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Dependencies in Data

Dependencies in data
Consider the following records:

Case: Age Gender Income (£ K) Outcome (£
K)

Home
owner

Credit
score

1 21 0 2 1 0 3
2 18 1 1 2 0 1
3 50 1 6 2 1 5
4 23 0 3 1 1 4
5 40 1 3 2 0 2

Each case is a vector y ∈ ℝm:

y1 = (21, 0, 2, 1, 0, 3)T

y2 = (18, 1, 1, 2, 0, 1)T

⋯

yn = (23, 0, 3, 1, 1, 4)T

The variables ‘Age’, ‘Income’, ‘Outcome’ define a basis in ℝm, and we
are interested in dependencies between the variables.
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Dependencies in Data

Correlation

Correlation is the measure of linear dependency:

Corr(x, y) =
Cov(x, y)

√

Var{x}Var{y}

If x = y, then Corr(x, y) = 1 (for Cov(x, x) = Var{x})

Correlated Uncorrelated Anticorrelated

Corr(x, y) = 1 Corr(x, y) = 0 Corr(x, y) = −1

Roman Belavkin (Middlesex University) ICA and Clustering December 19, 2016 5 / 27



Dependencies in Data

Correlation matrix

Age Gender Income Outcome H. owner C. score
Age 1,0 0,6 0,9 0,6 0,4 0,5

Gender 0,6 1,0 0,2 1,0 -0,2 -0,3

Income 0,9 0,2 1,0 0,2 0,7 0,9

Outcome 0,6 1,0 0,2 1,0 -0,2 -0,3

H. owner 0,4 -0,2 0,7 -0,2 1,0 0,9

C. score 0,5 -0,3 0,9 -0,3 0,9 1,0
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Dependencies in Data

Principle component analysis

PCA is a linear transformation of data y ↦ Ky = x:

Ky =
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Such that the transformed vectors x = (x1,… , xm) have uncorrelated
coordinates:

Corr(xi, xj) = 0 for all i ≠ j

Often most of the variance in the data is accounted by variance in
only a few (k < m) components (the principal components).
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Dependencies in Data

Correlation ≢ dependency

Let x ∈ ℝ and y be defined as:

y = sin(x)

Thus, y depends on x by functionally, but

Corr(x, y) = 0

To see this, recall that correlation represents an average linear trend
between y and x.
Generally

x, y are independent ⇒ Corr(x, y) = 0
x, y are independent ⇍ Corr(x, y) = 0
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Shannon’s Information and Entropy

Independence

Recall that x and y are independent if and only if the conditional
probability P(y ∣ x) equals to P(y) (marginal):

P(y ∣ x) = P(y) or J(x, y) = Q(x)P(y)

Dependency is measured by mutual information:

I(x, y) ∶= EJ

{

ln
P(y ∣ x)

P(y)

}

=
∑

x,y

[

ln
P(y ∣ x)

P(y)

]

J(x, y) ≥ 0

For dependency in y = (y1,… , ym) we can consider the divergence:

I(y1,… , ym) =
∑

y1,…,ym

[

ln
J(y1,… , ym)

P(y1)⊗⋯⊗ P(ym)

]

J(y1,… , ym) ≥ 0
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Shannon’s Information and Entropy

Information as distance
Kullback-Leibler divergence of Q from P in  :

DKL[P,Q] ∶= EP{ln P − ln Q} =
∑

Ω
[ln P(!) − ln Q(!)] P(!)

Surprise associated with observation of event e ∈ Ω:

DKL[�e,Q] =
∑

Ω

[

ln �e(!) − ln Q(!)
]

�e(!) = − ln Q(e)

Entropy is expected surprise

H[Q] ∶= EQ{− ln Q} = −
∑

[ln Q]Q

Shannon (1948) information is divergence of product of marginals
Q⊗ P from joint measure J:

DKL[J,Q⊗ P] = EJ {ln J − ln Q⊗ P} =∶ I(x, y)
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Shannon’s Information and Entropy

Shannon information and entropy
Shannon (1948) mutual information between x and y:

I(x, y) =
∑

X×Y

[

ln
J(x, y)

Q(x)P(y)

]

J(x, y)

=
∑

Y
P(y)

∑

X

[

ln
Q(x ∣ y)

Q(x)

]

Q(x ∣ y)

= H[Q(x)] − H[Q(x ∣ y)]
= H[P(y)] − H[P(y ∣ x)]
= H[Q(x)] + H[P(y)] − H[J(x, y)]

Shannon information of x is:

I(x, x) = H[Q]

If x has elementary distribution �!(E), then:

I(x, x) = H[�] = 0
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Independent Component Analysis
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Independent Component Analysis

Blind source separation

ICA belongs to a class of techniques for blind source separation
The data y ∈ ℝm that we observe is the result of some unknown
transformation f of some unobserved source signals x ∈ ℝn:

y = f (x)

The goal of BSS is to find the inverse transformation f−1 (and hence
the sources x = f−1(y)) only based on the observed data.
BSS is possible under some assumptions, such as if f is a linear
transformation of independent sources:

y = Mx , W ≈ M−1 , x ≈ Wy
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Independent Component Analysis

Example: The cocktail party problem

The sources x = (x1,… , xm) are m people at a party, whose voices are
recorded by n ≥ m microphones.
The data y = (y1,… , yn) are n recordings of mixed signals.
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Independent Component Analysis

Independent component analysis

ICA is a linear transformation of data y ↦ Wy = x:

Wy =
⎛
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⎠
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⎛

⎜

⎜
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⋮
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⎠

= x

Such that the transformed vectors x = (x1,… , xm) have independent
coordinates:

J(x1,… , xm) = P(x1)⊗⋯⊗ P(xm) or I(x1,… , xm) = 0

This can be achieved by iterative algorithms that estimate matrix W
minimizing I(Wy).
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Independent Component Analysis

FastICA algorithm

Recall the Central Limit Theorem, according to which the sum
x1 +⋯ + xn of n independent random variables with essentially
bounded variances converges (in distribution) to a Gaussian random
variable.
Thus, the observed data yi = wi1x1 +⋯ + wimxm is generally ‘more
Gaussian’ than the independent sources xj.
The non-Gaussianity is measured by neg-entropy, which is
approximated by

I(yi) = |E{G(yi)} − E{G(v)}|2

where v is normal N(0, 1) and G are special functions (e.g.
G(u) = (1∕�) log cosh(�u) or G(u) = − exp(u2∕2))
The FastICA algorithm (Hyvärinen & Oja, 1997) iteratively finds
W ≈ M−1 maximizing I(yi) for Wy
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Independent Component Analysis

Direct entropy minimization algorithms
The divergence I(Wy) = I(x1,… , xn) in terms of entropies:

I(Wy) =
∑

x1,…,xn

[

ln
J(x1,… , xn)

P(x1)⊗⋯⊗ P(xn)

]

J(x1,… , xn)

= −

(

∑

x1

[ln P(x1)]P(x1) +⋯ +
∑

xn

[ln P(xn)]P(xn)

)

+
∑

x1,…,xn

[ln J(x1,… , xn)] J(x1 … , xn) =
n
∑

i=1
H[P(xi)] − H[J(Wy)]

If Wy = x is injective, then H[J(y)] = H[J(Wy)] = H[J(x)], so that

min
Wy=x

I(Wy) ⟺ max
Wy=x

m
∑

i=1
H[P(xi)]

RADICAL algorithm does this using Jacobi rotations (Learned-Miller
& Fisher, 2003) and using ordered statistics (Vasicek, 1976) to
estimate H[P(xi)].
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Independent Component Analysis
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Clustering
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Clustering

Clustering
Clusters

0 2 4 6 8 10
0

2

4

6

8

10

x

y

Clustering is a partition
X = X1 ∪⋯ ∪ Xk of data.
It is a mapping f ∶ X → Y to a set Y of
labels (codes):

x ↦ f (x) = y

The groups can be based on similarity.
Example (k-means)
Y is the set of k points in (X, d), and f ∶ X → Y solves:

min
f (x)=y

k
∑

i=1

∑

x inf−1(yi)

d(x, yi)

The new yi ∈ Y are set to be the centroids yt+1
i = E{x inf−1(yt

i)}.
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Clustering

Clustering as source coding

f ∶ X → Y is an encoding, where each yi must have as much
information about x ∈ Xi = f−1(yi) as possible.
Trivial solution is to use an injective (or uniquely-decodeable) code:

f (xi) = f (xj) ⇒ xi = xj

Usually, we want some compression k = |Y|≪ |X| (non-injective f ).
and preserving as much information as possible:

max
f (x)=y

I(x, y)
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Clustering

Conditional entropy minimization clustering

for f (x) = y

P(y ∣ x) = �f (x)(y) =

{

1 if y = f (x)
0 otherwise

Conditional entropy
H[P(y ∣ x)] = 0

I(x, y) = H[P(y)] ≤ ln |Y|

Maximize H[P(y)] ≤ H[P(x)]:

k = |Y| ≤ eH[P(x)]

for x inf−1(y)

Q(x ∣ y) = Q(x)
∑

x inf−1(y) Q(x)

Conditional entropy
H[Q(x ∣ y)] ≥ 0

I(x, y) = H[Q(x)] − H[Q(x ∣ y)]

Minimize H[Q(x ∣ y)]:

H[Q(x ∣ y)] =
k
∑

i=1
H[Q(x

−1
inf(yi))]

Detection of HTTP-GET attack
Entropy-based clustering of user online behaviour (Chwalinski, Belavkin, &
Cheng, 2013).Roman Belavkin (Middlesex University) ICA and Clustering December 19, 2016 23 / 27
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Value of Information

Value of information and optimal solutions

Linear programming problem to find optimal P̂(y ∣ x) = Ĵ(x,y)
Q(x) :

minimize EJ{d(x, y)} subject to I(x, y) ≤ �

The inverse convex programming problem:

minimize I(x, y) subject to EJ{d(x, y)} ≤ �

Optimal solution for d(x + a, y + a) = d(x, y) (Stratonovich, 1975):

Q̂(x ∣ y) = e−�d(x,y)
∑

X e−�d(x,y)
, �−1 = − d

d�
EĴ{d}(�)

Optimal transformation x ↦ y given by P̂(y ∣ x) is randomized
(Belavkin, 2013).
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Value of Information

Geometric value of information
Ep{u} = ⟨u, p⟩ expected utility
F[p, q] information divergence
Value of information �:

�u(�) ∶= sup{⟨u, p⟩ ∶ F[p, q] ≤ �}

Information of value �:

�u(�) ∶= inf{F[p, q] ∶ ⟨u, p⟩ ≥ �} = �−1
u (�)

Optimal solutions:

p(�) ∈ )F∗[�u, q] , F[p(�), q] = �

(Stratonovich, 1965; Belavkin,
2013)

!3

!1!2

q

p�

Ep{f } ≥ �

Ep{ln(p∕q)} ≤ �
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