2012] to calculate fδ(ϕ), then use the
gradient-type method to make the step using gµ,δ(ϕ).
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The method
Input: The point ϕ0, L � Lipschitz constant for the function f(ϕ),
number R such that ‖ϕ0 − ϕ∗‖2 ≤ R, accuracy ε > 0, numbers r, b
de�ned above.

Output: The point ϕ̂N = arg minϕ{f(ϕ) : ϕ ∈ {ϕ0, . . . , ϕN}}.

1 De�ne G = {ϕ ∈ Rm : ‖ϕ− ϕ0‖2 ≤ 2R}, N = 32mLR2

ε ,

δ = ε
3
2
√

2

32mR
√
L(m+8)

, τ =
√

2ε
L(m+8) . Set k = 0

2 for k = 0, ..., N .

3 Generate random vector sk uniformly distributed over a unit
Euclidean sphere S in Rm;

4 Set N̂ = 1
α ln 2

√
2r(2
√

2r+2b)
δ ;

5 For every q calculate π̃N̂q (ϕk), π̃
N̂
q (ϕk + τsk) de�ned above;

6 Calculate gτ,δ(xk) = m
τ (fδ(ϕk + τsk)− fδ(ϕk))sk;

7 Calculate ϕk+1 = ΠG

(
ϕk − 1

8mLgτ,δ(ϕk)
)
;

8 Set k = k + 1;
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ε ,

δ = ε
3
2
√

2

32mR
√
L(m+8)

, τ =
√

2ε
L(m+8) . Set k = 0

2 for k = 0, ..., N .

3 Generate random vector sk uniformly distributed over a unit
Euclidean sphere S in Rm;

4 Set N̂ = 1
α ln 2

√
2r(2
√

2r+2b)
δ ;

5 For every q calculate π̃N̂q (ϕk), π̃
N̂
q (ϕk + τsk) de�ned above;

6 Calculate gτ,δ(xk) = m
τ (fδ(ϕk + τsk)− fδ(ϕk))sk;

7 Calculate ϕk+1 = ΠG

(
ϕk − 1

8mLgτ,δ(ϕk)
)
;

8 Set k = k + 1;
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Complexity

Each iteration of the Algorithm needs approximately
2Qs(p+n)

α ln 2
√

2r(2
√

2r+2b)
δ a.o., where s = maxq sq, p = maxq pq,

n = maxq nq.

Total number of a.o. for the accuracy ε is given by

O

(
m(n+ p)sQ

LR2

αε
ln

(
(r + b

√
r)
m3/2R

√
L

ε3/2

))
.

Fast-gradient-type scheme would give

O

(
mnsQ

√
LR2

α2ε
ln

(
(r + b

√
r)
mRL

ε

))
.
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Discussion

Problems

1 f(ϕ) is generally non-convex and we have only local convergence.
We have some ideas by Yu. Nesterov on how to reformulate the
problem and have convex optimization problem.

2 For now we proved convergence rate fast-gradient-type
gradient-free method only for independent random error. We are
trying to obtain more general result.

3 Unknown or large L. We are trying to use idea of double
smoothing from [Duchi, Jordan, Wainwright, Wibisono, 2014].
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Thank you!
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