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Network Robustness Definition

@ There are several works dealing with the concept of
robustness, however, there is still no consensus on a
definitive definition.

@ Robustness is usually described as the ability of the
network to continue performing, or, as the capacity in
maintaining its functionality after failures or attacks.

@ A robust network is failure resilient.
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Applications

@ Evacuation planning

@ Fragmentation of terrorist organizations

@ Epidemic contagion analysis and immunization planning
@ Social network analysis (Prestige and dominance)

@ Transportation (Cross-dock and hub-and-spoke networks)
@ Marketing and customer services design

@ Biomaterials and drugs design
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@ Critical element detection
@ How to measure network robustness?
@ Network similarity
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@ Critical element detection
@ How to measure network robustness?
@ Network similarity

How does it affect
CONNECTIVITY?
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Failure

Let G be a network defined by a set V(G) of N nodes, a set
E(G) of M links and a set W(E(G)) containing the edges
strengths. A network failure event f is defined as the
removal of a subset of edges f C £(G).

@ Alink failure is the removal of a single link

@ A node failure consists in the removal of all it incident links
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Critical Elements Detection

Given a graph G(V, E) and an integer k,
find a set of at most k elements, whose
deletion minimizes the connectivity of
the residual network.

Elements?
@ Nodes (arcs)
@ Paths
@ Cliques )
@ Node subsets e @ Y

Connectivity? e
@ Max flow \
@ Number of pairwise connections

@ Number of components o .
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Critical Elements Detection

The problem is proven to be NP-hard in the general case for different
elements:

@ Nodes (Arcs)
@ Paths
@ Cliques
@ A. Arulsevan and C. W. Commander and L. Elefteriadou and P. M. Pardalos,

Detecting Critical Nodes in Sparse Graphs, Computers and Operations
Research, 2009, pp. 2193-2200

@ T. N. Dinh and Y. Xuan and M. T. Thai and P. M. Pardalos,
On New Approaches of Assessing Network Vulnerability: Hardness and
Approximation, IEEE ACM Transactions on Networking, 2012, pp. 609-619

@ J. Walteros and P. M. Pardalos,
A Decomposition Approach for Solving Critical Clique Detection Problems,
Experimental Algorithms, Springer, 2012, pp. 393-404
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Why should we study this problem?

Disconnecting a network by element
removal is not trivial!

@ 350 nodes, 900 arcs L

@ Network 1: U(0,1)

@ Network 2: greedy construction

@ Network 3: Power law a=0.44
b=50

Click on the network for video
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Connectivity Measures

Network Flow Measures
@ Single/Multiple commodity shortest path
@ Single/Multiple commodity maximum flow
@ Single/Multiple commodity minimum cost
Topological Measures
@ Pairwise (weighted) connectivity
@ Largest component size
@ Total number of components
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Connectivity Measures: Different results

@ The selection of the connectivity measure is crucial

@ In a node failure, despite the fact that all these measures
account for a disconnection level, using one over the other
may lead to different critical elements

Maximize the shortest path between nodes 1and 5

Minimize the size of the largest component Maximize the number of components
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Critical Nodes Detection Problem
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Critical Nodes Detection Problem
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Critical node detection problem (CNP)

Given a graph G(V, E) and an integer k, find a set of at most k
nodes, whose deletion minimizes the pairwise connections of
the residual network. (The critical edge detection problem is
similar).
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CNP - Formulation

min u;
e V := Set of vertices E o
i,jeV
e F = Set of edges stou v+ 21 Y(i,j) € E

Uij + Wi — up; < 1 Y(i, 5 k) eV
uij — g+ g <1 Y(i,j, k) eV
- {l if node i is critical — gy g+ g < 1 Wi, i, k) €V

0 otherwise
Z v <k
eV

e L := Number of critical nodes to identity

~._ )1 ifiand jare in the same component
® M= otherwise uj; € {0,1} W(i,j) eV
v; € {0,1} VieV

@ A. Arulsevan and C. W. Commander and L. Elefteriadou and P. M.
Pardalos,
Detecting Critical Nodes in Sparse Graphs, Computers and
Operations Research, 2009, pp. 2193-2200
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Handbook of Optimization in Complex Networks
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T. Thai and Panos M. Pardalos
(Eds.) Springer. Series: Handbook of
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ISBN 978-1-4614-0753-9.
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Handbook of Optimization in Complex Networks
sgnm«uwmnWss

@ Mathematical Aspects of Carlos A.S. Oliveira
Network Routing Optimization. r
Carlos Oliveira and Panos M. Mathematical
Pardalos. Springer. Series: Aspects of
Springer Optimization and Its p .
Applications , 2011. Vol. 53. NEtENO.I'k Boutlng
ISBN 978-1-4614-0310-4. Optimization

@ Springer
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Handbook of Optimization in Complex Networks

@ Dynamics of Information Systems:
Mathematical Foundations. Alexey

Sorokin, Robert Murphey, My T. ﬂyfm;cnsocﬁf
Thai, and Panos M. Pardalos (Eds.) Systems:
Springer. Springer Proceedings in nggggt‘ma'
Mathematics & Statistics, 2012. Vol.

20. ISBN 978-1-4614-3905-9. Qg

@ Dynamics of Information Systems:
Algorithmic Approaches. Alexey

Sorokin, Robert Murphey, My T. | Springer
Thai, and Panos M. Pardalos (Eds.) ~ /o@ine.

Springer. Springer Proceedings in
Mathematics & Statistics., 2013. Vol.
51. ISBN 978-1-4614-3905-9.
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Handbook of Optimization in Complex Networks

@ Handbook of Optimization in ,__._.....,.,.
Complex Networks: Theory and
Applicatios. My T. Thai, and Panos Handbook of
M. Pardalos (co-eds.) Springer ?Eﬂﬁgfﬂg?&g,k;
(2011).

@ Handbook of Optimization in "M*
Complex Networks: Communication lm
and Social Networks. My T. Thai, Handbook of
and Panos M. Pardalos (co-eds.) ?Eﬁi?,’}‘éf‘ﬁ‘é?&}ks
Springer (2011).

@ springee
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Handbook of Optimization in Complex Networks

@ Models, Algorithms and
Technologies for Networks Analysis:
From the Third International Models,
. Algorithms and
Conference on Network Analysis. Technologies for
Mikhail V. Batsyn, Valery A. Kalyagin e

and P. Pardalos.

&) Springer
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Quantification of Network Robustness

Quantification of network robustness could be thought as the
distance that a given topology is apart from itself after a failure.

@ T. Schieber, L. Carpi, A. Frery, O. Rosso, Panos M. Pardalos, M.
Ravetti, Information theory perspective on network robustness,
Physics Letters A, 2016
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Classical Robustness Measurements

There are two commonly used methods based on the largest
connected component (Ry:) and percolation (R;,) to measure
network robustness after failures

@ Ry is obtained by computing the fraction of nodes
belonging to the largest connected component

@ R, indicates the variation of the original diameter dy with
respect to diameter d after a sequence of failures,
computed by R, = ay/d

A new Information Theory Perspective on Network Robustness



Classical Robustness Measurements

@ Ry is obtained by computing the fraction of nodes
belonging to the largest connected component

@ A, indicates the variation of the original diameter dy with
respect to diameter d after a sequence of failures,
computed by R, = ay/d

Edge Removed Ry R,

2 0.500 0.000
0 1.000  0.750
‘, 1.000 1.000

A new Information Theory Perspective on Network Robustness



Classical Robustness Measurements - Problem

@ Methodologies based on the size of the largest connected
component, or on the diameter, are not able to properly
capture some failures.

Edge Removed Ry, R,
l; 0.500 0.000

l; 1.000 | 0.750
L, 1.000 1.
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Robustness - Information Theory Quantifiers

@ Several network characteristics can be represented by a
probability distribution

@ Degree distribution of a graph characterizes global
statistical patterns underlying the dataset this graph
represents

@ Interestingly, the degree distribution of all considered
real-life graphs has a well-defined power-law structure:
The probability that a vertex has a degree k is:

P(k) x k™7

("Self-organized” networks)
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Robustness - Information Theory Quantifiers

The distance distribution gives the fraction of pairs of nodes
connected distance d and P(oo) gives the the fraction of pairs
of disconnected nodes. It is possible to obtain:

@ Average degree
@ Average path length
@ Diameter
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Robustness - Information Theory Quantifiers

You can also get a local information

The node distance distribution is a set of probability
distributions associated with each node i a probability
distribution P;(d) representing the fraction of nodes connected
to i at distance d and P;(o) is the fraction of disconnected
nodes from .

@ Network distance distribution

@ Degree sequence

@ Closeness centrality

@ Number and the size of connected clusters
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Robustness - Information Theory Quantifiers

We propose a measure for network robustness based on the
Jensen-Shannon divergence, a square of a metric between
probability distributions, that already showed to be very
effective in measuring small topological changes in a network.

P+Q\ H(P)+HQ)
2 )‘ 2 ’

being H(P) = —>_,; pilog, p;, the Shannon entropy that
measures the amount of uncertainty in a probability distribution.

TH(P, Q) = H(
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Robustness - Information Theory Quantifiers

Let G’ be a failure in G and P a probability distribution
representing some network characteristics, the robustness of G
given the failure G’ is given by:

Rp(GIG) =1 - T"(P(G), P(G)). (1)

The robustness value ranges from 0, the largest variation, to 1,
unchanged characteristics.

A new Information Theory Perspective on Network Robustness



Robustness - Information Theory Quantifiers

Computation of the structural robustness for three different
single edge removal: ¢;, £; and /;.

Ps and Pgeq are the distance and degree distributions,
respectively.

Edge Removed Rp, deeg Ry, R,

l; 0.447 0.862 0.500 0.000
l; 0.943 0.922 1.000 0.750
L, 0.998 0.857 1.000 1.000
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Robustness - Information Theory Quantifiers

Computation of the structural robustness for three different
single edge removal: ¢;, £; and /;.

Ps and Pgeq are the distance and degree distributions,
respectively. The measure captures all changes, including
those perceived by R and R,.

Edge Removed Rp, deeg Ry, R,

l; 0.447 0.862 0.500 0.000
l; 0.943 0.922 1.000 0.750
L, 0.998 0.857 1.000 1.000
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Robustness - Information Theory Quantifiers

Detecting critical elements. US POWER GRID using the
distance distribution Rp,.

Tdge 1D R;
4220 — 2544 0.9695
4220 — 4165 0.9960
3046 — 2523 0.9962
3046 — 3045 0.9964

0.9964

0.9968

3 0.9974

3074 — 3047 0.9974

347 — 270 0.9978
347 — 342 0.9980

Node ID Rs
4220 0.9675
2544 0.9677
727 0.9786
693 0.9887
2529 0.9914
2523 0.9919
2605 0.9941
4165 0.9946
363
427 0.9955
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Robustness - Information Theory Quantifiers

Detecting critical elements. US POWER GRID using the
degree distribution ARp,, .

Edge 1D Raeg
3129 — 2554 0.5013
2909 — 2554 0.5013
3285 — 2554 0.5013
2844 — 2554 0.5013
2875 — 2554 0.5013
2972 — 2554 0.5013
2802 — 2554 | _0.5013
2871 — 2554 0.5013
2872 — 2554 0.5013
2873 — 2554 0.5013

Node ID Rieg
2554 0.5012
3129 0.5013
2909 0.5013
3285 0.5013
2844 0.5013
2871 0.5013
2872 0.5013
2873 0.5013
3150 0.5013
2875 0.5013

_.‘( ‘.'.
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Robustness to a sequence of failures

A network may suffer a time-dependent sequence of failures
since the degree to which a networked system continues to
function, as its component parts are degraded, typically
depends on the integrity of the underlying network.

@ A time-ordered sequence of failures F = {f;, fy,,..., f;,} in
G can be interpreted as a sequence of the resulting
networks after each event (Gy,)icqo, 1,...ny SUch that Gy, = G

and G; is the network obtained after the failure f; in G;,_,.
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Robustness to a sequence of failures

Comparing two sequences of failures:
@ Sequence 1: link /; fails at instant t = 1 and link /; fails at

instant t =2
@ Sequence 2: link /; fails at instant t = 1 and link ¢; fails at
instant t = 2

@ At t = 2 the same degraded network is obtained but the
sequence 1 should possess a lower robustness value
considering network connectivity because a big
disconnection is caused by the failure of link ¢; at the
beginning of the process (t = 1)
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Robustness to a sequence of failures

For any given sequence of n failures (Gi)icqy, 2....,
probability distribution P the network robustness is given by:

n
Rp(Gl(Gt)teqt, 2,...n) = H Rp(G:-1|Gt)
t—1

in which, for each time step, Rp(G;_1|G;) indicates how
affected the topology of the network G;_1 is after a single failure
resulting in G.
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Robustness to a sequence of failures

Comparing two sequences of failures:

@ Sequence 1: link /; fails at instant t = 1 and link /; fails at
instant t = 2 (Rp, = 0.4377)

@ Sequence 2: link /; fails at instant t = 1 and link ¢; fails at
instant ¢t = 2 (Rp, = 0.4564)

@ At t = 2 the same degraded network is obtained but the
sequence 1 should possess a lower robustness value
considering network connectivity because a big
disconnection is caused by the failure of link ¢; at the
beginning of the process (t = 1)
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Computational Experiments

We test the proposed methodology on several real networks
and for different stochastic measures:

@ Pyeq - degree distribution

@ P; - distance distribution

@ P - clustering coefficient

@ Ppg, - vertex betweenness centrality

@ Pg - closeness centrality
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Computational Experiments

@ Random Failure Experiment: At each time step a single link
is randomly removed until the global disconnection of 10

@ Targeted attack: at each time step, the most central
element fails
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Example 1: Random Failure at US POWER GRID

The US Power Grid Network is the undirected and unweighted
representation of the topology of the Western States Power
Grid of the United States, compiled by Duncan Watts and
Steven Strogatz.

At each time step a single link is randomly removed until the
global disconnection of approximately 10% of their links

Violin plots for deeg and Rp,.
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Example 2: Targeted attack - Florida ecosystem wet

and dry

@ Both networks contains the carbon exchanges in the
cypress wetlands of South Florida during the wet and dry
seasons, respectively. Nodes represent taxa and an edge
denotes that a taxon uses another taxon as food with a
given trophic factor (feeding level).

@ The networks are directed and weighted
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Example 2: Targeted attack - Florida ecosystem wet

and dry

@ The experiment consists in the attack of the most central
nodes of the network given by the « centrality.
Cl(v) = (k)'*(w)*  and  C"(v) = (k") (W)

a = 0 the centrality is given only by the degree centrality (the
weights are forgotten). By setting o = 1 the centrality is given
by the total vertex weight (the connections are forgotten)

@ At each time step, the most central vertex is disconnected
from the network until its the complete disconnection.

@ Which « gives the best strategy in destroying the network
more efficiently?
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Example 2: Florida ecosystem wet and Florida

ecosystem dry

A. B.
£ 0.9 %0. 0.9
Zo. 0.8 =0 0.8
S o. 0.7 =0. 0.7
3 3
0. 0.6 0 0.6
||||||||||||||||||||||||||||||
0.5 0.5
,;g 0. 0.4 ,_: 0. 0.4
;r‘: 0. 0.3 3 0 0.3
g 0. 0.2 g 0. 0.2
3 0.1 3
. - 0. 0.1
0 NIRRT
0 | I 0
20 40 60 80 100 40 60 80
Nodes removed Nodes removed

ew Information Theory Perspective on Network Robustness



Example 2: Florida ecosystem wet and Florida

ecosystem dry

Comparing strategies: C. After the removal of 10% of the nodes
and D. After the removal of 50% of the nodes.

C. 0.8 D.o.45
0.75 4
J 0 o Out Attack - Dry
0.7 O Out Attack - Ql‘}' 0.3 o In Attack - Dry
o In Attack - D"\, N ¢ Out Attack - Wet
0.65 ¢ Out Attack - Wet A In Attack - Wet
A In Attack - Dry 0.3
s 0.6 ]
S . & 0.25 °© 9
0.55 o o o
0.2 o ,
. . .
0.5 E ¢ % 3 4 8 :
N I T D R
A $ o A
0.4 M 0.1r 8
0.35 0.05
[} 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
a (o3
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Robustness - Information Theory Quantifiers -

References

For more examples and applications.

@ T. Schieber, M. Ravetti and L. Carpi,
Evaluation of the copycat model for predicting complex network
growth In: Vogiatzis, C., Walteros, J. L., Pardalos, P. M. (Eds.),
Dynamics of Information Systems. Vol. 105 of Springer Proceedings in
Mathematics Statistics. Springer International Publishing, pp. 91108.

@ T. Schieber, L. Carpi, A. Frery, O. Rosso, Panos M. Pardalos, M.
Ravetti, Information theory perspective on network robustness,
Physics Letters A, 2016
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Network Robustness and Network Similarity - An

Information Theory Perspective

@ Quantification of network robustness could be thought as
the distance that a given topology is apart from itself after
a failure measuring distances between networks by
differences in the topological connectivity

@ We propose the use of the network node distance
distribution (NND): a set of probability distributions
associated with each node i a probability distribution P;(d)
representing the fraction of nodes connected to 7 at
distance d and P;(o0) is the fraction of disconnected nodes
from /.
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Network Robustness and Network Similarity - An

Information Theory Perspective

Network Node Dispersion

NND(G) = Juy(P1,...,Pn)

Compares internal characteristics given by the heterogeneity of
the connectivity via the Jensen-Shannon divergence
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Network Robustness and Network Similarity - An

Information Theory Perspective

Network Node Dispersion - Characterization

Erd6s-Renyi process Wattz-Strogatz process
A. 0.4 B. 14
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Network Robustness and Network Similarity - An

Information Theory Perspective

@ We define a measure of network dissimilarity by
incorporating the Jensen-Shannon divergence between
the average node distance distributions differences
between their global network connectivities.

@ The dissimilarity D(G, G') between G and G’ of size n and
m, respectively:

1 [Ju(Pe,Ps) | 1

D(G.G) =3 log 2 2

NND(G) NND(G)
logn logm
being, respectively, Pz, Pg/, the average node distance
distribution of networks G and G/
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Network Robustness and Network Similarity - An

Information Theory Perspective

@ D(G, @) = Oindicates that G and G’ possess the same
average of the node distance distributions, and also,
identical normalized NND

@ D is a size independent pseudometric between networks
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Network Robustness and Network Similarity - An

Information Theory Perspective

@ D between all pairs of networks

ER process WS process
1
— 0.9
B 7 0.9
E 08 =
g 0.8
g
£} 07 i 07
@ |
06a2 0.6
05 0.5
04 = 0.4
2
- 0.3 03
£ 0.2 0.2
& 0.1 0.1
-
0
Suberitical De Supercritical 0 1073 1072 10~ 1

A new Information Theory Perspective on Network Robustness



Network Robustness and Network Similarity - An

Information Theory Perspective

@ Graph isomorphism problem

similar networks Line Graphs (not similar)
Dodecahedral Desargues Dodecahedral Desargues
® ©) 0] ® ®
® ® @ @ . ® o0 ® O e
e © 4 ¢ ©|® 'g00 0 o © Je0g ® 0
o o ® ® ¢ ® e 0 g
o @ » o e _lg eg ©
@®®®® e ©Oy@ ® @@®®®@@@®@@
® - ® e g . ® o
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D=0 D>0

A new Information Theory Perspective on Network Robustness
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@ Network evolution in time
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@ D between pairs of real networks networks
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Concluding remarks

XPYEON I'AP OI AIZHMENOI THN ITOAAHN OPYEZOYZEI KAI EYPIEKOYZEIN OAII'ON

”Seekers after gold dig up much earth and find little”

”The lord whose oracle is at Delphi neither
speaks nor conceals, but gives signs”

- Heraclitus

| shall be telling this with a sigh
Somewhere ages and ages hence:
Two roads diverged in a wood, and |,
| took the one less traveled by,

And that has made all the difference.

- Robert Frost
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