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Introduction

In recent years, machine learning and data mining have an
explosive growth with new developments in science and
technology.

The essentials of most machine learning and data mining
techniques are optimization problems.
Traditional machine learning models are dealing with data
when the exact values are known.
This talk considers the case when uncertainties exist in
data.
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Introduction

Support Vector Machines (SVM) is one of the well known
supervised classes of learning algorithms.

It was proposed by Vapnik as a maximum-margin classifier.
Basic SVM models are dealing with the situation that the
exact values of the data points are known.
When the data points are uncertain, different models have
been proposed to formulate the SVM with uncertainties.
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Introduction

Robust SVM with Bounded Uncertainty
Trafalis et al. proposed a robust optimization model when
the perturbation of the uncertain data is bounded by norm,
where some efficient linear programming models are
presented under certain conditions.
Ghaoui et al. derived a robust model when the uncertainty
is expressed as intervals with support and extremum
values.
Fan et al. studied a more general case for polyhedral
uncertainties.
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Introduction

Chance Constrained SVM through Robust Optimization
The Chebyshev based model employs moment information
of the uncertain training points.
The Bernstein bounds can be less conservative than the
Chebyshev bounds since it employs both support and
moment information, but it also makes a strong assumption
that all the elements in the data set are independent.
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Hard Margin SVM

Support Vector Machines (SVM) construct maximum-margin
classifiers:

A two-class dataset of m data points {xi , yi}mi=1 with
n-dimensional features xi ∈ Rn and class labels yi ∈ {±1}.
For linearly separable datasets, there exists a hyperplane
w>x + b = 0 to separate the two classes.
The width between the margin lines w>x + b = ±1 is 2

‖w‖2
2
.

Hard Margin SVM (SVM-HardMargin)

min
w,b

1
2
‖w‖22

s.t. yi(w>xi + b) ≥ 1, i = 1, . . . ,m
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Soft Margin SVM

When two classes are not linearly separable:
Soft margin SVM introduces non-negative slack variables
ξi to measure the distance of data to the margin.
ξi = max{0,1− yi(w>xi + b)}
When 0 < ξi < 1, the data is within margine but correctly
classified; when ξi > 1, the data is misclassified.

Soft Margin SVM (SVM-SoftMargin)

min
w,b,ξi

1
2
‖w‖22 + C

m∑
i=1

ξi

s.t. yi(w>xi + b) ≥ 1− ξi , ξi ≥ 0, i = 1, . . . ,m
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Chance-Constrained SVM

When uncertainties exist in the data points:
A two-class dataset of m uncertain training data points
x̃i ∈ Rn and corresponding labels yi ∈ {±1}.
The Chance-Constrained Program (CCP) is to ensure the
small probability of misclassification for the uncertain data.

Chance-Constrained SVM (SVM-CCP)

min
w,b,ξi

1
2
‖w‖22 + C

m∑
i=1

ξi

s.t. P
{

yi(w>x̃i + b) ≤ 1− ξi

}
≤ ε, ξi ≥ 0, i = 1, . . . ,m
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Robust Chance-Constrained SVM

The exact probability distribution are often unknown:
Only some properties of the distribution could be acquired,
such as the first and second moments.
The distributionally robust or ambiguous chance constraint
is a conservative approximation of the original problem.
Let P be the set of all probability distributions that have the
known properties of P.

Robust Chance-Constrained SVM (SVM-RCCP)

min
w,b,ξi

1
2
‖w‖22 + C

m∑
i=1

ξi

s.t. sup
P∈P

P
{

yi(w>x̃i + b) ≤ 1− ξi

}
≤ ε, ξi ≥ 0, i = 1, . . . ,m
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Moments Information

Assume the first and second moment information of the
random variables x̃i are known.
For random variable x̃i , let µi = E[x̃i ] ∈ Rn be the mean
vector and Σi = E

[
(x̃i − µi)(x̃i − µi)

>] ∈ Sn be the
covariance matrix.
Combine the first and second moments Σi ,µi into one
matrix Ωi :

Ωi =

[
Σi + µiµ

>
i µi

µ>i 1

]
Let P be the set of all probability distributions that have the
same first and second moments.
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Reformulation of (SVM-RCCP) into SDP

SVM SDP Model (SVM-SDP)

min
w,b,ξi ,Ni ,αi

1
2
‖w‖22 + C

m∑
i=1

ξi

s.t. αi −
1
ε

Trace(ΩiNi) ≥ 0, ξi ≥ 0

Ni � 0, Ni +

[
0 1

2yiw
1
2yiw> yib + ξi − 1− αi

]
� 0

Theorem
(SVM-RCCP) is equivalent to (SVM-SDP).
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Reformulation of (SVM-RCCP) into SDP

Proof Sketch

For the p = supP∈P P
{

yi (w>x̃i + b) ≤ 1− ξi

}
, define the indicator function

I(xi ) =

{
1, if yi (w>xi + b) ≤ 1− ξi

0, otherwise

Then p can be expressed by the following program:

p = sup
P

∫
Rn

I(xi )P{xi}dxi

s.t.
∫
Rn

P{xi}dxi = 1∫
Rn

xiP{xi}dxi = µi∫
Rn

xi x>i P{xi}dxi = Σi + µiµ
>
i

P{xi} ≥ 0
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Reformulation of (SVM-RCCP) into SDP

Proof Sketch (Continued)

The dual of the program is:
p = inf

Zi ,zi ,z0i
(Σi + µiµ

>
i ) · Zi + µ>i zi + z0i

s.t. x>i Zi xi + x>i zi + z0i ≥ I(xi ), ∀xi ∈ Rn

Zi ∈ Sn, zi ∈ Rn, z0i ∈ R

The first constraint can be expressed in two constraints:
x>i Zi xi + x>i zi + z0i ≥ 0, ∀xi ∈ Rn

x>i Zi xi + x>i zi + z0i ≥ 1, if yi (w>xi + b) ≤ 1− ξi

Let Mi =

[
Zi

1
2 zi

1
2 z>i z0i

]
, Ωi =

[
Σi + µiµ

>
i µi

µ>i 1

]
The objective function becomes Trace(Ωi Mi )
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Reformulation of (SVM-RCCP) into SDP

Proof Sketch (Continued)

x>i Zi xi + x>i zi + z0i ≥ 0, ∀xi ∈ Rn becomes

[x>i 1]Mi [x>i 1]> ≥ 0, ∀xi ∈ Rn i.e. Mi � 0

x>i Zi xi + x>i zi + z0i ≥ 1, if yi (w>xi + b) ≤ 1− ξi is equivalent that the
following system has no solution xi ∈ Rn such that

x>i Zi xi + x>i zi + z0i − 1 < 0

yi w>xi + yi b + ξi − 1 ≤ 0

According to S-lemma, there exists a nonnegative number βi ≥ 0 such that

x>i Zi xi + x>i zi + z0i − 1 + βi (yi w>xi + yi b + ξi − 1) ≥ 0 ∀xi ∈ Rn
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Reformulation of (SVM-RCCP) into SDP

Proof Sketch (Continued)

The dual program becomes:
p = inf

Mi ,βi
Trace(Ωi Mi )

s.t. Mi � 0, βi ≥ 0

[x>i 1]Mi [x>i 1]> − 1 + βi (yi w>xi + yi b + ξi − 1) ≥ 0 ∀xi ∈ Rn

The whole program becomes:

min
w,b,ξi ,Mi ,βi

1
2
‖w‖2

2 + C
m∑

i=1

ξi

s.t. Mi � 0, βi ≥ 0, ξi ≥ 0

Trace(Ωi Mi ) ≤ ε

[x>i 1]Mi [x>i 1]> − 1 + βi (yi w>xi + yi b + ξi − 1) ≥ 0 ∀xi ∈ Rn
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Reformulation of (SVM-RCCP) into SDP

Proof Sketch (Continued)

To get rid of the bilinear terms in βi (yi w>xi + yi b + ξi − 1), first it could be
verified that βi cannot be zero since Trace(Ωi Mi ) ≤ ε, and 0 < ε < 1. If βi = 0,
then [x>i 1]Mi [x>i 1]> ≥ 1 > ε, ∀xi ∈ Rn, a contradiction. Therefore, βi > 0.

Then the constraints become
1
ε

Trace(Ωi
Mi

βi
)−

1
βi
≤ 0

[x>i 1]
Mi

βi
[x>i 1]> −

1
βi

+ (yi w>xi + yi b + ξi − 1) ≥ 0 ∀xi ∈ Rn

Replace Mi
βi

with Ni � 0, and 1
βi

with αi > 0, the second constraint could further
be expressed as a semidefinite constraint as:

Ni +

[
0 1

2 yi w
1
2 yi w> yi b + ξi − 1− αi

]
� 0

αi > 0 is guaranteed since Ni � 0 and 1
ε

Trace(Ωi Ni )− αi ≤ 0.
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Reformulation of (SVM-RCCP) into SDP

Proof Sketch (Continued)

The whole program becomes:

min
w,b,ξi ,Ni ,αi

1
2
‖w‖2

2 + C
m∑

i=1

ξi

s.t. αi −
1
ε

Trace(Ωi Ni ) ≥ 0, ξi ≥ 0

Ni � 0, Ni +

[
0 1

2 yi w
1
2 yi w> yi b + ξi − 1− αi

]
� 0

This completes the proof of the (SVM-SDP) reformulation.
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Reformulation of (SVM-RCCP) into SDP

The standard SDP formulation is

min
w,b,ξi ,Ni ,αi

m∑
i=1

ξi

s.t. αi −
1
ε

Trace(ΩiNi) ≥ 0, ξi ≥ 0

Ni � 0, Ni +

[
0 1

2yiw
1
2yiw> yib + ξi − 1− αi

]
� 0[

W I w
w> W

]
� 0
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Reformulation of (SVM-RCCP) into SOCP

Theorem
The SDP constraints could yield the SOCP constraints:

αi −
1
ε

Trace(ΩiNi) ≥ 0, Ni � 0,

Ni +

[
0 1

2yiw
1
2yiw> yib + ξi − 1− αi

]
� 0

=⇒ yi(w>µi + b) ≥ 1− ξi +

√
1− ε
ε
||Σ

1
2
i w||2
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SDP Constraints into SOCP Constraints

Proof Sketch

Consider the following problem:

inf
b,ξi ,Ni ,αi

yi b + ξi − 1

s.t. αi −
1
ε

Trace(Ωi Ni ) ≥ 0

Ni � 0

Ni +

[
0 1

2 yi w
1
2 yi w> yi b + ξi − 1− αi

]
� 0

Let γi , Ci , Di =

[
Di di
d>i d0i

]
represent the dual variables of the constraints.
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SDP Constraints into SOCP Constraints

Proof Sketch (Continued)

The Lagrangian is:

inf
b,ξi ,Ni ,αi

sup
γi≥0,Ci�0,Di�0

L (w, b, ξi ,Ni , αi , γi ,Ci ,Di )

= yi b + ξi − 1− γi

(
αi −

1
ε

Trace(Ωi Ni )
)
− Trace(Ci Ni )

− Trace

(
Di ,Ni +

[
0 1

2 yi w
1
2 yi w> yi b + ξi − 1− αi

])
= yi b + ξi − 1− γiαi +

γi

ε
Trace(Ωi Ni )− Trace(Ci Ni )− Trace(Di ,Ni )− yi w>di

− d0i (yi b + ξi − 1− αi )

= (yi b + ξi − 1)(1− d0i )− (γi − d0i )αi + Trace
(γi

ε
Ωi − Ci − Di ,Ni

)
− yi w>di

Panos M. Pardalos Robust Data Analysis



Introduction
Robust Chance-Constrained SVM and Reformulation

Estimation Errors and Performance Measures
Solving Large Scale Robust Chance-Constrained SVM

Conclusions

Robust Chance-Constrained SVM
Reformulation of (SVM-RCCP) into SDP and SOCP
Geometric Interpretation of (SVM-SOCP)
Numerical Experiments

SDP Constraints into SOCP Constraints

Proof Sketch (Continued)

The dual function is finite if and only if
1− d0i = 0, γi − d0i = 0,

γi

ε
Ωi − Ci − Di = 0

Therefore, γi = 1 and 1
ε

Ωi − Di = Ci � 0.

Then the dual problem is:
sup
Di

− yi w>di

s.t.
1
ε

Ωi � Di � 0
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SDP Constraints into SOCP Constraints

Proof Sketch (Continued)

Since Ωi =

[
Σi + µiµ

>
i µi

µ>i 1

]
, Di =

[
Di di
d>i d0i

]
, d0i = 1, and ε > 0, the

constraint 1
ε

Ωi � Di � 0 is equivalent to[
Σi + µiµ

>
i − εDi µi − εdi

µ>i − εd
>
i 1− ε

]
� 0,

[
εDi εdi
εd>i ε

]
� 0

According to Schur Complement Lemma, the above is equivalent to
Σi + µiµ

>
i − εDi − 1

1−ε (µi − εdi )(µi − εdi )
> � 0, εDi − 1

ε
εdiεd>i � 0

i.e., Σi + µiµ
>
i −

1
1− ε

(µi − εdi )(µi − εdi )
> � εDi � εdi d>i

The above holds for some Di if and only if

Σi + µiµ
>
i �

1
1− ε

(µi − εdi )(µi − εdi )
> + εdi d>i
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SDP Constraints into SOCP Constraints

Proof Sketch (Continued)

Expand the constraint

Σi + µiµ
>
i �

1
1− ε

µiµ
>
i −

ε

1− ε
µi d
>
i −

ε

1− ε
diµ
>
i +

ε2

1− ε
di d>i + εdi d>i

=
1

1− ε
µiµ
>
i −

ε

1− ε
(µi d

>
i + diµ

>
i ) +

ε

1− ε
di d>i

It is equivalent to
Σi �

ε

1− ε
(µi − di )(µi − di )

>

The dual problem becomes
sup

di

− yi w>di

s.t.
1− ε
ε

Σi − (µi − di )(µi − di )
> � 0
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SDP Constraints into SOCP Constraints

Proof Sketch (Continued)

From the constraint, there is

yi w>
(1− ε

ε
Σi − (µi − di )(µi − di )

>
)

yi w ≥ 0

Since yi ∈ {+1,−1}, y2
i = 1. Then

(yi w>µi − yi w>di )
2 ≤

1− ε
ε

w>Σi w

Therefore,

−yi w>di ≤
√

1− ε
ε
||Σ

1
2
i w||2 − yi w>µi

The maximum value of −yi w>di is
√

1−ε
ε
||Σ

1
2
i w||2 − yi w>µi since di is the

decision variable such that the equality could be obtained.
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SDP Constraints into SOCP Constraints

Proof Sketch (Continued)

Combine the primal problem and the result for the dual problem, it could yield
that √

1− ε
ε
||Σ

1
2
i w||2 − yi w>µi ≤ yi b + ξi − 1

Or equivalently,

yi (w>µi + b) ≥ 1− ξi +

√
1− ε
ε
||Σ

1
2
i w||2

This completes the proof of the SDP-SOCP transformation.
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Reformulation of (SVM-RCCP) into SOCP

Multivariate Chebyshev Inequality

Let x̃ ∼ (µ,Σ) denote random vector x̃ with mean µ and
convariance matrix Σ.
The multivariate Chebyshev inequality states that for an
arbitrary closed convex set S, the supremum of the
probability that x̃ takes a value in S is

sup
x̃∼(µ,Σ)

P{x̃ ∈ S} =
1

1 + d2

d2 = inf
x∈S

(x− µ)>Σ−1(x− µ)
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Reformulation of (SVM-RCCP) into SOCP

For SVM constraint, the S =
{

y(w>x + b) ≤ 1− ξ
}

is a
half-space produced by a hyperplane and therefore a
closed convex set.
Using multivariate Chebyshev inequality, the SOCP
reformulation of (SVM-RCCP) is

SVM SOCP Model (SVM-SOCP)

min
w,b,ξi

1
2
‖w‖22 + C

m∑
i=1

ξi

s.t. yi(w>µi + b) ≥ 1− ξi +

√
1− ε
ε
||Σ

1
2
i w||2

ξi ≥ 0, i = 1, . . . ,m
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Geometric Interpretation of (SVM-SOCP)

For each point xi , it is no longer a single point, but an ellipsoid

centered at µi , and shaped with the covariance matrix
√

1−ε
ε Σ

1
2
i :

E
(
µi ,

√
1− ε
ε

Σ
1
2
i

)
=
{

x = µi +

√
1− ε
ε

Σ
1
2
i a : ||a||2 ≤ 1

}
The SOCP constraint is satisfied if and only if

yi (w>xi + b) ≥ 1− ξi , ∀xi ∈ E
(
µi ,

√
1− ε
ε

Σ
1
2
i

)
This transforms the (SVM-RCCP) into a robust optimization

problem over the uncertainty set E
(
µi ,
√

1−ε
ε Σ

1
2
i

)
for each

uncertain training data point.
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Geometric Interpretation of (SVM-SOCP)
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Numerical Experiments

The model (SVM-SDP) and model (SVM-SOCP) are
equivalent since they both use the exact supremum of the
chance constraints supP

{
yi(w>x̃i + b) ≤ 1− ξi

}
and both

based on the exact means and covariance matrices of the
random data points.
Numerical experiments in MATLAB using SeDuMi solver
for both models on YALMIP platform also show that these
two formulations would get the same result.
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Synthetic Data

+1 class: 2-d normal distribution with µ+ = [1,1]>, Σ+ = I
−1 class: 2-d normal distribution with µ− = [−1,−1]>, Σ− = I
Each class has 50 points: 10 for training, 40 for test
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Wisconsin Breast Cancer Data

Wisconsin breast cancer data from UCI dataset:
444 benign(+1) class data, 239 malignant (−1) class data
9-dimensional features
Use PCA to show the first 2 principle components
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Wisconsin Breast Cancer Data Classification Result

Table: 20% training, 80% test

ε = 0.01 ε = 0.05 ε = 0.1 ε = 0.2
Test Set Accuracy 96.8±0.6% 96.4±1.0% 96.1±1.1% 96.1±1.2%

SDP Running Time 29.0±2.5 26.5±3.2 23.1±3.2 21.1±2.9
SOCP Running Time 1.3±0.2 1.2±0.3 1.2±0.3 1.2±0.3

Table: 80% training, 20% test

ε = 0.01 ε = 0.05 ε = 0.1 ε = 0.2
Test Set Accuracy 97.4±0.9% 97.1±1.0% 97.0±1.1% 97.1±1.0%

SDP Running Time 155.6±9.7 141.8±9.1 134.2±13.7 121.4±11.7
SOCP Running Time 3.3±0.1 4.1±0.2 5.0±0.4 5.8±0.6
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Ionosphere Data

Ionosphere data from UCI dataset:
225 for +1 good class, 126 for −1 bad class
34-dimensional data
Use PCA to show the first 2 principle components

Panos M. Pardalos Robust Data Analysis



Introduction
Robust Chance-Constrained SVM and Reformulation

Estimation Errors and Performance Measures
Solving Large Scale Robust Chance-Constrained SVM

Conclusions

Robust Chance-Constrained SVM
Reformulation of (SVM-RCCP) into SDP and SOCP
Geometric Interpretation of (SVM-SOCP)
Numerical Experiments

Extracted Ionosphere Data Classification Result

Table: 20% training, 80% test

ε = 0.02 ε = 0.05 ε = 0.1 ε = 0.2
Test Set Accuracy 84.0±2.5% 84.4±2.1% 84.1±2.2% 84.2±2.2%

SDP Running Time 20.6±1.8 18.3±1.6 18.1±2.1 19.1±2.4
SOCP Running Time 1.1±0.2 1.1±0.3 1.0±0.3 1.0±0.4

Table: 80% training, 20% test

ε = 0.02 ε = 0.05 ε = 0.1 ε = 0.2
Test Set Accuracy 86.9±3.6% 87.8±3.8% 87.2±3.9% 87.2±4.3%

SDP Running Time 107.4±7.6 97.9±7.3 96.0±10.0 95.7±8.3
SOCP Running Time 2.4±0.2 3.0±0.4 3.7±0.5 4.6±0.3
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Estimation Errors

In practice, the distribution properties are often unknown but
need to be estimated from data.

If an uncertain data point x̃i = [x̃i1, . . . , x̃in]> has N samples
xik , k = 1, . . . ,N, then the sample mean x̄i = 1

N

∑N
k=1 xik is used

to estimate the mean vector µi = E[x̃i ], and the sample
covariance Si = 1

N−1

∑N
k=1(xik − x̄i )(xik − x̄i )

> is used to
estimate the covariance matrix Σi = E

[
(x̃i − µi )(x̃i − µi )

>].
However, these could cause possible estimation errors.

Three special cases when the mean vector µi and covariance
matrix Σi are not exactly known are discussed here.
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Estimation Error I: µi ∈ [µ−i ,µ
+
i ], Σi = Si

The interval of µi works for each element in the feature vector, i.e.
µij ∈ [µ−ij , µ

+
ij ], j = 1, . . . ,n.

(SVM-SOCP-Mu1)

min
w,b,ξi ,zij

1
2
‖w‖2

2 + C
m∑

i=1

ξi

s.t.
∑

j

zij + yib ≥ 1− ξi +

√
1− ε
ε
||Σ

1
2
i w||2

zij ≤ yiµ
−
ij wj , zij ≤ yiµ

+
ij wj

ξi ≥ 0, i = 1, . . . ,m
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Estimation Error I: µi ∈ [µ−i ,µ
+
i ], Σi = Si

This case is applied when the confidence interval of µij could be
estimated.

For a random variable x̃ij with normal distribution, and N samples
xijk , k = 1, . . . ,N, the sample mean x̄ij = 1

N

∑N
k=1 xijk , the unbiased

sample variance s2
ij = 1

N−1

∑N
k=1(xijk − x̄ij )

2, then x̄ij−µij

sij/
√

N
∼ tN−1.

The confidence interval of µij is
[
x̄ij − tcrit · sij/

√
N, x̄ij + tcrit · sij/

√
N
]
,

where tcrit is the coefficient corresponding to the confidence level 1− α
and the degree of freedom N − 1.
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Estimation Error I: µi ∈ [µ−i ,µ
+
i ], Σi = Si

For n-dimensional vector x̃i ∈ Rn, the Bonferroni correction
factor uses α/n instead of α for each of the n univariate
confidence interval.

The geometric interpretation of this case is that, for each point
xi , it is replaced by a union of ellipsoids, with center varies in the
hyper-rectangle [µ−i ,µ

+
i ], and shaped with the covariance matrix√

1−ε
ε Σ

1
2
i .
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Estimation Error II: (µi − x̄i)
>Σ−1

i (µi − x̄i) ≤ ν2
i , Σi = Si

Since the Bonferroni correction is for the case when the random
variables x̃ij in x̃i are independent, it would over-correct and result in
lower α and larger robust region than it needs to be when they are not
independent.

The Hotelling’s T-square test statistic T 2 = N(x̄−µ)>S−1(x̄−µ), and it
has the property that N−n

n(N−1)
T 2 ∼ F (n,N − n).

Then the confidence region for µi is T 2 ≤ n(N−1)
N−n Fcrit , i.e.,

(µi − x̄i )
>S−1

i (µi − x̄i ) ≤ n(N−1)
N(N−n)

Fcrit , where Fcrit is the coefficient
corresponding to the confidence level 1− α and the degree of freedom
(n,N − n).
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Estimation Error II: (µi − x̄i)
>Σ−1

i (µi − x̄i) ≤ ν2
i , Σi = Si

Let ν2
i = n(N−1)

N(N−n) Fcrit , the geometric interpretation is that, the
mean vector µi varies in an ellipsoid centered at x̄i and shaped

with νiΣ
1
2
i .

Then the uncertainty set for each point xi is a union of ellipsoids,
with center varies in the ellipsoid E

(
x̄i , νiΣ

1
2
i

)
, and shaped with√

1−ε
ε Σ

1
2
i .

This has a more concise form that the union of these ellipsoids is

also an ellipsoid E
(

x̄i ,
(√ 1−ε

ε + νi
)
Σ

1
2
i

)
.
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Estimation Error II: (µi − x̄i)
>Σ−1

i (µi − x̄i) ≤ ν2
i , Σi = Si

The model in this case is:

(SVM-SOCP-Mu2)

min
w,b,ξi

1
2
‖w‖2

2 + C
m∑

i=1

ξi

s.t. yi (w>µi + b) ≥ 1− ξi +
(√1− ε

ε
+ νi

)
||Σ

1
2
i w||2

ξi ≥ 0, i = 1, . . . ,m
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Estimation Error III: µi = x̄i , ||Σi − Si ||F ≤ ρi

The Frobenius norm is ||A||2F = Trace(A>A) =
∑

ij A2
ij . In this case,

the uncertainty set becomes E
(
µi ,
√

1−ε
ε

(
Σi + ρi In

) 1
2
)

.

(SVM-SOCP-Cov)

min
w,b,ξi

1
2
‖w‖2

2 + C
m∑

i=1

ξi

s.t. yi (w>µi + b) ≥ 1− ξi +

√
1− ε
ε

∥∥∥(Σi + ρi In
) 1

2 w
∥∥∥

2

ξi ≥ 0, i = 1, . . . ,m
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Estimation Errors
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Performance Measures

Test Set Accuracy (TSA) is a direct way to evaluate the model
performance.

TSA is computed by counting the number of correctly predicted
labels in the test data set and divided by the size of the test set.

The class label yi is decided by the sign(w>xi + b).

When there are replicates xik for the test point xi , the class label
yi is decided by the majority label of the replicates
sign(w>xik + b).
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Performance Measures

Nominal Error and Optimal Error can also be used to evaluate
the model performance.

The nominal error is similar to TSA but the opposite, i.e., TSA +
NomErr = 1.

The expression for NomErr is:

NomErr =

∑
i 1ypr

i 6=yi

# test datapoints
× 100%
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Performance Measures

The optimal error is based on the probability of misclassification.

For supP∈P P{yi (w>x̃i + b) ≤ 0} ≤ ε, it can be similarly transformed

into yi (w>µi + b) ≥
√

1−ε
ε
||Σ

1
2
i w||2.

εopt =
w>Σiw

(w>µi + b)2 + w>Σiw

The OptErr of data point xi is

OptErri =

{
1, if ypr

i 6= yi

εopt , if ypr
i = yi

The OptErr of the whole test set is

OptErr =

∑
i OptErri

# test datapoints
× 100%
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Numerical Experiments

The three estimation error cases µi ∈ [µ−i ,µ
+
i ],

(µi − x̄i )
>Σ−1

i (µi − x̄i ) ≤ ν2
i , and ||Σi − Si ||F ≤ ρi were

experimented on the two norm data, the Wisconsin breast
cancer data, and the Ionosphere data.

For each data point xi , N = 50 replicates xik (k = 1, . . . ,N) were
generated with mean equal to the value of the data point xi , and
covariance equal to 0.01 times the covariance of the training
dataset.

For the two norm data, since we generated the data using
Σ+ = Σ− = I, the replicates generation covariance used 0.01I.
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Numerical Experiments

Two µi = x̄i µi ∈ [µ−i ,µ
+
i ] µi ∈ E

(
x̄i , νiΣ

1
2
i
)

µi = x̄i
Norm Σi = Si Σi = Si Σi = Si ||Σi − Si ||F ≤ ρi

NomErr 9.75±3.69% 9.63±3.42% 9.63±3.61% 9.69±3.82%
OptErr 12.44±3.92% 12.62±3.92% 12.46±3.84% 12.43±3.75%
Time 0.59±0.10 0.74±0.09 0.59±0.09 0.60±0.08

Breast µi = x̄i µi ∈ [µ−i ,µ
+
i ] µi ∈ E

(
x̄i , νiΣ

1
2
i
)

µi = x̄i
Cancer Σi = Si Σi = Si Σi = Si ||Σi − Si ||F ≤ ρi
NomErr 4.16±1.03% 3.99±0.83% 4.07±0.92% 3.66±0.82%
OptErr 6.82±0.99% 6.61±0.88% 6.64±0.89% 6.26±0.75%
Time 1.94±0.24 6.18±0.77 2.01±0.26 2.10±0.28

Ionosphere µi = x̄i µi ∈ [µ−i ,µ
+
i ] µi ∈ E

(
x̄i , νiΣ

1
2
i
)

µi = x̄i
Data Σi = Si Σi = Si Σi = Si ||Σi − Si ||F ≤ ρi

NomErr 15.21±2.58% 15.60±2.17% 15.55±2.41% 19.15±6.81%
OptErr 18.87±2.20% 18.92±2.15% 18.93±2.21% 22.02±5.76%
Time 1.35±0.13 5.98±0.69 1.38±0.16 1.37±0.18
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Primal-Dual Interior Point Method

Primal-dual interior point methods were originally used for linear
programming. These methods create the system of equations Au = b,
A>v + s = c, and relax the complementarity conditions into uisi = µ,
then apply Newton’s method to solve the system.

SeDuMi uses primal-dual interior-point method to solve conic linear
program problems. In each iteration, a search direction (∆u,∆v,∆s) is
computed and added to the current feasible solution (u, v, s) with the
step length t > 0, and the next feasible solution (u+, v+, s+) is

(u+, v+, s+) = (u, v, s) + t(∆u,∆v,∆s)
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Primal-Dual Interior Point Method

The search direction (∆u,∆v,∆s) is defined by the following equations:

∆u + Π∆s = r
A∆u = 0

A>∆v + ∆s = 0

where Π is an invertible block diagonal matrix which satisfies Π>s = u.

When setting r = −u, then (u+)>s+ = (1− t)u>s. The duality gap is
decreasing in each iteration.

Instead of solving the system directly, ∆v can be solved by a reduced
system. When r = −u, the reduced system is

AΠA>∆v = b

After solving ∆v, then we can obtain ∆s = −A>∆v, ∆u = r−Π∆s.
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Primal-Dual Interior Point Method

Primal-Dual Interior Method in SeDuMi

Step 0: Initial solution (u, v, s) ∈ K × Rm × K with
Au = b and A>v + s = c such that λ(P(u)1/2s) ∈ N.

Step 1: If u>s ≤ ε then STOP.
Step 2: Choose Π and r according to algorithmic settings.

Compute the search direction (∆u,∆v,∆s).
Determine the step length t > 0 s.t. λ(P(u + t∆u)1/2(s + t∆s)) ∈ N.

Step 3: Update (u, v, s)← (u + t∆u, v + t∆v, s + t∆s) and return to Step 1.

The worst case iteration bound for SeDuMi is O(
√
ν(K )| log ε|) where ν(K ) is

the order of the cone K .
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Stochastic Gradient Descent Method

For a two-class dataset of m data points {xi , yi}m
i=1 with n-dimensional

features xi ∈ Rn and respective class labels yi ∈ {+1,−1}, the soft
margin SVM can be expressed in this particular form:

min
w,b

f (w, b) =
1
2

w>w + C
m∑

i=1

max{0, 1− yi (w>xi + b)}

The second term is also called penalty function. The function
L(xi , yi ) = max{0, 1− yi (w>xi + b)} decreases linearly for
yi (w>xi + b) ≤ 1 and then remains 0, so it is a hinge function, its value
is called the hinge loss.
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Stochastic Gradient Descent Method

For large scale data, gradient descent method has advantages. To
minimize f , the gradient is computed, then the current w is moved in the
direction opposite to the direction of the gradient.

A constant ηt is chosen to be the fraction of the gradient that to be
moved in each round. The gradient descent iteration is:

wt+1 ← wt − ηt∇wf

The gradient of f with respect to w can be computed as

∇wf = w + C
m∑

i=1

∇wL(xi , yi )

= w + C
m∑

i=1

{
0, if yi (w>xi + b) ≥ 1
−yixi , otherwise
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Stochastic Gradient Descent Method

The gradient descent method is also called batch gradient descent
because all the training points are considered as a batch at each round.
The problem of the batch gradient descent method is that to compute
∇wf , it needs to go over all the m training data points. When the data
size is large, it can be too time-consuming to visit every training point
and often iterates many times before convergence.

The stochastic gradient descent, on the other hand, considers one
training point at a time and adjusts the current solution in the direction
evaluated by the only training point:

∇wft = w + Cm∇wL(xit , yit )

The training point (xit , yit ) can be selected randomly or according to
some fixed strategy.
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Stochastic Gradient Descent Method

Batch Gradient Descent Method

Iterate until convergence:
Evaluate: ∇wf = w + C

∑m
i=1∇wL(xi , yi )

Update: wt+1 ← wt − ηt∇wf

Stochastic Gradient Descent Method

Iterate until convergence:
Evaluate: ∇wft = w + Cm∇wL(xit , yit )
Update: wt+1 ← wt − ηt∇wft
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Stochastic Gradient Descent Method

The batch gradient descent method improves the value of the objective
function at every step. The stochastic gradient descent method improves the
value in a noisy way since it only considers one point at each iteration. The
batch gradient descent method takes fewer iterations to converge, but in each
iteration, it takes much longer to compute. In practice, the stochastic gradient
descent method is much faster.

The computational cost of batch gradient descent method and stochastic
gradient descent method is:

BGD SGD
Time per iteration mn n

Iterations to ε-accuracy log(1/ε) 1/ε
Time to ε-accuracy mn log(1/ε) n/ε
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Stochastic Gradient Descent Method

As an application of the stochastic gradient descent method, Pegasos
(Primal Estimated sub-GrAdient SOlver for SVM) studied the SVM
problem in this form:

min
w

f (w) =
λ

2
w>w +

1
m

m∑
i=1

max{0, 1− yiw>xi}

On iteration t , a random training point (xit , yit ) is chosen uniformly with
it ∈ {1, . . . ,m}. The objective function is approximated with the training
point (xit , yit ):

ft (w) =
λ

2
w>w + max{0, 1− yit w

>xit }

The step size is set to be ηt = 1/(λt). The update is:

wt+1 ← (1− 1
t

)wt + ηt1[yit
w>t xit

<1]yit xit
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Stochastic Gradient Descent Method

Pegasos

Initialize w1 = 0
For t = 1, 2, . . . ,T

Choose it ∈ {1, . . . ,m} uniformly at random
Set ηt = 1/(λt)
If yit w

>
t xit < 1, then

Set wt+1 ← (1− 1/t)wt + ηtyit xit
Else (yit w

>
t xit ≥ 1)

Set wt+1 ← (1− 1/t)wt

Pegasos can obtain an ε-accuracy solution for the primal problem in Õ(1/ε)
iterations with the cost per iteration O(n).
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Solving Large Scale SVM-RCCP

The SOCP reformulation of robust chance-constrained SVM is:

min
w,b,ξi

1
2
‖w‖2

2 + C
m∑

i=1

ξi

s.t. yi (w>µi + b) ≥ 1− ξi +

√
1− ε
ε
||Σ

1
2
i w||2

ξi ≥ 0, i = 1, . . . ,m

Write the model in the form similar to gradient descent method:

min
w,b

f (w, b) =
1
2

w>w+C
m∑

i=1

max

{
0, 1−yi (w>µi +b)+

√
1− ε
ε

w>Σiw

}
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Solving Large Scale SVM-RCCP

For L(µi ,Σi , yi ) = max
{

0, 1− yi (w>µi + b) +
√

1−ε
ε

w>Σiw
}

, the
gradient

∇wL(µi ,Σi , yi ) =


0, if yi (w>µi + b) ≥ 1 +

√
1−ε
ε
||Σ

1
2
i w||2

−yiµi +
√

1−ε
ε

Σi w

||Σ
1
2
i w||2

, otherwise

For wt+1 ← wt − ηt∇wft , the gradient considered is 1/(Cm) of the
original f :

∇wft =
1

Cm
w +∇wL(µit ,Σit , yit )

The step size ηt = Cm/t .
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Solving Large Scale SVM-RCCP

SVM-RCCP SGD Method

Initialize w1 = 0, b1 = 0
For t = 1, 2, . . . ,T

Choose it ∈ {1, . . . ,m} uniformly at random
Set ηt = Cm/t

If yit (w
>
t µit + bt ) < 1 +

√
1−ε
ε
||Σ

1
2
it

wt ||2, then

Set wt+1 ← (1− 1/t)wt + ηt

(
yitµit −

√
1−ε
ε

Σit
wt

||Σ
1
2
it

wt ||2

)
bt+1 ← bt + ηtyit

Else (yit (w
>
t µit + bt ) ≥ 1 +

√
1−ε
ε
||Σ

1
2
it

wt ||2)
Set wt+1 ← (1− 1/t)wt

bt+1 ← bt
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Numerical Experiments

Three sets of data are used in the numerical experiments.

Wisconsin breast cancer data: 683 samples, 9-dimensional features
Ionosphere data: 351 samples, 34-dimensional features

MAGIC Gamma Telescope data: 19020 samples, 10-dimensional features

The sampling procedure is chosen to be sampling without replacement
and new permutation is generated every epoch. In the experiments, the
iterations goes 2 epochs, 10 epochs, and 50 epochs over the training
data.

As comparison, SeDuMi is used to solve the SOCP reformulation of
robust chance-constrained SVM directly.
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Wisconsin Breast Cancer Data

Wisconsin Breast Cancer Data: 683 samples, 9-dimensional features

Table: 20% training, 80% test

SeDuMi SGD 2m SGD 10m SGD 50m
Time 0.857±0.063 0.013±0.002 0.034±0.001 0.146±0.002
TSA 96.16±0.98% 93.90±4.23% 96.09±1.27% 96.08±0.64%

Table: 80% training, 20% test

SeDuMi SGD 2m SGD 10m SGD 50m
Time 2.542±0.094 0.029±0.001 0.117±0.001 0.564±0.007
TSA 96.72±1.12% 95.84±2.12% 96.68±1.31% 96.70±1.28%
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Wisconsin Breast Cancer Data
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Ionosphere Data

Ionosphere Data: 351 samples, 34-dimensional features

Table: 20% training, 80% test

SeDuMi SGD 2m SGD 10m SGD 50m
Time 0.728±0.053 0.010±0.000 0.024±0.001 0.099±0.003
TSA 83.56±2.50% 76.89±7.96% 81.09±4.63% 82.85±2.93%

Table: 80% training, 20% test

SeDuMi SGD 2m SGD 10m SGD 50m
Time 1.961±0.044 0.022±0.001 0.083±0.002 0.394±0.013
TSA 85.93±3.48% 80.71±5.07% 85.57±4.14% 85.64±4.33%
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Ionosphere Data

Panos M. Pardalos Robust Data Analysis



Introduction
Robust Chance-Constrained SVM and Reformulation

Estimation Errors and Performance Measures
Solving Large Scale Robust Chance-Constrained SVM

Conclusions

SeDuMi Algorithms to Solve SDP and SOCP
Large Scale Linear SVM Solving Methods
SVM-RCCP SGD Method and Numerical Experiments

MAGIC Gamma Telescope Data

MAGIC Gamma Telescope Data: 19020 samples, 10-dimensional features

Table: 20% training, 80% test

SeDuMi SGD 2m SGD 10m SGD 50m
Time 41.198±4.558 0.215±0.002 1.031±0.011 5.011±0.115
TSA 76.80±0.52% 64.29±6.61% 72.09±4.09% 74.35±3.87%

Table: 80% training, 20% test

SeDuMi SGD 2m SGD 10m SGD 50m
Time - 0.850±0.028 4.061±0.075 20.105±0.654
TSA - 67.47±6.49% 72.14±4.71% 74.68±3.39%
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MAGIC Gamma Telescope Data
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Conclusions

This talk presents robust chance-constrained SVM with
second-order moment information and obtains equivalent
SDP and SOCP reformulations.

Three types of estimation errors for mean and covariance
matrix are considered and the corresponding formulations
and techniques to handle these types of errors are
presented.

The method to solve robust chance-constrained SVM with
large scale data is proposed based on stochastic gradient
descent method to process big data.
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Thank You!
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