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Estrada & Knight: A First Course on Network Theory, Oxford Univ. Press, 2015
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Degree of A

We can rearrange the previous equations as follows:
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In matrix form we get:
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The previous equation is now written in the following compact form:

Example:

Olfati-Saber, et al., Proc. IEEE 95, 2007 1.
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Definition 1: The consensus set is the subspace 
span{1}, that is  
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Olfati-Saber, et al., Proc. IEEE 95, 2007 1.
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Estrada, Vargas-Estrada, Sci. Rep., 3, 2013.
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Example:

Estrada & Knight: A First Course on Network Theory, Oxford Univ. Press, 2015
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The spectral decomposition of the Laplacian matrix is written as:

Estrada & Knight: A First Course on Network Theory, Oxford Univ. Press, 2015
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n  210

Lemma 1: The Laplacian matrix is positive semidefinite:

n  210

Lemma 2: Let G be a connected network. Then, the Laplacian 
matrix has only one zero eigenvalue:

Estrada & Knight: A First Course on Network Theory, Oxford Univ. Press, 2015
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Olfati-Saber, et al., Proc. IEEE 95, 2007 1.
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Theorem 3: Let G be a connected network. The undirected 
consensus model converges to the consensus set with a
rate of convergence that is dictated by      .2

Proof:                 and                            . Thus 01  1,0  jj
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Hence   .  as   tAtu

As        is the smallest positive eigenvalue of the graph 
Laplacian, it dictates the slowest mode of convergence 
in the previous equation.

2

Mesbahi & Egerstedt., Graph Theory Methods in Multiagent Networks, Princeton, 2010 .
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Proposition 4: A necessary and sufficient condition for the 
consensus model to converge to the consensus subspace
from an arbitrary initial condition is that the network is
connected.

consensus
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Estrada & Knight: A First Course on Network Theory, Oxford Univ. Press, 2015
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leader
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Mesbahi & Egerstedt., Graph Theory Methods in Multiagent Networks, Princeton, 2010 .
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Consider the partition of the network into nl leaders and n- nl followers.

leaders

followers
Example:
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The consensus dynamics of a leader-follower system is 
described by:

Mesbahi & Egerstedt., Graph Theory Methods in Multiagent Networks, Princeton, 2010 .
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Theorem 5: If the network G is connected then       is positive
definite. 

fL

Proof:       is positive semidefinite. If G is connected                                   .

Since,

and

Then

L

   1L spanN

  









0
0

f

f

T

fff

T

f

u
LuuLu

   Lu NT

f 0

  fn

f

f

f

T

f 







u

u
Lu ,0

0
0

Rahmani et al., SIAM J. Control Opt.48, 168, 2009.
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Theorem 6: Given fixed leader opinions      , the equilibrium
point under the leader-follower dynamics is

which is globally asymptotically stable.      

lflff uLLu
1

lu

Proof:                 . Thus         exists and                                      
is well defined.

Hence, the equilibrium point is unique. Moreover, 
because               , this equilibrium point is globally 
asymptotically stable. 

0fL 1

fL lflff uLLu
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0fL
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Mesbahi & Egerstedt., Graph Theory Methods in Multiagent Networks, Princeton, 2010 .
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Definition 2: A directed graph is a rooted out-branching if:
1. It does not contain a directed cycle and
2. It has a vertex vr (root) such that for every other vertex

v there is a directed path from vr to v.

vr
vr

Example:
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Proposition 13: A directed network contains a rooted 
out-branching subgraph if and only if                                 . 
In that case,                  is spanned by the all-ones vector.

   1 nDLrank

  DN L

Theorem 14: For a directed network D containing a rooted
out-branching, the state trajectory generated by the 
consensus dynamic model, initialized from      , satisfies

where     and     , are, respectively, the right and left 
eigenvectors associated with the zero eigenvalue of L(D),
normalized such that               . As a result, one has

for all initial conditions if and only if D contains
a rooted out-branching.
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Mesbahi & Egerstedt., Graph Theory Methods in Multiagent Networks, Princeton, 2010 .
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Example:
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Example:
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Let us consider that a particle at a given node can hop not only to 
its nearest neighbours but to any other node of the network with a 
probability that decays with the shortest path distance from its current
position.
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This situation is frequently observed in the diffusion of atoms and
molecules adsorbed on the surface of metals.

Ala-Nissila, et al., Adv Phys. 51, 949, 2002.
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Definition 3: The k-path Laplacian matrix of a connected,
undirected graph is a symmetric nxn matrix whose entries
are given by:

Let us extend the definition of the Laplacian matrix to account for 
such long-range hops.

Estrada, Lin. Algebra Appl., 436, 3373, 2012.
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Example:

Estrada, Lin. Algebra Appl., 436, 3373, 2012.



Proposition 15: The k-path Laplacian matrix is positive
semidefinite:

     knkk LLL   210

Estrada, Lin. Algebra Appl., 436, 3373, 2012.
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Mellin transform Laplace transform

We can now generalise the consensus dynamics equation to account 
for such long-range hops:

Estrada, Lin. Algebra Appl., 436, 3373, 2012.
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Example:

Estrada, Lin. Algebra Appl., 436, 3373, 2012.
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where:

In the discrete-time version of the equation we have:

The time step ε is bounded as follows

and Δ is the diameter of the network.

Estrada, Lin. Algebra Appl., 436, 3373, 2012.
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The long-range interaction may account for the indirect peers pressure in
a social network.

s2

s3
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Barabási-Albert Random Graph
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What are the ‘best’ leaders in a  network to reduce the time for consensus of
the followers?

Estrada, Vargas-Estrada, Sci. Rep., 3, 2013.
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Theorem 16: The time of consensus averaged over all the
nodes in the network is bounded as follow:

Estrada, Sheerin, Physica D, Nonlinearity 323-324, 2016, 20-26.

Fiedler vector
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Miroslav Fiedler
1926-2015
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No long-range interactions

Random selection

Centrality-based

Estrada, Vargas-Estrada, Sci. Rep., 3, 2013.
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Long-range interactions

Random selection

Centrality-based

Estrada, Vargas-Estrada, Sci. Rep., 3, 2013.
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Sawmill Corporate directors

Drug users Random with communities
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Time Time

LEADERS’ COHESIVENESS

Estrada, Vargas-Estrada, Sci. Rep., 3, 2013.
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Definition 4: A random walk on a network G is a sequence
of nodes                      where each         is chosen to be a
random neighbour of     ,                        and the probability
of the transition is given by

where

1tv
kvvv ,,, 10 

tv   Evv tt 1,

 itjtij vxvxP  1Pr

1
i

ijP



63

   



 





otherwise

, if  

0

1 Ejik
P i

ij

Transition matrix      has entriesP

ijiiout

i

ij

ij AK
k

A
P 1

In terms of the degree and adjacency matrices

      AKpPpp
11  ttt


In matrix form

   
 

ij

i
out

i

i

i

iijj A
k

tp
tpPtp  1

1tThe probability at time



64

    tt Ppp 0




The distribution at time   ,          can be obtained from the initial 
distribution

 tp
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On nonbipartite networks the random walk converges to the
limiting distribution

Pππ




The left eigenvalue of the matrix      is  P 1
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Consider the Laplacian matrix

and multiply both members by

Then, because  

we get

1
K
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Consider the transition matrix

The graph Laplacian can be expressed as

Thus, the diffusion equation can be expressed in terms of the 
transition matrix of the random walk on the network



Replace the Laplacian by the transformed k-path Laplacian

LKIP
~~~ 1

   Ppp
~

1 tt




A multi-hopper random walk evolves as

k

k

kc LL 





1

~   kdiagdiag LK 
~

Estrada et al., Work in progress, 2016.
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Matlab®

Codes
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