
CNN optimization

Rassadin A.

01.2017 - 02.2017



● Training stage time consumption (CPU / GPU)

● Inference stage time consumption (CPU / GPU)

● Training stage memory consumption

● Inference stage memory consumption

● Training stage power consumption

● Inference stage power consumption

What to optimize?



By the accuracy loss:

● lossless;

● optimization with accuracy loss;

● optimization-accuracy trade-off.

By the approach type:

● architectural;

● operational;

● computational;

● hardware.

By the restrictions:

● architecture-dependent;

● architecture-independent.

Methods’ classification
By the optimization type:

● speed;

● memory consumption;

● energy consumption.

By the implementation:

● runtime implementation;

● two-step (training -> optimization);

● sequential (training -> optimization -> re-training).



● continuous architecture improvement (evolution)

convolution spread up, replacement FC with convolutions, 1x1 convolutions, residual connections etc.

● hardware / driver optimization

special-purpose processing and memory units (Google TPU, Nervana Engine, Movidius VPU, SnapDragon 820 etc.)

● optimization-precision trade-off

vDNN, FP16, INT8

● special-purpose frameworks

NNPack, tiny-dnn, Darknet

● general framework optimizations

Methods overview: the general-kind optimization



● Pruning

Han et al. 2016, Molchanov et al. 2016

● Distillation The Knowledge

Hinton et al. 2014, Romero et al. 2014

● Weights Hashing / Quantization

Chen et al. 2015, Han et al. 2016

● Tensor Decompositions: TT, CP, Tucker, … 

Lebedev et al. 2015, Kim et al. 2015, Novikov et al. 2015, Garipov et al. 2016

● Binarization

Courbariaux / Hubara et al. 2016, Rastegari et al. 2016, Merolla et al. 2016, Hou et al. 2017

● Architectural tricks (simple but yet powerful architecture)

Hong et al. 2016, Iandola et al. 2016 etc.

● The silver bullet architecture --it’s a kind of maaagic..

Hasanpour et al. 2016

Methods overview: additional optimization



The most significant papers:

● Distilling the Knowledge in a Neural Network, Hinton et al. 2014;

● FitNets: Hints for Thin Deep Nets, Romero et al. 2014.

The idea:

● Transfer (distilling) the predictive power of well-trained network or ensemble of networks to lightweight one.

The receipt:

● Train a reference, probably cumbersome, model (network or an ensemble of networks) with big generalization ability.

● Train a single, probably thinner, network to imitate the predictions of the cumbersome one

Disadvantages:

● Still demand in sufficient resources for training

● Sequential optimization

Advantages:

● Optimization-accuracy trade-off

Distillation the knowledge



The most significant papers:

● Compressing Neural Networks with the Hashing Trick, Chen et al. 2015;

● Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding, 

Han et al. 2016.

The idea:

● Equal weights (in terms of some magnitude) receiving the same hash.

Advantages:

● Optimization-accuracy trade-off

Weights Hashing / Quantization



The idea:

● Decomposition of original tensors to lower-rank ones which speedups computations.

Disadvantages:
● Strong mathematics inside

Advantages:
● Strong mathematics inside
● Optimization-accuracy trade-off

Speeding-up Convolutional Neural Networks Using Fine-tuned CP-Decomposition, Lebedev et al. 2015:

● Non-linear least squares for low-rank CP-decomposition -> fine-tuning

Compression of Deep Convolutional Neural Networks for Fast and Low Power Mobile Applications, Kim et al. 2015:

● Rank selection with variational Bayesian matrix factorization -> Tucker decomposition on kernel tensor -> fine-tuning

Tensorizing Neural Networks, Novikov et al. 2015, Ultimate tensorization: compressing convolutional and FC layers alike, 

Garipov et al. 2016

● Decomposition of convolutional and FC leyers’ weights with TT technique

Tensor Decompositions



The most significant papers:

● Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1, 

Courbariaux / Hubara et al. 2016;

● Deep neural networks are robust to weight binarization and other non-linear distortions, Merolla et al. 2016;

● XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks, Rastegari et al. 2016;

● Loss-Aware Binarization Of Deep Networks, Hou et al. 2017.

The idea:

● Weights’ (activations, inputs) values binarizing with the Sign(x) (possible variations) function which gives its compact 

representation and allows bitwise operations.

Disadvantages:

● Specific GPU implementation in order to reduce computations via bitwise operations

Advantages:

● Architecture-independent.

Binarization



The most significant papers:

● Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding, 

Han et al. 2016;

● Pruning Convolutional Neural Networks for Resource Efficient Transfer Learning, Molchanov et al. 2016.

The idea:

● Removing weights with the minimal impact to the prediction.

Advantages:

● Very basic approach

● Optimization-accuracy trade-off

Pruning



The idea:

● Using modern techniques or architectural tricks makes architecture computationally-efficient but yet powerful.

Disadvantages:

● Limitation in architectural variations

● Possibly framework upgrading (not necessarily)

● Task-specific architecture (not necessarily)

Advantages:

● No additional tricks: it should works every time the same

SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and %3c0.5 MB model size, Iandola et al. 2016:

● Introducing Fire module

PVANet: Lightweight Deep Neural Networks for Real-time Object Detection, Hong et al. 2016:

● Using a bunch of modern techniques making architecture be computationally-efficient but yet powerful

● C.ReLU, Inception, Deconv, ~20 layers

Architectural tricks



Tiny Darknet, Joseph Redmon & Darknet:

● “It's only 28 MB but more importantly, it's only 800 million floating point operations. The original Alexnet is 2.3 

billion. Darknet is 2.9 times faster and it's small and it's 4% more accurate.”

2016 - BranchyNet: Fast Inference via Early Exiting from Deep Neural Networks, Teerapittayanon et al. 2016:

● Adding additional side branch classifiers allows prediction results to exit the network early via these branches with 

high confidence

Architectural tricks



Comparisons. Implementations

completeness framework customizable framework 
customization references

Distillation the 
knowledge implementable - - - -

HashedNets full Torch yes no [1]

Deep Compression decode, AlexNet Caffe no no [1]

Ristretto dead? Caffe yes yes [1]

CP-Decomposition arch-partial Caffe / Matlab yes no [1]

TensorNet full Theano (Lasagne), Matlab, 
TensorFlow yes no [1], [2]

BinaryNet full Theano, Torch yes no [1], [2]

Binary-Weight-Network full Torch yes no [1]

XNOR-Net full Torch yes no [1]

http://www.cse.wustl.edu/~ychen/HashedNets/
http://songhan.github.io/Deep-Compression-AlexNet/
http://lepsucd.com/?page_id=621
http://sites.skoltech.ru/compvision/projects/speeding-up-cnns/
https://github.com/Bihaqo/TensorNet
https://github.com/timgaripov/TensorNet-TF
https://github.com/MatthieuCourbariaux/BinaryNet
https://github.com/itayhubara/BinaryNet
http://allenai.org/plato/xnornet/
http://allenai.org/plato/xnornet/


Comparisons. Implementations
completeness framework customizable framework 

customization references

SqueezeNet more than needed Caffe + MXNet, Keras etc. yes no [1] + [2], [3], [4]

PVANet partial, R-CNN Caffe yes yes [1]

Tiny Darknet full Darknet yes no [1]

BranchyNet implementable - - - -

http://songhan.github.io/SqueezeNet-Deep-Compression/
http://lepsucd.com/?page_id=621
https://github.com/haria/SqueezeNet
https://github.com/DT42/squeezenet_demo
https://github.com/sanghoon/pva-faster-rcnn
http://pjreddie.com/darknet/tiny-darknet/


Comparisons. Optimization type
Train - Memory Train - Speed Inference - Memory Inference - Speed

Distillation the knowledge - - + +

HashedNets ? ? + ?

Deep Compression - - + +

CP-Decomposition - - + +

TensorNet ? - + ?

BinaryNet - - + +

Binary-Weight-Network - - + +

XNOR-Net - + + +

SqueezeNet N/A N/A + ?

PVANet N/A N/A + +

Tiny Darknet N/A N/A + +

BranchyNet - - - +



Comparisons. Scores
Memory reduction while 

training
Memory reduction 

while inference Inference speedup Accuracy gain Baseline model Dataset

FitNets - 36 13.36 -1.17 Maxout CIFAR-10

HashedNets - 64 ? 0,24 same-size MNIST

Deep Compression - 49 (~4) ? 0.33 VGG-16 ImageNet

CP-Decomposition - 12 4.5 -1 AlexNet ImageNet?

TensorNet ? 80 ? -1.1 simple CIFAR-10

BinaryNet ~32 (theoretical) 3.4~23 1.53 Maxout CIFAR-10

Binary-Weight-Network -
67 58 (CPU)

-8.5
ResNet-18 ImageNet

XNOR-Net - -18.1

SqueezeNet ? 50 1. 0.3
AlexNet ImageNet

Tiny Darknet ? 60 2.9 1.5

BranchyNet - - 1.9 -1,53 ResNet-110 CIFAR-10



Several Conclusions
● Pruning is a general optimization approach, applicable to every architecture and, probably, most efficient by the 

complexity reduction. Unfortunately, it’s still not common..

● Every standalone architecture (already optimal or not) can become a baseline to every other optimization approach.

● Using simplified architectures justified only if it gives sufficient result on your task.

● BranchyNet reveals a kind of general way for optimization, so it can be applied with every other method.

● From the Binarization methods, XNOR-Net is the best decision when accuracy is less important, otherwise - BWN.

● SqueezeNet more preferable than Tiny Darknet because of Darknet implementation.

● DeepCompression is hard-estimated because of critical impact of the pruning.

● DeepCompression is two-stage optimization while the HashedNets - runtime.

● CP-decomposition is more general approach while the TensorNet can give a superior performance.

● Tensor Decomposition techniques and especially Binarization ones are most promising for the nearest progress.



A Super-Optimization-Scheme
1. Training a super-ensemble with Snapshot Ensemble and vDNN with most-powerful framework

2. Distillation The Knowledge to the lightweight (fully-convolutional, with (wide-)residual or dense connections etc. 

etc.) BranchyNet-like architecture

3. Pruning

4. Binarization

5. Tensor Decomposition

6. Extra-optimized inference (low-precision calculations, optimized platform etc.)



Experiments. Formulation
Baseline - visual emotion recognition, Levi et al. 2015. Unfortunately, original EmotiW 2015 dataset not available and 

Radboud Faces Database was used instead for training and evaluation.

● CP-decomposition: decomposition of every convolutional layer of the author’s pretrained RGB model, evaluation on 

whole RaFD dataset.

● HashedNets, BWN, XNOR-Net: learning from scratch on RGB images from RaFD dataset (cropped by face) using 

originally proposed VGG-S architecture and Torch; no data augmentation, independent and balanced train / test sets.

● TensorNet: TensorFlow..

● SqueezeNet: learning from scratch on RGB images from RaFD dataset (cropped by face) using originally proposed 

VGG-S architecture and Keras (Theano); data augmentation (Z-score, rotation, zoom, horizontal flipping), independent 

and balanced train / test sets.

http://www.openu.ac.il/home/hassner/projects/cnn_emotions/
https://cs.anu.edu.au/few/emotiw2015.html
http://www.socsci.ru.nl:8180/RaFD2/RaFD
http://www.socsci.ru.nl:8180/RaFD2/RaFD
https://gist.github.com/GilLevi/54aee1b8b0397721aa4b


Experiments. CP-decomposition
Characteristic:

● very home-made code;

● Matlab dependency redundant;

● manual fine-tuning?

The setting:

● decomposition of every convolutional layer;

● the last Caffe state (master branch);

● accuracy metric - prediction proximity between original and accelerated models, call similarity;

● speedup metrics: prediction time both on CPU and GPU in comparison with the baseline, GPU memory consumption 

(directly from nvidia-smi ).

Conclusions:

● insufficient similarity loss only for the 1st convolutional layer decomposition;

● iterative process possibly can give more more optimization but accuracy loss still expecting a high.



Experiments. CP-decomposition
RANK=16, decomposition only for the 1st convolutional layer, similarity = 95.4%



Experiments. CP-decomposition
RANK=16, decomposition only for the 1st convolutional layer, similarity = 95.4%



Experiments. HashedNets
Characteristic:

● modern CUDA / gcc incompatibility: worked on 1 machine from 4 with manual fixes;

● well-done code in the rest;

● an issue: unable to save the model file.

The setting:

● SGD with momentum, fixed? lr-pocily without regularization;

● 100 epochs for the training;

● accuracy metrics: train / test losses and accuracies;

● speedup metrics: prediction time (GPU-only) in comparison with the baseline, averaged over 10 runs with 2 (minimal 

and maximal) mini-batch sizes, GPU memory consumption (directly from nvidia-smi ).

Conclusions:

● explicit training slowdown.



Experiments. HashedNets
Baseline test accuracy: 98.77%, HashedNet test accuracy: 99.18%



Experiments. HashedNets
Baseline test accuracy: 98.77%, HashedNet test accuracy: 99.18%



Experiments. XNOR-Nets
Characteristic:

● the algorithm itself very simple, but implementation overloaded.

The setting:

● SGD with momentum, fixed? lr-pocily without regularization;

● 100 epochs for the baseline; 25 epochs for the BWN, 100 epochs for the XNOR-Net;

● XNOR-Net layers (ordering) configuration according the paper and build-in example (AlexNet): 1st conv-bn-poll block 

followed by reordering;

● accuracy metrics: train / test losses and accuracies;

● speedup metrics: prediction time (GPU-only) in comparison with the baseline, averaged over 10 runs with 2 (minimal 

and maximal) mini-batch sizes, GPU memory consumption (directly from nvidia-smi ).

Conclusions:

● BWN training speedup (~4 times);

● XNOR-Net is more compact.



Experiments. XNOR-Nets
Baseline test accuracy: 98.77%, BWN test accuracy: 100%, XNOR-Net test accuracy: 97.34%



Experiments. XNOR-Nets
Baseline test accuracy: 98.77%, BWN test accuracy: 100%, XNOR-Net test accuracy: 97.34%



Experiments. XNOR-Nets
Baseline test accuracy: 98.77%, BWN test accuracy: 100%, XNOR-Net test accuracy: 97.34%



Experiments. Scores

Training speedup Memory reduction while 
inference Inference speedup Accuracy gain Parameters 

reduction

HashedNets - ? ? 0.41% ?

CP-Decomposition N/A 0% / −2.28% - -4.6% (similarity) 0.0099%

TensorNet ? ? ? ? ?

Binary-Weight-Network 4x 0% 0% / -3.2% 1.23% 0

XNOR-Net + 2.4% -1.8% / -0.1% -1.43% 0.0008%

SqueezeNet ? ? ? ? ?


