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Model formulation: random walks

Q@ Query number g€ 1,...,Q.

@ S, — user session which is started from g.

(3 Uszer browsing %raph Gy :2 (Vg Eq): Vg = V;]l L VqQ, Vq1 — queries,
Vi - pages, |Vi'| = pg, [V{]| = ng.

@ NB: ny = 10°

Q@ v = (p1,p2)T € R™M*+™m2 _ynknown vector of parameters which
helps to convert web-sites properties to their importance.
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Model formulation: random walks

Q@ Query number g€ 1,...,Q.

@ S, — user session which is started from g.

(3 US261“ browsing %raph Gy :2 (Vg Eq): Vg = Vq1 L VqQ, V;Il — queries,
Vi - pages, |Vi'| = pg, [V{]| = ng.

@ NB: ny = 10°

Q@ v = (p1,p2)T € R™M*+™m2 _ynknown vector of parameters which
helps to convert web-sites properties to their importance.

@ Example [Gao, Liu, Huazhong, Wang, Li, 2011]: V; € R}, E;; € R®
— such factors as number of visits, average time spent on a page,
number of transitions, etc.

@ Importance given by fq(¢1,7) = (¢1,V;) and
9q(p2,1 = j) = (2, Eij).

Q@ m=m; + my =103,
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Markov chain
Probability for choosing query i, being at any vertex:

fq(@lvi)

71'0 i = ———— —=_
k= L
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Markov chain
Probability for choosing query i, being at any vertex:

fq(@lvi)

71'0 i = ———— —=_
[ q(@)] Zievql fq(QDl,i)

Probability of transition ¢ — i:

g‘l(@%g — 2)
Z];—)j 9q(‘P2ai — .7)
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Markov chain

Probability for choosing query i, being at any vertex:

71_0 - fq(ﬂolvi) _
ok = 80

Probability of transition ¢ — i:

gq(5027% — Z)
Z];—)j gq((vai — ])

Finally, probability of being at ¢ at the step t + 1, t =0, 1, ... equals

. Jalend) o (2,1 — i) ()
A S TR I DS e B R

;:;—H'EEQ
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Markov chain

Probability for choosing query i, being at any vertex:

70 - fq(@lvi) _
el =

Probability of transition ¢ — i:

911(9027g - Z)
Z];—)j gq((vai — ])

Finally, probability of being at ¢ at the step t + 1, t =0, 1, ... equals

T R wlerizn oo
A S TR I DS e B R

;:;—H'EEQ

Stationary distribution of Markov chain defines the p-th web-page rank:
(g (©)lp-

ma() = amg (o) + (1 — )Py (@)1, ().
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Learning problem

@ We have some pool of experts who give score from 1 to k to
web-pages for @) queries.
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Learning problem

@ We have some pool of experts who give score from 1 to k to
web-pages for @) queries.

e For every query g we have sets of pages qu, Pq2, ey P(f which are
ordered from the most relevant to irrelevant pages. Zle ‘P;‘ =ry.

o We choose loss function h(i, j, x) = max{z + b;;,0}%, where
1 <i<j <k, bj >0 is some threshold.

o The idea is that loss is positive if the MC ranking differs from
experts’ ranking.

e To find ¢ we minimize

Q
fO=5> X X bl )

¢=11<i<j<k piepypreP]
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Problem reformulation

Q
Z Aqmy (@) + by )+ ||5 = min

mi(p) =a [I— (- a)PL(@)] 7o(e) & lr — (o)l - min.
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Problem reformulation

Q
Z Aqmy (@) + by )+ ||5 = min

mi(p) =a [z— (- a)PL(@)] 7o(e) & lr — (o)l - min.

[Nemirovski, Nesterov, 2012]: |7 (@) — 75 ()[l1 < 2(1 — )N holds for

N

V() = ﬁﬁ; (1—a) [PqT(@)]in(w)

=l
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Problem reformulation

Q
fp) = % S (g () + by)+ I3 — min

mi(e) =a [T~ (1 - )P (9)] " 7(e) & I — w3 (e) | — min.

[Nemirovski, Nesterov, 2012]: |7 (@) — 75 ()[l1 < 2(1 — )N holds for

N

év(ﬂﬂ) = ﬁ;(l - O‘)i [PqT(‘P)]in(SO)

=l

To obtain vector 72 (y) s.t. ||frév(<p) —ma()ll1 < A we need
54(Pgtnq) In %
«

q
a.o. and
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Problem reformulation

Q
fp) = % S (g () + by)+ I3 — min

mi(e) =a [T~ (1 - )P (9)] " 7(e) & I — w3 (e) | — min.

[Nemirovski, Nesterov, 2012]: |7 (@) — 75 ()[l1 < 2(1 — )N holds for

N

V() = ﬁ; (1—a) [PqT(@)]in(w)

=l

To obtain vector 72 (y) s.t. ||frév(<p) —ma()ll1 < A we need

q
sq(Pqtng) 1., 2
r In X a.0. and

fsly QZII ©) +bg)+13

satisfies |f5(v) — f(p)] < A\/?(Q\/fr—k 2b), where r = max, rq, b = maxq llbgll2
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Notation

@ FE — m-dimensional real vector space,

@ || - || - Euclidean norm on E, || - ||« is its dual:

[zl = VA{z,2), ze B, lgls=+{99), g€E"
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Notation

@ FE — m-dimensional real vector space,

@ || - || - Euclidean norm on E, || - ||« is its dual:

[zl = VA{z,2), ze B, lgls=+{99), g€E"

Q@ fe O if|[Vf(x) - Vf(y)| < L|z —y|, x € E. This is equivalent
to

7(@) ~ F) ~ (V@) 2~ )] < Dl — gl wyeE

Q@ f(x) is smooth strongly convex function if for any =,y € E

F@) = )+ {(VF)z =)+ Sl =y,
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Problem formulation
The main problem we are going to consider is

min (@),

where
Q f(z) € C’}J’l and either,
@ convex
@ strongly convex

@ we use only function values measured with error

6(z) — oracle error satisfying |0(z)| < 6 Vz € E.
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Problem formulation
The main problem we are going to consider is

min (@),

where
Q f(x) € C}J’l and either,

@ convex
@ strongly convex

@ we use only function values measured with error

6(z) — oracle error satisfying |0(z)| < 6 Vz € E.

@ Sometimes we additionally assume that & (z) = 6 and is a random
variable which is independent on everything.
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Some history of random gradient-free methods

@ Such methods are well known since 1960-s. (e.g. J.Matyas, 1965)

@ Fast Automatic Differentiation (e.g. Yu. G. Evtushenko, Yu.E.
Nesterov et al.).

@ Some estimates for the rate of convergence: V.G. Karmanov
(1975), B.T. Polyak (1983).

@ Some notes on the errors of the oracle in such methods by A.S.
Nemirovski, D.B. Yudin (1979), B.T. Polyak (1983)

@ The current state of the art is covered by A.Conn, K.Scheinberg,
and L.Vicente (2009).

@ Our work based on the article by Yu. Nesterov (2011), here the
fast gradient scheme also was proposed.

@ Main our contribution - considering oracle error.
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Smoothing the function
Consider smoothing:

fo(@) = Eof(x + 7b) = ViB /B f(x + 7b)db,

where
@ b is a uniformly distributed over unit ball B={z € E : ||z| <1}
random vector,
@ Vp is the volume of the unit ball B,
@ 7 > 0 is the smoothing parameter.
It turns out that
m

Vir(@) = ZEs(f(a+7s) — f(a))s = (J(+7s) = f(@))sdo(s),

TVS S

where
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Smoothing the function
Consider smoothing:

fo(@) = Eof(x + 7b) = le /B f(x + 7b)db,

where
@ b is a uniformly distributed over unit ball B={z € E : ||z| <1}
random vector,
@ Vp is the volume of the unit ball B,
@ 7 > 0 is the smoothing parameter.
It turns out that
V(@) = ZEy(f(x+75) — f(a))s =

T J @+ 78) = f@)sdos),
where
Q s is a uniformly distributed over unit sphere
S ={x € E: || = 1} random vector,
@ Vg is the volume of the unit sphere S,
@ do(s) is unnormalized spherical measure.
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Some properties

o fT(x) Zf(CU), Vx € E.
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Some properties

Q f:(x)> f(x), VxekFE.

@ If f(z) is convex, then f.(z) is also convex.
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0 f(z) > fx), VzeE.
@ If f(z) is convex, then f.(z) is also convex.
@ If feC}' then f, € '
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Some properties

Q f(z)> f(x), VxekFE.

@ If f(z) is convex, then f.(z) is also convex.

@ If feC}' then f, € '

Q If f € O then |f-(x) — f(x)| < 2%, VzeE.
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Random gradient-free oracle

Define random gradient-free oracle

gr(@) = Z(f(x +75) — f(2))s,

T

where s is uniformly distributed vector over the unit sphere S.
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Random gradient-free oracle

Define random gradient-free oracle

gr(@) = Z(f(x +75) — f(2))s,

T

where s is uniformly distributed vector over the unit sphere S.
One can show that

Esg-(2) = V fr(2).
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Random gradient-free oracle

Define random gradient-free oracle

gr(@) = Z(f(x +75) — f(2))s,

T

where s is uniformly distributed vector over the unit sphere S.
One can show that

Esgr(x) = Vi (x).
Due to error we can calculate only

gra(@) = = (fslw +75) = f5())s.
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Some properties

Let f € Cp'. Then

Jg-s(z) 12 -
m2r2L2 4+ 4m2((V f(z), s))? + —85T§n
AL 4 4|V f ()2 + S

IAIA A
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Some properties

Let f € Cp'. Then

o

lgrs(@)I2 »
2202 + 4m2((V f(z), 5))? + 8o
22202 4 Am? |V f () |2 + S

T

T

<
<
<

o Eylgrs(@)lIF < m*r2L? +4m||V f(2)||2 + #5-

522
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Some properties

Let f € Cp'. Then

° 2
1gr.6 ()|

52m?

2202 + 4mA((Vf (), ) + &
27212 4 4m?||V f(z)||? + S

T

T2

IAIA A

522

© Eullgrs(@)|2 < m*r?L? + dm||V f(2) |2 + %5
Main observation:
If Vf(z*) =0, then we can ensure that ||g,s(x)| decreases as v — x*
and we can obtain better convergence rate than is given by lower
bound for general stochastic convex optimization.
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Gradient-type method

We consider the problem
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Gradient-type method

We consider the problem

min f(z).

zel

Assume that we know point zp and number R such that [|zg — z*| < R,
where z* is the solution of the problem.
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Gradient-type method
We consider the problem

min f(z).

zel

Assume that we know point zp and number R such that [|zg — z*| < R,
where z* is the solution of the problem.

Define Q ={z € E: ||z — zo|| < 2R}.

Then we can solve the problem

Gradient-type method
Input: The point g, number R such that ||zg — 2| < R, stepsize h > 0.

v
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Gradient-type method
We consider the problem

Assume that we know point zp and number R such that [|zg — z*| < R,
where z* is the solution of the problem.

Define Q ={z € E: ||z — zo|| < 2R}.

Then we can solve the problem

Gradient-type method

Input: The point xy, number R such that ||xg — z*|| < R, stepsize h > 0.
Output: The point xy.

v
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Assume that we know point zp and number R such that [|zg — z*| < R,
where z* is the solution of the problem.

Define Q ={z € E: ||z — zo|| < 2R}.

Then we can solve the problem

Gradient-type method

Input: The point xy, number R such that ||xg — z*|| < R, stepsize h > 0.
Output: The point xy.

@ Generate s, and corresponding g s(xy).
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Gradient-type method
We consider the problem

min f(z).

zel

Assume that we know point zp and number R such that [|zg — z*| < R,
where z* is the solution of the problem.
Define Q ={z € E: ||z — zo|| < 2R}.
Then we can solve the problem
min f(x).
e

Gradient-type method

Input: The point xy, number R such that ||xg — z*|| < R, stepsize h > 0.
Output: The point xy.

@ Generate s, and corresponding g s(xy).

@ Calculate 11 = mg(zr — hgrs(xg)) -

v
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Convergence rate

Denote Uy, = (8o, - .., Sg) the history of realizations of the vectors sy,
generated on each iteration of the method, ¢9 = f(x0), and

b = By (f(zr-1)), k> 1.
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Convergence rate

Denote Uy, = (8o, - .., Sg) the history of realizations of the vectors sy,
generated on each iteration of the method, ¢9 = f(x0), and

or =By, (f(z1-1)), k> 1.

Let f € C’}J’l and the sequence xj be generated by the Algorithm above
with h = 8n+L' Then for any N > 0, we have

N
8mLR* 7?L(m+8) 8ImR §°m
. R < .
i:0(¢l f)_N—|—1+ 8 * T +L7’2

1
N +1
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Convergence rate

Denote Uy, = (8o, - .., Sg) the history of realizations of the vectors sy,
generated on each iteration of the method, ¢9 = f(x0), and

¢k = Euk,l (f(mk—l))a k > 1.
Let f € Ci’l and the sequence xj be generated by the Algorithm above
with h = 877+L' Then for any N > 0, we have

N
1 8mLR?> 7?L(m+8) 8ImR &*m
- - . R < .
N+1i:0(¢l f)_N—|-1+ 8 LTI

If additionally f is strongly convex, then

* 1 H N 2

where 6, =

72L(m+8) 16mdéR 2mé?
+ % + ur2L-"

dp
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Discussion

To achieve desired accuracy € we need to choose on average.

Alexander G i oLab) PageRank Model Learning



Discussion

To achieve desired accuracy € we need to choose on average.
In convex case with |§(x)| <6
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Discussion

To achieve desired accuracy € we need to choose on average.
In convex case with |§(x)| <6

o (M), im0 (un{(2)

In convex case with §(z) random and independent

N:o(mim)’ 7:0( ﬁ) 6=0().

N|w
S~ =
]
3o
——
N——
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o (M), im0 (un{(2)

In convex case with §(z) random and independent

N:O<miR2>7 r:o( ﬁ) 6=0().

In strongly convex case with |6(z)| < d

B mL . LR? _ e W _ ) enNs 1 ep

N|w
S~ =
]
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Discussion

To achieve desired accuracy € we need to choose on average.
In convex case with |§(x)| <6

o (M), im0 (un{(2)

In convex case with §(z) random and independent

N:o(miR2>7 T:o< ﬁ) 6=0().

In strongly convex case with |6(z)| < d

mL . LR? _ e W _ ) enNs 1 ep

N|w
S~ =
]
3o
——
N——

mL VLR2 mL

In strongly convex case with 6(z) random and independent

mL _ LR? e el
N—O<7IHT>’ T—O(\/m'z» s=0(7):
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Fast gradient-type method
We consider the problem
min f(z),

where f € C}J’l and is a strongly convex function with parameter y > 0.
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Fast gradient-type method
We consider the problem

min f(x),

zelR

where f € Ci’l and is a strongly convex function with parameter y > 0.
We difine 6 = m and h = ﬁ and consider the following method.
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Fast gradient-type method
We consider the problem

min (@),

where f € Ci’l and is a strongly convex function with parameter y > 0.

We difine 6 = m and h = ﬁ and consider the following method.

Fast Gradient Method Modified

Input: The point zg, number vy > .
Output: The point xg.
Set vg = xg.

2
@ Compute ay, > 0 satisfying % = (1 — ag)vk + aglt = Yet1-

Q Set \p = SEop, B = 55205, and g = (1 — Br)ak + Brok.

@ Generate s and corresponding g 5(yx).-

Q Calculate zx11 = yr — hgrs(yx),
k1 = (1= Ae)ok + Ay — 7.5 (Yk)-
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Convergence rate

Define s = %. In the case when 5(x) is random and independent we
have for all £k > 0

Bue, f(an) = £ < e (£(w0) = 1+ Pllao - 2|2) +

572L 52 2
+ + + 7L
Ck< 6 > s

472L
k —2
where wkgmin{<lf£) ,<l+ﬁ A’TO) },C’kgmin{k,%}.
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Convergence rate
Define s = %. In the case when 5(x) is random and independent we
have for all £k > 0

Bue, f(an) = £ < e (£(w0) = 1+ Pllao - 2|2) +

572L 52 9
L
+Ck< o1 +472L)+T ,

k -2
Wherewkfmin{<1*£) (1 /1) },Ckgmin{k,s—’z}.
Then for p = 0 to obtain the accuracy ¢ we need to choose on average

LR? € € € €
N—O<mvf;>77—0 A A2 ’5_O(EVE¥)
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Convergence rate

Define s = %. In the case when 5(x) is random and independent we
have for all £k > 0

Bue, f(an) = £ < e (£(w0) = 1+ Pllao - 2|2) +

572L 52 9
L
+C]§< o1 +472L)+T ,

where 1y, < min{(l — %)k, (1 + ﬁ %)_2}, Cr < min{k’ SL”}.

K
Then for p = 0 to obtain the accuracy ¢ we need to choose on average

LR? € € € €
N—O<mvf;>77—0 A A2 ’5_O(EVE¥)

For 1 > 0 to obtain the accuracy € we need to choose on average
L uR? € m e Ip

N=0 | . =0 — = 0=0(—/=
(m\mn<e>>’ ’ mL\' L | m\ L
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Discussion

@ We have considered two random gradient-free methods with error
in the oracle value: gradient-type scheme and fast-gradient-type
scheme.
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Discussion

@ We have considered two random gradient-free methods with error
in the oracle value: gradient-type scheme and fast-gradient-type
scheme.

@ We have obtained their mean rate of convergence and bounds on
the oracle error (u = 0):

PGM : N:O(mLR2>, 5:0(3).

9 m

| LR? e [ €
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Outline

@ Bi-level method for learning problem
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Recall the problem

Q
Z Aqmy (@) + by )+ ||5 = min

mi(p) =a [I— (- a)PL(@)] 7o(e) & lr — (o)l - min.
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Recall the problem

Q
fp) = % S (g () + by)+ I3 — min

mi(e) =a [T~ (1 - )P (9)] " 7(e) & I — w3 (e) | — min.

To obtain vector 7V (y) s.t. ||7'%év(g0) —ma(p)[l1 < A we need
54(Pgtnq)
[e%

q
2
lnz a.0. and
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Recall the problem

Q
£6) = & - 1A ) + )13 = min
T (p) = a [I —(1-— oz)PqT(go)] o wg(go) < ||m — 7 (¢)|l1 = min.

To obtain vector ﬁév(go) s.t. ||7'%év(g0) —ma(p)[l1 < A we need
54(Pgtnq)
[e%

2
lnz a.0. and

fs(p) =

Mo

1
0 1Ay (1) + bg)+ 113
1

satisties |f5(¢) — £(i0)| < Av2r(2v/2r + 2b).

<
Il
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Recall the problem

Q
fp) = % S (g () + by)+ I3 — min

mi(e) =a [T~ (1 - )P (9)] " 7(e) & I — w3 (e) | — min.

To obtain vector 7V (y) s.t. ||7'%év(g0) —mr(p)l1 < A we need

q
34(Pgtng) In % a.0. and
(e}

QZII ©) + bg)+ 113

satisfies |f5() — f(©)] < AV2r(2v/2r + 20b).
Idea: use |Nemirovski, Nesterov, 2012] to calculate f5(¢), then use the
gradient-type method to make the step using g, 5(¢).
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The method

Input: The point ¢g, L — Lipschitz constant for the function f(¢p),
number R such that [[¢g — ¢*||2 < R, accuracy € > 0, numbers r, b
defined above.
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The method

Input: The point ¢g, L — Lipschitz constant for the function f(¢p),

number R such that [[¢g — ¢*||2 < R, accuracy € > 0, numbers r, b
defined above.

Output: The point ¢ = argming,{f(¢) : ¢ € {¢o,...,on}}.
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The method

Input: The point ¢g, L — Lipschitz constant for the function f(¢p),

number R such that [[¢g — ¢*||2 < R, accuracy € > 0, numbers r, b
defined above.

Output: The point ¢ = argming,{f(¢) : ¢ € {¢o,...,on}}.
_ . _ LR?
Q Define G = {p € R™ : || — poll2 < 2R}, N = 32m=",

5%\/5 2e
5=m,7'= mSetk=0
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The method

Input: The point ¢g, L — Lipschitz constant for the function f(¢p),
number R such that [[¢g — ¢*||2 < R, accuracy € > 0, numbers r, b
defined above.

Output: The point ¢ = argming,{f(¢) : ¢ € {¢o,...,on}}.

O Define G ={p € R™ : [l — poll < 2R}, N = 32m L=
—_e2v2 2e _
0= B LTS T Lmrs)" Set k=0
Q for k=0,..,N.
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The method

Input: The point ¢g, L — Lipschitz constant for the function f(¢p),

number R such that [[¢g — ¢*||2 < R, accuracy € > 0, numbers r, b
defined above.

Output: The point ¢ = argming,{f(¢) : ¢ € {¢o,...,on}}.

O Define G = {p € R™ : || — o2 < 2R}, N = 32mLE

é\/i 5 >
_ o e2v2 |2 B
0= 32mR+/L(m+8)’ T= L(m+8) " Set k=0

Q for k=0,...,N.

@ Generate random vector s uniformly distributed over a unit
Euclidean sphere § in R™;
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The method

Input: The point ¢g, L — Lipschitz constant for the function f(¢p),

number R such that [[¢g — ¢*||2 < R, accuracy € > 0, numbers r, b
defined above.

Output: The point ¢ = argming,{f(¢) : ¢ € {¢o,...,on}}.

O Define G = {p € R™ : || — o2 < 2R}, N = 32mLE

é\/i 5 >
_ o e2v2 |2 B
0= 32mR+/L(m+8)’ T= L(m+8) " Set k=0

Q for k=0,...,N.
@ Generate random vector s uniformly distributed over a unit
Euclidean sphere § in R™;
17, 2V2r(2v2r+2b)

?
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The method

Input: The point ¢g, L — Lipschitz constant for the function f(¢p),

number R such that [[¢g — ¢*||2 < R, accuracy € > 0, numbers r, b
defined above.

Output: The point ¢ = argming,{f(¢) : ¢ € {¢o,...,on}}.

(] DeﬁneGSZ{QDEIRm: “90_900||2§2R},N_ L1§2
—_ e2v2 _ % B
0= 32mR+/L(m+8)’ T= L(m+8) " Set k=0

Q fork=0,...,.N

@ Generate random vector s uniformly distributed over a unit
Euclidean sphere § in R™;

Q Set N = 11 Lﬁ@ﬁmb);

@ For every g calculate Wé\?(gak) (Jf(cpk + 75i) defined above;
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The method

Input: The point ¢g, L — Lipschitz constant for the function f(¢p),

number R such that [[¢g — ¢*||2 < R, accuracy € > 0, numbers r, b
defined above.

Output: The point ¢ = argming,{f(¢) : ¢ € {¢o,...,on}}.

O Define G = {p € R™ : || — o2 < 2R}, N = 32mLE

e
3

_ c2/2 — 2e —

= SomR\/L(m48) | L(m+8)° Set k =0

Q for k=0,...,N.
@ Generate random vector s uniformly distributed over a unit
Euclidean sphere § in R™;

o 11 2v2r(2v2r+2b)

@ For every g calculate ﬁév(gak), ﬁff(cpk + 75i) defined above;
@ Calculate g-s(zx) = 2 (fs(or + 75k) — fs(or))Sk;
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The method

Input: The point ¢g, L — Lipschitz constant for the function f(¢p),
number R such that [[¢g — ¢*||2 < R, accuracy € > 0, numbers r, b
defined above.

Output: The point ¢ = argming,{f(¢) : ¢ € {¢o,...,on}}.
O Define G = {p € R™ : || — o2 < 2R}, N = 32mLE

£ ?

P N R (S
32mRy/L(m+8)’ L(m+8)
Q for k=0,...,N.
@ Generate random vector s uniformly distributed over a unit

Euclidean sphere S in R™;
G 17, 2V2r(2v/2r42b)
Set N = o ln%

For every ¢ calculate ﬁév(gok), ﬁév(ﬁpk + 75si) defined above;
Calculate g;5(zx) = 2 (fs(or + 75k) — f5(or))Sk;
Calculate @p1 =g (r — g7 9ro(0k));

©0 0 ©
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The method

Input: The point ¢g, L — Lipschitz constant for the function f(¢p),
number R such that [[¢g — ¢*||2 < R, accuracy € > 0, numbers r, b
defined above.

Output: The point ¢ = argming,{f(¢) : ¢ € {¢o,...,on}}.
O Define G = {p € R™ : || — o2 < 2R}, N = 32mLE

£ ?

P N R (S
32mRy/L(m+8)’ L(m+8)
Q for k=0,...,N.
@ Generate random vector s uniformly distributed over a unit

Euclidean sphere § in R™;
o 17 2v2r(2v2r+2b)

Set N = o In %7

For every ¢ calculate @) (¢r), 72 (o + Tsi) defined above;

Calculate g;5(zx) = 2 (fs(or + 75k) — f5(or))Sk;

Calculate pg1 = Ilg (ﬁpk — m%gf,é(@k));
Set k=k+1;

©00 00 ©
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Complexity

Each iteration of the Algorithm needs approximately
2Qs(p+n) 1 2v/2r(2v/2r+2b) a
o )

.0., where s = max, sq, p = maxg pg,
n = maxgy ng.
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Complexity

Each iteration of the Algorithm needs approximately
2Qs(p+n) 1 2v/2r(2v/2r+2b) a
«a 0

.0., where s = max, sq, p = maxg pg,
n = maxgy ng.

Total number of a.o. for the accuracy € is given by

2 /2
@) <m(n+p)sQLciln ((r—i—b\f) m’ Rf)) :
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Complexity

Each iteration of the Algorithm needs approximately
2Qs(p+n) 1 2v/2r(2v/2r+2b)
«a 0

a.0., where s = max, s, p = maxg py,
n = maxgy ng.
Total number of a.o. for the accuracy € is given by

2 /2
O (m(n—kp)sQLa]iln ((7‘+b\f) m Rf)) :

Fast-gradient-type scheme would give

0 <mnsQ\/g In ((r +by/7) me )) .
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Discussion

Problems

@ f(p) is generally non-convex and we have only local convergence.
We have some ideas by Yu. Nesterov on how to reformulate the
problem and have convex optimization problem.
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@ f(p) is generally non-convex and we have only local convergence.
We have some ideas by Yu. Nesterov on how to reformulate the
problem and have convex optimization problem.

@ For now we proved convergence rate fast-gradient-type
gradient-free method only for independent random error. We are
trying to obtain more general result.
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Discussion

Problems

@ f(p) is generally non-convex and we have only local convergence.
We have some ideas by Yu. Nesterov on how to reformulate the
problem and have convex optimization problem.

@ For now we proved convergence rate fast-gradient-type
gradient-free method only for independent random error. We are
trying to obtain more general result.

© Unknown or large L. We are trying to use idea of double
smoothing from [Duchi, Jordan, Wainwright, Wibisono, 2014].
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Thank you!
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