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set of web-sites,

set of web-hosts,

and E — the set of all hyperlinks between the vertices (nodes).
Sometimes multiple edges are identified. Sometimes multiple edges and even
loops are allowed.

Why do we need a model?
Many reasons!

Adjust algorithms;

Find unexpected structures (news, spam, etc.) using classifiers learnt on
some features coming from models.

Andrei Raigorodskii (MSU, MIPT, YND) NET 2015 2 / 17



How to construct a model?

Andrei Raigorodskii (MSU, MIPT, YND) NET 2015 3 / 17



How to construct a model?

Statistics

First, find some statistical properties of web-graphs that would describe most
accurately the real-world structures.

Andrei Raigorodskii (MSU, MIPT, YND) NET 2015 3 / 17



How to construct a model?

Statistics

First, find some statistical properties of web-graphs that would describe most
accurately the real-world structures.

Probability Theory

Then, take a random element G which takes values in a set of graphs on n
vertices and has such a distribution that w.h.p. (with high probability, i.e., with
probability approaching 1 as n → ∞) G has the same properties as the ones
mentioned above.
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Every two vertices in the giant component are connected by a path of short
length (5–6, 15–20 depending on what we mean by web-graph): diamG ≈ 6
(the rule of 6 handshakes).

Web-graphs are robust when random vertices are destroyed (a giant
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Web-graphs are vulnerable to attacks onto hubs (many small components
appear after a threshold is surpassed).

The degree distribution is close to a power-law:

|{v ∈ V : deg v = d}|n ∼ constd ;
where  ∈ (2; 3) depends on what we mean by web-graph.

High clustering.
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Let G = (V;E), v ∈ V . Let Nv be the set of neighbours of v in G. Letnv = |Nv|. If nv > 2, thenCv =
|{{x; y} ∈ E : x; y ∈ Nv}|C2nv :

Global clustering coefficient

The global clustering coefficient of G isT (G) =

∑v∈V C2nvCv
∑v∈V C2nv :

Let ](H;G) be the number of copies of a graph H in a graph G. ThenT (G) =
3](K3; G)](P2; G)

;
where K3 is a triangle and P2 is a 2-path.
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The average local clustering coefficient of G isC(G) =
1

|V |
∑v∈V Cv ;

where, again, Cv =
|{{x; y} ∈ E : x; y ∈ Nv}|C2nv :

The quantities T (G) and C(G) are quite different.

Let G be K2;n−2 plus one edge between the vertices in the part of size 2. ThenC(G) ∼ 1, but T (G) = Θ
(

1n)

.

Very important! However, many inaccuracies in the literature.
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explanations. This is wrong, provided we do not take into account multiple edges
and loops (which is widely done).

Theorem (Ostroumova, Samosvat)

If in a sequence {Gn} of graphs, the degrees of the vertices follow a power law
with exponent  ∈ (2; 3), then T (Gn) → 0 as n → ∞.

Newman might be right, provided we do take into account multiple edges and
loops.

Theorem (Ostroumova)

There exist sequences {Gn} of multigraphs with loops, whose degrees of the
vertices follow a power law with exponent  ∈ (2; 3) and, nevertheless,T (Gn) > const as n → ∞.

However, what is T (G), if G has multiple edges and loops? Many different
definitions, and Newman does not say a word about this subtlety!
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Case m = 1G1
1 — graph with one vertex v1 and one loop.

Given Gn−1
1 we can make Gn

1 by adding vertex vn and an edge from it to a vertexvi, picked from {v1; : : : ; vn} with probability

P(i = s) =

{ dGn−1
1

(vs)
2n−1 1 6 s 6 n− 1
1

2n−1 s = n
Preferential attachment suggested by Barabási and Albert in 1999.

Case m > 1

Given Gmn
1 we can make Gnm by gluing {v1; : : : ; vm} into v′1 , {vm+1; : : : ; v2m}

into v′2, and so on.

The random graph Gnm is certainly sparse. What’s about other properties?
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If d 6 n1=15, then w.h.p.

|{v ∈ Gnm : deg v = d}|n ∼ const(m)d3
:

Great, since we get a power-law.

Not too great, since the exponent in the power-law is a bit different from the
experimental ones ( ∈ (2; 3)).

Bad, since d 6 n1=15, which is non-realistic.

The last problem completely removed by Evgeniy Grechnikov: analog of
B–R–S–T-theorem with an arbitrary d.

Andrei Raigorodskii (MSU, MIPT, YND) NET 2015 9 / 17



Degree distribution

Theorem (Bollobás, Riordan, Spencer, Tusnády)
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If d 6 n1=15, then w.h.p.

|{v ∈ Gnm : deg v = d}|n ∼ const(m)d3
:

Great, since we get a power-law.

Not too great, since the exponent in the power-law is a bit different from the
experimental ones ( ∈ (2; 3)).

Bad, since d 6 n1=15, which is non-realistic.

The last problem completely removed by Evgeniy Grechnikov: analog of
B–R–S–T-theorem with an arbitrary d.
Tune the model somehow to get other exponents in the power-law?

Let’s discuss clustering before.
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model

Theorem 1 (Bollobás, Riordan)

The expected value of T (Gnm) tends to 0 as n → ∞: E(T (Gnm)) � ln2 nn .

Theorem 2 (Ryabchenko, Samosvat)

For any H , E(](H;Gnm)) � n](di=0) · (√n)
](di=1) · (lnn)](di=2), where ](di = k) is

the number of vertices of degree k in H .

Theorem 2 agrees with Theorem 1: E(](K3; Gnm)) � ln3 n,
E(](P2; Gnm)) � n lnn.

By Theorem 2 the number of K4 etc. is asymptotically constant: bad.

Unfortunately, C(Gnm) also approaches 0: even worse.

And, once again,  = 3, not  ∈ (2; 3).

So let’s tune the model and try to calculate again the number of small
subgraphs!
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Buckley–Osthus model
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Buckley–Osthus model

Which problems we had in the model of Bollobás–Riordan? Non-realistic exponent
in the power-law, non-realistic clustering. Can solve the first problem! The
following model is very close to the first one, but it has one important new
parameter a > 0 called initial attractiveness of a vertex.
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Case m = 1H1a;1 — graph with one vertex v1 and one loop.

Andrei Raigorodskii (MSU, MIPT, YND) NET 2015 12 / 17



Buckley–Osthus model

Which problems we had in the model of Bollobás–Riordan? Non-realistic exponent
in the power-law, non-realistic clustering. Can solve the first problem! The
following model is very close to the first one, but it has one important new
parameter a > 0 called initial attractiveness of a vertex.

Case m = 1H1a;1 — graph with one vertex v1 and one loop.

Given Hn−1a;1 we can make Hna;1 by adding vertex vn and an edge from it to a
vertex vi, picked from {v1; : : : ; vn} with probability

P(i = s) =







dHn−1a;1 (vs)+a−1

(a+1)n−1 1 6 s 6 n− 1a
(a+1)n−1 s = n
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Which problems we had in the model of Bollobás–Riordan? Non-realistic exponent
in the power-law, non-realistic clustering. Can solve the first problem! The
following model is very close to the first one, but it has one important new
parameter a > 0 called initial attractiveness of a vertex.

Case m = 1H1a;1 — graph with one vertex v1 and one loop.

Given Hn−1a;1 we can make Hna;1 by adding vertex vn and an edge from it to a
vertex vi, picked from {v1; : : : ; vn} with probability

P(i = s) =







dHn−1a;1 (vs)+a−1

(a+1)n−1 1 6 s 6 n− 1a
(a+1)n−1 s = n

For a = 1, we get the model of Bollobás–Riordan.

Case m > 1

Given Hmna;1 we can make Hna;m by gluing {v1; : : : ; vm} into v′1 , {vm+1; : : : ; v2m}
into v′2, and so on.
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Buckley–Osthus model: degree distribution
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Buckley–Osthus model: degree distribution

Theorem (Buckley, Osthus)

If d 6 n1=(100(a+1)), then w.h.p.

|{v ∈ Hna;m : deg v = d}|n ∼ const(a;m)da+2
:
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Buckley–Osthus model: degree distribution

Theorem (Buckley, Osthus)

If d 6 n1=(100(a+1)), then w.h.p.

|{v ∈ Hna;m : deg v = d}|n ∼ const(a;m)da+2
:

Great, since now we can tune the model to get the expected exponent.

Bad, since d 6 n1=(100(a+1)).

Completely removed by Grechnikov.

Assertion (Grechnikov, Zhukovskii, Vinogradov, Ostroumova, Pritykin,
Gusev, Raigorodskii)

If the reality agrees with a Buckley–Osthus model, then most likely a ≈ 0:27.
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Theorem (Buckley, Osthus)

If d 6 n1=(100(a+1)), then w.h.p.

|{v ∈ Hna;m : deg v = d}|n ∼ const(a;m)da+2
:

Great, since now we can tune the model to get the expected exponent.

Bad, since d 6 n1=(100(a+1)).

Completely removed by Grechnikov.

Assertion (Grechnikov, Zhukovskii, Vinogradov, Ostroumova, Pritykin,
Gusev, Raigorodskii)

If the reality agrees with a Buckley–Osthus model, then most likely a ≈ 0:27.

What’s about clustering and, more generally, small subgraphs?

Andrei Raigorodskii (MSU, MIPT, YND) NET 2015 13 / 17



Buckley–Osthus model: clustering
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Buckley–Osthus model: clustering

Theorem (Eggemann, Noble)

If a > 1, then E(](K3; Hna;m)) � lnn as n → ∞.
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It’s remarkable that for a = 1 (i.e., for the B–R model) we had ln2 n instead of
lnn.
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Buckley–Osthus model: clustering

Theorem (Eggemann, Noble)

If a > 1, then E(](K3; Hna;m)) � lnn as n → ∞.

It’s remarkable that for a = 1 (i.e., for the B–R model) we had ln2 n instead of
lnn.

Theorem (Eggemann, Noble)

If a > 1, then E(](P2; Hna;m)) � n as n → ∞.

Theorem (Eggemann, Noble)

If a > 1, then E(T (Hna;m)) � lnnn as n → ∞.
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Buckley–Osthus model: small subgraphs
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Buckley–Osthus model: small subgraphs

Very recently Tilga has proved far-reaching generalizations and refinements of the
theorems by Bollobás–Riordan, Ryabchenko–Samosvat, and Eggemann–Noble.
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Buckley–Osthus model: small subgraphs

Very recently Tilga has proved far-reaching generalizations and refinements of the
theorems by Bollobás–Riordan, Ryabchenko–Samosvat, and Eggemann–Noble.

Theorem (Tilga)

For any a > 0 and any fixed graph F , the order of magnitude of E(](F;Hna;m)) is
found.

The exact statement is quite cumbersome involving many parameters and cases.
So we just give several most important and short enough corollaries.
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Buckley–Osthus model: paths and cliques
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Buckley–Osthus model: paths and cliques

Theorem (Tilga)

Let m > 2 and a < 1, � = 1a+1 . Let Pl be a path of length l. Then for n → ∞,

E
(](Pl; Hna;m)

)

=

{n(2�−1)k+1 · Θ(ml) for l = 2k;n(2�−1)k+1 · lnn · Θ(ml) for l = 2k + 1:
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Let Kk be a clique of size k, where 4 6 k 6 m+ 1. Then for n → ∞,
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Let m > 2 and a < 1, � = 1a+1 . Let Pl be a path of length l. Then for n → ∞,

E
(](Pl; Hna;m)

)

=

{n(2�−1)k+1 · Θ(ml) for l = 2k;n(2�−1)k+1 · lnn · Θ(ml) for l = 2k + 1:
Theorem (Tilga)

Let Kk be a clique of size k, where 4 6 k 6 m+ 1. Then for n → ∞,

E
(](Kk; Hna;m)

)

=











n1+(�−1)(k−1) · Θ(mC2k) for a < 1k−2 ;
lnn · Θ(mC2k) for a = 1k−2 ;
Θ(mC2k) for a > 1k−2 :

For example, if a = 1
3 (close to 0:27), then the number of K5 is about logn, and

the number of K4 is about 4
√n. Much more realistic than in the B–R model!
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{n(2�−1)k · Θ(ml) for l = 2k;n(2�−1)k · lnn · Θ(ml) for l = 2k + 1:
Theorem (Tilga)

Let Kk;l be a biclique with 2 6 l 6 min{k;m}. Then for n → ∞,

E
(](Kk;l; Hna;m)

)

=
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Theorem (Tilga)

Let Cl be a cycle of length l. Then for n → ∞,

E
(](Cl; Hna;m)

)

=

{n(2�−1)k · Θ(ml) for l = 2k;n(2�−1)k · lnn · Θ(ml) for l = 2k + 1:
Theorem (Tilga)

Let Kk;l be a biclique with 2 6 l 6 min{k;m}. Then for n → ∞,

E
(](Kk;l; Hna;m)

)

=











nk(1+(�−1)l) · Θ(mkl) for a < 1l−1 ;
(lnn)k · Θ(mkl) for a = 1l−1 ;
Θ(mkl) for a > 1l−1 :

The number of bicliques shows how many communities are formed. For example,
if a = 1

3 (close to 0:27), then there are many Kk;4 and a lot of Kk;3, which was
impossible in the B–R model (there are no vertices of degree < 3 in such graphs).
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