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Some definitions

∆k(A) – the maximum of absolute values of k × k
sub-determinants of A.

∆(A) = ∆rank(A)(A).

We say that A ∈ Zm×n is k-modular if ∆(A) ≤ k, where k ∈ N .

We say that A ∈ Zm×n is strict k-modular if each
rank(A)× rank(A) minor of A equal to k , −k or 0.

We refer to 2-modular matrices as bimodular (Veselov, Chirkov).

We refer to 1-modular matrices as unimodular.

We say that A ∈ Zm×n is almost unimodular if ∆(A) = 2 and
∆rank(A)−1(A) ≤ 1. (Cornuéjols, Zuluaga)



Introduction

Let A ∈ Zm×n, b ∈ Zn.
And consider the polyhedron P(A, b) = {x ∈ Rn : Ax ≤ b}.

We investigate two problems:

P1: Is the P(A, b) ∩ Zn 6= ∅. (NP-complete)

P2: Find the optimal solution of
max{cx : x ∈ P(A, b) ∩ Zn} problem, where c ∈ Zn.
(NP-hard)

In general, these problems are equivalent in terms of the
polynomial reducibility.



Introduction

There are some quasi-polynomial algorithm approaches to solve the
problem P2:

m and ∆(A b) are fixed: Dynamic programming. (Papadimitriou,
Wolsey, Beckmann)

n is fixed: Lenstra’s algorithm. (Lenstra, Grötschel, Lovász,
Scarf, Kannan, Chirkov)

A is a square matrix: Group minimization. O(n∆(A)) time
complexity. (Gomory)

A is k-modular: Gomory’s (Shevchenko’s in russian) conjecture,
that there is polynomial algorithm to solve P2.



Integer polyhedron

Let V (P) is the set of vertices of a polyhedron P. A polyhedron
P(A, b) is called integral polyhedron, if V (P) ⊆ Zn, A ∈ Zm×n and
b ∈ Zn.

If the P is the integral polyhedron, than we can use some linear
programming polynomial algorithms to solve the problem P2.
(Khachiyan, Karmarkar, Novikov, Pardalos, Rao, Mehrotra and
etc.)

Some testing criteria of integrality of P:

A is unimodular matrix: We can test unimodularity of the matrix
by polinomial time. (Seymour, Hoffman, Kruskal)

Total dual integrality (TDI): It is the property of the system
Ax ≤ b. (Edmonds, Giles).

Any integral polyhedron can be represented by TDI system.



Some new definitions

Let Ai ∗ be rows of matrix A.
Let u be a vertex of P(A, b), I (u) = {i : Ai ∗u = bi},
N(u) = {x : Ai ∗x ≤ bi , where i ∈ I (u)}.
So N(u) is the cone spanned by edges, which are adjacent to u.



Integer program with bimodular matrix

Following three theorems were proved by S.I. Veselov and
A.J. Chirkov:

Theorem
If A be bimodular matrix, b ∈ Zn, and P(A, b) be full-dimensional,
then P(A, b) ∩ Zn 6= ∅. There is polynomial time algorithm to
construct the desired integer point.

Theorem
For every vertex v of Pint = conv(P(A, b) ∩ Zn) exists vertex u of
P, such that v lies on a some edge of N(u).

Theorem
If each n × n minor of A is not a zero, and A is bimodular. Than
there is a polynomial time algorithm to solve
max{cx : Ax ≤ b, x ∈ Zn} problem.



Integer program with bimodular matrix

From the theorem 1 follows:

Corollary

If A be bimodular matrix, then the feasibility problem for P(A, b)
is polynomially solvable.

Corollary

Let the extended matrix

(
c

A

)
is bimodular, than the problem

max{cx : Ax ≤ b, x ∈ Zn} can be solved using the polynomial
time algorithm.



{0, 1}-case (graph interpretation)

The significant result were obtained if the matrix is a
{0, 1}-matrix. (Alekseev & Zaharova)

Theorem
Let A ∈ {0, 1}m×n and the extended matrix

(1
A

)
is k-modular and

rows of the A have at most 2 units. Than
max{1T x : Ax ≤ 1, x ∈ Zn} problem can be solved using the
polynomial time.



Integer program with almost unimodular matrix

The next theorem follows from the theorem 1.

Theorem
Let A is almost unimodular. Than there is polynomial time
algorithm to solve max{cx : Ax ≤ b, x ∈ Zn} problem.

Furthermore we can prove more general theorem by analogy:

Theorem
Let A is bimodular, and ∆r−s(A) ≤ 1, where r = rank(A) and s is
parameter. Than there is a polynomial time algorithm to solve
max{cx : Ax ≤ b, x ∈ Zn} problem. Polynomial has the power
that proportional to s.



Flatness theorem

Let widthc(P) = max{cx : x ∈ P} −min{cx : x ∈ P}. We use the
notion of the width(integer width) of a polyhedron (Minkowski):
width(P) = min{widthc(P) : c ∈ Zn \ {0}}.

Theorem
(Khinchine) Let P(A, b) is a polytope, such that P(A, b) ∩ Zn = ∅.
Then width(P) ≤ f (n), since f (n) is value, that depends only on n.



Flatness theorem. History.

f(n) upper bound

Khinchine’48 (n + 1)!

Babai’86 2O(n)

Lenstra-Lagarias-Schnorr’87 n5/2

Kannan-Lovasz’88 n2

Banaszczyk et al’99* n3/2

Rudelson’00 n4/3log cn
*[Banaszczyk-Litvak-Pajor-Szarek’99] Best known bound of f (n)

for simplexes is O(n log n). (Banaszczyk-Litvak-Pajor-Szarek’99)

Bound conjectured to be is Θ(n). (Best possible)



Flatness theorem for symmetric convex bodies. History.

f(n) upper bound

Khinchine’48 n!

Babai’86 2O(n)

Kannan-Lovasz’88 n2

Banaszczyk’93 n3/2

Banaszczyk’96 n log n

f (n) = Θ(n) for spheres.(Banaszczyk’93)

Bound conjectured to be is Θ(n). (Best possible)



Empty lattice simplexes. Lower bounds on f (n).

The simplex S with integral vertexes called empty lattice, if
S \ V (S) ∩ Zn = ∅, where V (S) is the set of vertexes of S .

Kantor’99: for any 0 < ε ≤ 1/e, ∃S - empty lattice n-simplex,
such that width(S) > εn.

András Sebö’00:
Let’s define Sn(k) = conv(s0, s1, . . . , sn), s0 = 0,
s1 = (1, k , 0, . . . , 0), s2 = (0, 1, k , 0, . . . , 0), . . . ,
sn−1 = (0, . . . , 0, 1, k), sn = (k , 0, . . . , 0, 1).
The width of Sn(k) is k, unless both k = 1 and n is even.
If k + 1 < n, then Sn(k) is an empty lattice simplex with integral
vertexes.

So, the simplex Sn(n − 2) is empty lattice simplex and
width(Sn(n − 2)) = n − 2 for any n ≥ 3.



Flatness theorem and strict ∆-modular matrices.

Theorem
Let A be a strict ∆-modular matrix, P(A, b) be polytope. If
width(P(A, b)) > (n + 1) (∆− 1), then |P(A, b) ∩ Zn| ≥ n + 1.
One can find these integer points using a polynomial time
algorithm.



Flatness theorem for simplices.

Theorem
(Veselov, Gribanov) Let A ∈ Z(n+1)×n, b ∈ Zn+1, P = P(A, b) be
a simplex and ∆min be the minimal absolute value of basis
sub-determinants of the matrix A. If width(P(A, b)) ≥ ∆min − 1,
then P(A, b) ∩ Zn 6= ∅. There is a polynomial time algorithm to
find some integer point in P.



Flatness theorem for simplices.

Theorem
(Veselov, Gribanov) Let A ∈ Z(n+1)×n be ∆-modular, b ∈ Zn+1

and P = P(A, b) be a simplex. If width(P(A, b)) ≥ ∆− 1, then
P(A, b) ∩ Zn 6= ∅ and there is an algorithm with the time
complexity O(n∆) that solves an integer problem
max{c>x : x ∈ P ∩ Zn}.



Integer programming in a simplex.

We develop an quasi-polynomial algorithm of an integer
programming for the special class of polytopes. The complexity of
the algorithm is O((n2 + m)n2log2(∆)) of elementary arithmetic
operations. This algorithm can be applied to simplicies, one gives
complexity O(n2log2(∆)+2).



Computing of the simplex width.

Computing width of a simplex is NP-hard problem due to András
Sebö (2000).

Theorem
Let A be ∆-modular matrix from Z(n+1)×n, b ∈ Zn+1 and P(A, b)
be a simplex. Then the width of P and the flat direction of P can
be computed using O(∆n2log2(∆)+3) elementary arithmetic
operations.



Thank you!


