SMOOTHING VORONOI-BASED PATH WITH MINIMIZED LENGTH AND VISIBILITY USING COMPOSITE BEZIER CURVES

Ilya Makarov and Pavel Polyakov
National Research University Higher School of Economics
MOSCOW, RusSIA

VORONOI-BASED NAVIGATION MESH

- LET $\boldsymbol{P}=\left\{\boldsymbol{p}_{\mathbf{0}}, \boldsymbol{p}_{1} \ldots \boldsymbol{p}_{\boldsymbol{n}}\right\}$ BE A SET OF POINTS CALLED SITES
- LET $\boldsymbol{V} D\left(\boldsymbol{p}_{i}\right)=\left\{\boldsymbol{x}:\left|\boldsymbol{p}_{\boldsymbol{i}}-\boldsymbol{x}\right| \leq\left|\boldsymbol{p}_{\boldsymbol{j}}-\boldsymbol{x}\right|, \forall \boldsymbol{j} \neq \boldsymbol{i}, \boldsymbol{x} \in \mathbb{R}^{2}\right\}$ BE A POLYGON OF A MESH
- Let a union of Connected polygons be a Voronoi surface
- Then a union of Voronoi surfaces is a Voronoi-based navigation mesh

VORONOI-BASED NAVIGATION MESH

- PROVIDES AN OPPORTUNITY TO FIND PATHS CONSIDERING TACTICAL PROPERTIES
- Allows to solve such problems As:
- Predicting actions of opposing team
- Searching for sniper and cover positions
- Adopting to dynamically changing situation
- Helps to smooth produced paths
- Helps to track movement as a sequence of polygons

CONSTRUCTION PIPELINE

CONSTRUCTION PIPELINE

CONSTRUCTION PIPELINE

TACTICAL PROPERTIES CALCULATION

- Let visibility be a value from 0 to 1 indicating an amount of area visible from a polygon WITHIN A GIVEN RANGE

- The sum of areas of visible polygons is divided by some predetermined constant and then clamped to [0, 1] range
- Several line collision checks between a pair of polygons may be performed in order to distinguish a case of partial visibility

TACTICAL PROPERTIES CALCULATION

- VISIBILITY MEASURE ALLOWS US TO:
- Find covers and predict where OPPONENTS COULD HIDE
- Search for paths moving along which WILL BE DETECTED WITH THE LOWEST PROBABILITY ACCORDING TO A MAP topology
- Other tactical properties consist of:
- Influence map
- Frag map
- Danger map
- Loot map
- SNIPER POSItIONS

PATH PLANNING PIPELINE

BUILDING A COMPOSITE BEZIER CURVE

- Strategy:

$$
\left.\sum_{i} \text { distance(Piece[i]. FirstPoint,Piece }[i] . \text { LastPoint }\right) \rightarrow \text { min }
$$

- Complexity: $\theta\left(n^{3}\right)$
- Ray casts: $\theta\left(n^{2}\right)$

EXPERIMENT AND CONCLUSION

- COMPARISON WITH the ShORTEST PATH LENGTH

\	1	2	3	4
$\mathrm{AD}, \%$	5.9	12.5	27	37.5
$\mathrm{VD}, \%$	0.3	1	0.7	2.1

- [1, 2] PIECEWISE PATH WITH VISIBILITY PENALTY MULTIPLIER EQUALED 0 AND 10;
- [3, 4] SMOOTHED PATH WITH VISIBILITY PENALTY MULTIPLIER EQUALED 0 AND 10.

THANKS FOR ATTENTION

Ilya Makarov: iamakarov@hse.ru
Pavel Polyakov: polyakovpavel96@gmail.com

