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Network Robustness Definition

There are several works dealing with the concept of
robustness, however, there is still no consensus on a
definitive definition.
Robustness is usually described as the ability of the
network to continue performing, or, as the capacity in
maintaining its functionality after failures or attacks.
A robust network is failure resilient.
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Applications

Evacuation planning
Fragmentation of terrorist organizations
Epidemic contagion analysis and immunization planning
Social network analysis (Prestige and dominance)
Transportation (Cross-dock and hub-and-spoke networks)
Marketing and customer services design
Biomaterials and drugs design
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Problems

Critical element detection
How to measure network robustness?
Network similarity
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Failure

Let G be a network defined by a set V (G) of N nodes, a set
E(G) of M links and a set W (E(G)) containing the edges
strengths. A network failure event f is defined as the
removal of a subset of edges f ⊂ E(G).

A link failure is the removal of a single link
A node failure consists in the removal of all it incident links
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Critical Elements Detection

Given a graph G(V ,E) and an integer k ,
find a set of at most k elements, whose
deletion minimizes the connectivity of
the residual network.

Elements?
Nodes (arcs)

Paths

Cliques

Node subsets

Connectivity?
Max flow

Number of pairwise connections

Number of components
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Critical Elements Detection

The problem is proven to be NP-hard in the general case for different
elements:

Nodes (Arcs)

Paths

Cliques

A. Arulsevan and C. W. Commander and L. Elefteriadou and P. M. Pardalos,
Detecting Critical Nodes in Sparse Graphs, Computers and Operations
Research, 2009, pp. 2193-2200

T. N. Dinh and Y. Xuan and M. T. Thai and P. M. Pardalos,
On New Approaches of Assessing Network Vulnerability: Hardness and
Approximation, IEEE ACM Transactions on Networking, 2012, pp. 609-619

J. Walteros and P. M. Pardalos,
A Decomposition Approach for Solving Critical Clique Detection Problems,
Experimental Algorithms, Springer, 2012, pp. 393-404
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Why should we study this problem?

Disconnecting a network by element
removal is not trivial!

350 nodes, 900 arcs

Network 1: U(0,1)

Network 2: greedy construction

Network 3: Power law a=0.44
b=50

Click on the network for video

Video:aaaaaaa*
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Connectivity Measures

Network Flow Measures
Single/Multiple commodity shortest path
Single/Multiple commodity maximum flow
Single/Multiple commodity minimum cost

Topological Measures
Pairwise (weighted) connectivity
Largest component size
Total number of components
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Connectivity Measures: Different results

The selection of the connectivity measure is crucial
In a node failure, despite the fact that all these measures
account for a disconnection level, using one over the other
may lead to different critical elements
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Critical Nodes Detection Problem
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A new Information Theory Perspective on Network Robustness



Critical node detection problem (CNP)

Given a graph G(V ,E) and an integer k , find a set of at most k
nodes, whose deletion minimizes the pairwise connections of
the residual network. (The critical edge detection problem is
similar).
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CNP - Formulation

A. Arulsevan and C. W. Commander and L. Elefteriadou and P. M.
Pardalos,
Detecting Critical Nodes in Sparse Graphs, Computers and
Operations Research, 2009, pp. 2193-2200
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Pardalos. Springer. Series:
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Applications , 2011. Vol. 53.
ISBN 978-1-4614-0310-4.

-
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Springer. Springer Proceedings in
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Handbook of Optimization in Complex Networks

Handbook of Optimization in
Complex Networks: Theory and
Applicatios. My T. Thai, and Panos
M. Pardalos (co-eds.) Springer
(2011).

-

Handbook of Optimization in
Complex Networks: Communication
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Springer (2011).

-
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Handbook of Optimization in Complex Networks

Models, Algorithms and
Technologies for Networks Analysis:
From the Third International
Conference on Network Analysis.
Mikhail V. Batsyn, Valery A. Kalyagin
and P. Pardalos.

-
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Quantification of Network Robustness

Quantification of network robustness could be thought as the
distance that a given topology is apart from itself after a failure.

T. Schieber, L. Carpi, A. Frery, O. Rosso, Panos M. Pardalos, M.
Ravetti, Information theory perspective on network robustness,
Physics Letters A, 2016
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Classical Robustness Measurements

There are two commonly used methods based on the largest
connected component (Rbc) and percolation (Rπd ) to measure
network robustness after failures

Rbc is obtained by computing the fraction of nodes
belonging to the largest connected component
Rπd indicates the variation of the original diameter d0 with
respect to diameter d after a sequence of failures,
computed by Rπd = d0/d
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Classical Robustness Measurements - Problem

Methodologies based on the size of the largest connected
component, or on the diameter, are not able to properly
capture some failures.
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Robustness - Information Theory Quantifiers

Several network characteristics can be represented by a
probability distribution
Degree distribution of a graph characterizes global
statistical patterns underlying the dataset this graph
represents
Interestingly, the degree distribution of all considered
real-life graphs has a well-defined power-law structure:
The probability that a vertex has a degree k is:

P(k) ∝ k−γ

(”Self-organized” networks)
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Robustness - Information Theory Quantifiers

The distance distribution gives the fraction of pairs of nodes
connected distance d and P(∞) gives the the fraction of pairs
of disconnected nodes. It is possible to obtain:

Average degree
Average path length
Diameter
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Robustness - Information Theory Quantifiers

You can also get a local information

The node distance distribution is a set of probability
distributions associated with each node i a probability
distribution Pi(d) representing the fraction of nodes connected
to i at distance d and Pi(∞) is the fraction of disconnected
nodes from i .

Network distance distribution
Degree sequence
Closeness centrality
Number and the size of connected clusters

A new Information Theory Perspective on Network Robustness



Robustness - Information Theory Quantifiers

We propose a measure for network robustness based on the
Jensen-Shannon divergence, a square of a metric between
probability distributions, that already showed to be very
effective in measuring small topological changes in a network.

J H(P,Q) = H
(

P + Q
2

)
− H(P) + H(Q)

2
,

being H(P) = −
∑

i pi log2 pi , the Shannon entropy that
measures the amount of uncertainty in a probability distribution.
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Robustness - Information Theory Quantifiers

Let G′ be a failure in G and P a probability distribution
representing some network characteristics, the robustness of G
given the failure G′ is given by:

RP(G|G′) = 1− J H(P(G),P(G′)). (1)

The robustness value ranges from 0, the largest variation, to 1,
unchanged characteristics.
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Robustness - Information Theory Quantifiers

Computation of the structural robustness for three different
single edge removal: `i , `j and `r .
Pδ and Pdeg are the distance and degree distributions,
respectively. The measure captures all changes, including
those perceived by Rbc and Rπd .
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Robustness - Information Theory Quantifiers

Detecting critical elements. US POWER GRID using the
distance distribution RPδ

.
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Robustness - Information Theory Quantifiers

Detecting critical elements. US POWER GRID using the
degree distribution RPdeg .
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Robustness to a sequence of failures

A network may suffer a time-dependent sequence of failures
since the degree to which a networked system continues to
function, as its component parts are degraded, typically
depends on the integrity of the underlying network.

A time-ordered sequence of failures F = {ft1 , ft2 , . . . , ftn} in
G can be interpreted as a sequence of the resulting
networks after each event (Gti )i∈{0, 1,...,n} such that Gt0 = G
and Gti is the network obtained after the failure fti in Gti−1 .
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Robustness to a sequence of failures

Comparing two sequences of failures:
Sequence 1: link `i fails at instant t = 1 and link `j fails at
instant t = 2
Sequence 2: link `j fails at instant t = 1 and link `i fails at
instant t = 2
At t = 2 the same degraded network is obtained but the
sequence 1 should possess a lower robustness value
considering network connectivity because a big
disconnection is caused by the failure of link `i at the
beginning of the process (t = 1)

A new Information Theory Perspective on Network Robustness



Robustness to a sequence of failures

Comparing two sequences of failures:
Sequence 1: link `i fails at instant t = 1 and link `j fails at
instant t = 2
Sequence 2: link `j fails at instant t = 1 and link `i fails at
instant t = 2
At t = 2 the same degraded network is obtained but the
sequence 1 should possess a lower robustness value
considering network connectivity because a big
disconnection is caused by the failure of link `i at the
beginning of the process (t = 1)

A new Information Theory Perspective on Network Robustness



Robustness to a sequence of failures

For any given sequence of n failures (Gt)t∈{1, 2,...,n} and
probability distribution P the network robustness is given by:

RP(G|(Gt)t∈{1, 2,...,n}) =
n∏

t=1

RP(Gt−1|Gt)

in which, for each time step, RP(Gt−1|Gt) indicates how
affected the topology of the network Gt−1 is after a single failure
resulting in Gt .
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Robustness to a sequence of failures

Comparing two sequences of failures:
Sequence 1: link `i fails at instant t = 1 and link `j fails at
instant t = 2 (RPδ

= 0.4377)
Sequence 2: link `j fails at instant t = 1 and link `i fails at
instant t = 2 (RPδ

= 0.4564)
At t = 2 the same degraded network is obtained but the
sequence 1 should possess a lower robustness value
considering network connectivity because a big
disconnection is caused by the failure of link `i at the
beginning of the process (t = 1)
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Computational Experiments

We test the proposed methodology on several real networks
and for different stochastic measures:

Pdeg - degree distribution
Pδ - distance distribution
PC - clustering coefficient
PBv - vertex betweenness centrality
PCl - closeness centrality
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Computational Experiments

Random Failure Experiment: At each time step a single link
is randomly removed until the global disconnection of 10
Targeted attack: at each time step, the most central
element fails
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Example 1: Random Failure at US POWER GRID

The US Power Grid Network is the undirected and unweighted
representation of the topology of the Western States Power
Grid of the United States, compiled by Duncan Watts and
Steven Strogatz.

At each time step a single link is randomly removed until the
global disconnection of approximately 10% of their links

Violin plots for RPdeg and RPδ
.
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Example 2: Targeted attack - Florida ecosystem wet
and dry

Both networks contains the carbon exchanges in the
cypress wetlands of South Florida during the wet and dry
seasons, respectively. Nodes represent taxa and an edge
denotes that a taxon uses another taxon as food with a
given trophic factor (feeding level).
The networks are directed and weighted
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Example 2: Targeted attack - Florida ecosystem wet
and dry

The experiment consists in the attack of the most central
nodes of the network given by the α centrality.

C in
α (v) = (k in

v )1−α(w in
v )α and Cout

α (v) = (kout
v )1−α(wout

v )α

α = 0 the centrality is given only by the degree centrality (the
weights are forgotten). By setting α = 1 the centrality is given
by the total vertex weight (the connections are forgotten)

At each time step, the most central vertex is disconnected
from the network until its the complete disconnection.
Which α gives the best strategy in destroying the network
more efficiently?

A new Information Theory Perspective on Network Robustness



Example 2: Targeted attack - Florida ecosystem wet
and dry

The experiment consists in the attack of the most central
nodes of the network given by the α centrality.

C in
α (v) = (k in

v )1−α(w in
v )α and Cout

α (v) = (kout
v )1−α(wout

v )α

α = 0 the centrality is given only by the degree centrality (the
weights are forgotten). By setting α = 1 the centrality is given
by the total vertex weight (the connections are forgotten)

At each time step, the most central vertex is disconnected
from the network until its the complete disconnection.
Which α gives the best strategy in destroying the network
more efficiently?

A new Information Theory Perspective on Network Robustness



Example 2: Florida ecosystem wet and Florida
ecosystem dry

A new Information Theory Perspective on Network Robustness



Example 2: Florida ecosystem wet and Florida
ecosystem dry

Comparing strategies: C. After the removal of 10% of the nodes
and D. After the removal of 50% of the nodes.
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Robustness - Information Theory Quantifiers -
References

For more examples and applications.
T. Schieber, M. Ravetti and L. Carpi,
Evaluation of the copycat model for predicting complex network
growth In: Vogiatzis, C., Walteros, J. L., Pardalos, P. M. (Eds.),
Dynamics of Information Systems. Vol. 105 of Springer Proceedings in
Mathematics Statistics. Springer International Publishing, pp. 91108.

T. Schieber, L. Carpi, A. Frery, O. Rosso, Panos M. Pardalos, M.
Ravetti, Information theory perspective on network robustness,
Physics Letters A, 2016
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Network Robustness and Network Similarity - An
Information Theory Perspective

Quantification of network robustness could be thought as
the distance that a given topology is apart from itself after
a failure measuring distances between networks by
differences in the topological connectivity
We propose the use of the network node distance
distribution (NND): a set of probability distributions
associated with each node i a probability distribution Pi(d)
representing the fraction of nodes connected to i at
distance d and Pi(∞) is the fraction of disconnected nodes
from i .
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Network Robustness and Network Similarity - An
Information Theory Perspective

Network Node Dispersion

NND(G) = JH(P1, . . . ,Pn)

Compares internal characteristics given by the heterogeneity of
the connectivity via the Jensen-Shannon divergence

A new Information Theory Perspective on Network Robustness



Network Robustness and Network Similarity - An
Information Theory Perspective

Network Node Dispersion - Characterization
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Network Robustness and Network Similarity - An
Information Theory Perspective

We define a measure of network dissimilarity by
incorporating the Jensen-Shannon divergence between
the average node distance distributions differences
between their global network connectivities.
The dissimilarity D(G,G′) between G and G′ of size n and
m, respectively:

D(G,G′) =
1
2

√
JH(PG,PG′)

log 2
+

1
2

∣∣∣∣∣
√

NND(G)

log n
−

√
NND(G′)

log m

∣∣∣∣∣
being, respectively, PG, PG′ , the average node distance
distribution of networks G and G′
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Network Robustness and Network Similarity - An
Information Theory Perspective

D(G,G′) = 0 indicates that G and G′ possess the same
average of the node distance distributions, and also,
identical normalized NND
D is a size independent pseudometric between networks
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Network Robustness and Network Similarity - An
Information Theory Perspective

D between all pairs of networks
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Network Robustness and Network Similarity - An
Information Theory Perspective

Graph isomorphism problem

D = 0 D > 0
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Network Robustness and Network Similarity - An
Information Theory Perspective

Network evolution in time
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Network Robustness and Network Similarity - An
Information Theory Perspective

D between pairs of real networks networks
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T. Schieber, L. Carpi, A. Diaz-Guilera, P. M. Pardalos, C.
Massoler and M. Ravetti
Networks dissimilarities measure based on Information
Theory quantifiers, ARXIV FILE
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Concluding remarks

”Seekers after gold dig up much earth and find little”

”The lord whose oracle is at Delphi neither
speaks nor conceals, but gives signs”

- Heraclitus

I shall be telling this with a sigh
Somewhere ages and ages hence:

Two roads diverged in a wood, and I,
I took the one less traveled by,

And that has made all the difference.

- Robert Frost
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