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• Fortune’s Algorithm, Θ 𝑛𝑙𝑜𝑔𝑛  
• Stored in DCEL, Θ 𝑛  memory footprint 

• Used for a solution of a point location problem or  
• Finding polygons belonging to a specified area 

• Projecting a diagram to geometry 
• Performing collision checks along edges 



Voronoi links 
building 

Static properties 
calculation 

Ready 

• Optimizations: 
• One end of a link should be a border polygon 
• Candidates for the second end are found using quad trees 

 
• Link candidates are eliminated if: 

• Height difference is too high 
• Segment of polygons’ sites intersects edge of the border polygon 

with is not near the border (in order to prevent redundant links) 
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• The sum of areas of visible polygons is divided by some 
predetermined constant and then clamped to [0, 1] range 
 

• Several line collision checks between a pair of polygons may 
be performed in order to distinguish a case of partial visibility 
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Querier 
Voronoi-based 

navigation mesh 

Find path from A to B 

Request querier’s preferences 

Request penalties similar to Markov’s chain process A* 

Post processing 
stage 

Building a Bezier 
curve 

Ready 

Return a sequence of points 

𝑑𝑗 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑣𝑗 , 𝑙𝑖𝑛𝑒 𝑝𝑖−1, 𝑝𝑖+1 , 𝑤𝑗 =
𝑟𝑎𝑛𝑑 1, 𝑏

𝑑𝑗
, 𝑗 = 1, 2 

𝑝𝑖 =
𝑣1 ∗ 𝑤1 + 𝑣2 ∗ 𝑤2
𝑤1 + 𝑤2

 



A sequence of 
points 

Insert additional 
points 

Split into pieces with 
collision-free convex hull 

• Strategy:  
 

 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑃𝑖𝑒𝑐𝑒[𝑖]. 𝐹𝑖𝑟𝑠𝑡𝑃𝑜𝑖𝑛𝑡, 𝑃𝑖𝑒𝑐𝑒[𝑖]. 𝐿𝑎𝑠𝑡𝑃𝑜𝑖𝑛𝑡

𝑖

→ 𝑚𝑖𝑛 

 
• Complexity: 𝜃 𝑛3  
• Ray casts: 𝜃(𝑛2) 

Removal of 
crowded points 

Ensure C1 
continuity 

Ready 
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\ 1 2 3 4 

AD, % 5.9 12.5 27 37.5 

VD, % 0.3 1 0.7 2.1 



Ilya Makarov:     iamakarov@hse.ru 

Pavel Polyakov: polyakovpavel96@gmail.com 


