SMOOTHING VORONOI-BASED PATH WITH MINIMIZED LENGTH AND VISIBILITY USING COMPOSITE BEZIER CURVES

ILYA MAKAROV AND PAVEL POLYAKOV

NATIONAL RESEARCH UNIVERSITY HIGHER SCHOOL OF ECONOMICS

Moscow, Russia

VORONOI-BASED NAVIGATION MESH

- Let $P = \{ p_0, p_1 ... p_n \}$ be a set of points called sites
- Let $VD(p_i) = \{ x: |p_i x| \le |p_j x|, \forall j \ne i, x \in \mathbb{R}^2 \}$ be a polygon of a mesh
- Let a union of connected polygons be a **Voronoi surface**
- THEN A UNION OF VORONOI SURFACES IS A VORONOI-BASED NAVIGATION MESH

VORONOI-BASED NAVIGATION MESH

- Provides an opportunity to find paths considering tactical properties
- ALLOWS TO SOLVE SUCH PROBLEMS AS:
 - PREDICTING ACTIONS OF OPPOSING TEAM
 - SEARCHING FOR SNIPER AND COVER POSITIONS
 - ADOPTING TO DYNAMICALLY CHANGING SITUATION
- HELPS TO SMOOTH PRODUCED PATHS
- HELPS TO TRACK MOVEMENT AS A SEQUENCE OF POLYGONS

CONSTRUCTION PIPELINE

CONSTRUCTION PIPELINE

CONSTRUCTION PIPELINE

- Optimizations:
 - One end of a link should be a border polygon
 - Candidates for the second end are found using quad trees
- Link candidates are eliminated if:
 - Height difference is too high
 - Segment of polygons' sites intersects edge of the border polygon with is not near the border (in order to prevent redundant links)

TACTICAL PROPERTIES CALCULATION

- Let **visibility** be a value from 0 to 1 indicating an amount of area visible from a polygon within a given range

- The sum of areas of visible polygons is divided by some predetermined constant and then clamped to [0, 1] range
- Several line collision checks between a pair of polygons may be performed in order to distinguish a case of partial visibility

TACTICAL PROPERTIES CALCULATION

- VISIBILITY MEASURE ALLOWS US TO:
 - FIND COVERS AND PREDICT WHERE OPPONENTS COULD HIDE
 - SEARCH FOR PATHS MOVING ALONG WHICH WILL BE DETECTED WITH THE LOWEST PROBABILITY ACCORDING TO A MAP TOPOLOGY
- OTHER TACTICAL PROPERTIES CONSIST OF:
 - INFLUENCE MAP
 - FRAG MAP
 - DANGER MAP
 - LOOT MAP
 - SNIPER POSITIONS

PATH PLANNING PIPELINE

BUILDING A COMPOSITE BEZIER CURVE

EXPERIMENT AND CONCLUSION

COMPARISON WITH THE SHORTEST PATH LENGTH

\	1	2	3	4
AD, %	5.9	12.5	27	37.5
VD, %	0.3	1	0.7	2.1

- [1, 2] PIECEWISE PATH WITH VISIBILITY PENALTY MULTIPLIER EQUALED 0 AND 10;
- [3, 4] Smoothed path with visibility penalty multiplier equaled 0 and 10.

THANKS FOR ATTENTION

llya Makarov: iamakarov@hse.ru Pavel Polyakov: polyakovpavel96@gmail.com