

•

•

•

•

•

•

•

•

•

•

•

Voronoi diagram
construction

Quad tree
construction

Projection and
obstacle detection

Voronoi diagram
construction

Quad tree
construction

Projection and
obstacle detection

……

Voronoi diagram
construction

Quad tree
construction

Projection and
obstacle detection

Voronoi links
building

Static properties
calculation

Ready

Voronoi diagram
construction

Quad tree
construction

Projection and
obstacle detection

Voronoi links
building

Static properties
calculation

Ready

• Fortune’s Algorithm, Θ 𝑛𝑙𝑜𝑔𝑛
• Stored in DCEL, Θ 𝑛 memory footprint

• Used for a solution of a point location problem or
• Finding polygons belonging to a specified area

• Projecting a diagram to geometry
• Performing collision checks along edges

Voronoi links
building

Static properties
calculation

Ready

• Optimizations:
• One end of a link should be a border polygon
• Candidates for the second end are found using quad trees

• Link candidates are eliminated if:

• Height difference is too high
• Segment of polygons’ sites intersects edge of the border polygon

with is not near the border (in order to prevent redundant links)

•

• The sum of areas of visible polygons is divided by some
predetermined constant and then clamped to [0, 1] range

• Several line collision checks between a pair of polygons may
be performed in order to distinguish a case of partial visibility

•

•

•

•

•

•

•

•

•

Querier
Voronoi-based

navigation mesh

Find path from A to B

Request querier’s preferences

Request penalties similar to Markov’s chain process A*

Post processing
stage

Building a Bezier
curve

Ready

Return a sequence of points

𝑑𝑗 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑣𝑗 , 𝑙𝑖𝑛𝑒 𝑝𝑖−1, 𝑝𝑖+1 , 𝑤𝑗 =
𝑟𝑎𝑛𝑑 1, 𝑏

𝑑𝑗
, 𝑗 = 1, 2

𝑝𝑖 =
𝑣1 ∗ 𝑤1 + 𝑣2 ∗ 𝑤2
𝑤1 + 𝑤2

A sequence of
points

Insert additional
points

Split into pieces with
collision-free convex hull

• Strategy:

 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑃𝑖𝑒𝑐𝑒[𝑖]. 𝐹𝑖𝑟𝑠𝑡𝑃𝑜𝑖𝑛𝑡, 𝑃𝑖𝑒𝑐𝑒[𝑖]. 𝐿𝑎𝑠𝑡𝑃𝑜𝑖𝑛𝑡

𝑖

→ 𝑚𝑖𝑛

• Complexity: 𝜃 𝑛3
• Ray casts: 𝜃(𝑛2)

Removal of
crowded points

Ensure C1
continuity

Ready

•

•

•

\ 1 2 3 4

AD, % 5.9 12.5 27 37.5

VD, % 0.3 1 0.7 2.1

Ilya Makarov: iamakarov@hse.ru

Pavel Polyakov: polyakovpavel96@gmail.com

