# **CNN** optimization

Rassadin A.

### What to optimize?

- Training stage time consumption (CPU / GPU)
- Inference stage time consumption (CPU / GPU)
- Training stage memory consumption
- Inference stage memory consumption
- Training stage power consumption
- Inference stage power consumption

# Methods' classification

By the accuracy loss: By the optimization type: lossless; speed; optimization with accuracy loss; memory consumption; optimization-accuracy trade-off. energy consumption.

By the approach type: By the implementation: architectural; runtime implementation; two-step (training -> optimization);

operational; computational; hardware.

architecture-dependent;

architecture-independent.

By the restrictions:

sequential (training -> optimization -> re-training).

### **Methods overview: the general-kind optimization**

continuous architecture improvement (evolution) convolution spread up, replacement FC with convolutions, 1x1 convolutions, residual connections etc.

Caffe-CLGreenTea

- hardware / driver optimization
- special-purpose processing and memory units (Google TPU, Nervana Engine, Movidius VPU, SnapDragon 820 etc.)

| vDNN, FP16, INT8                | Library                | Class                    | Time (ms) | forward (ms) | backward (ms) |
|---------------------------------|------------------------|--------------------------|-----------|--------------|---------------|
| special-purpose frameworks      | Nervana-neon-fp16      | ConvLayer                | 230       | 72           | 157           |
| NNPack, tiny-dnn, Darknet       | Nervana-neon-fp32      | ConvLayer                | 270       | 84           | 186           |
| general framework optimizations | TensorFlow             | conv2d                   | 445       | 135          | 310           |
|                                 | CuDNN[R4]-fp16 (Torch) | cudnn.SpatialConvolution | 462       | 112          | 349           |
|                                 | CuDNN[R4]-fp32 (Torch) | cudnn.SpatialConvolution | 470       | 130          | 340           |
|                                 | Chainer                | Convolution2D            | 687       | 189          | 497           |
|                                 | Caffe                  | ConvolutionLayer         | 1935      | 786          | 1148          |
|                                 | CL-nn (Torch)          | SpatialConvolutionMM     | 7016      | 3027         | 3988          |

ConvolutionLayer

9462

746

8716

# Methods overview: additional optimization

- Pruning
  - Han et al. 2016, Molchanov et al. 2016
- Distillation The Knowledge

Weights Hashing / Quantization

- Hinton et al. 2014, Romero et al. 2014
- Chen et al. 2015, Han et al. 2016
- Tensor Decompositions: TT, CP, Tucker, ...
  - Lebedev et al. 2015, Kim et al. 2015, Novikov et al. 2015, Garipov et al. 2016
- Binarization
  - Courbariaux / Hubara et al. 2016, Rastegari et al. 2016, Merolla et al. 2016, Hou et al. 2017
- Architectural tricks (*simple* but yet *powerful* architecture)

Hasanpour et al. 2016

- Hong et al. 2016, Iandola et al. 2016 etc.
- The *silver bullet* architecture --it's a kind of maaagic..

## Distillation the knowledge

### The most significant papers:

- Distilling the Knowledge in a Neural Network, Hinton et al. 2014;
- FitNets: Hints for Thin Deep Nets, Romero et al. 2014.

### The idea:

• Transfer (**distilling**) the predictive power of well-trained network or ensemble of networks to lightweight one.

### The receipt:

- Train a reference, probably cumbersome, model (network or an ensemble of networks) with big generalization ability.
- Train a single, probably thinner, network to imitate the predictions of the cumbersome one

### Disadvantages:

- Still demand in sufficient resources for training
- Sequential optimization

### Advantages:

• Optimization-accuracy trade-off

## Weights Hashing / Quantization

#### The most significant papers:

- Compressing Neural Networks with the Hashing Trick, Chen et al. 2015;
- Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding, Han et al. 2016.

#### The idea:

• Equal weights (in terms of some magnitude) receiving the same hash.

### Advantages:

• Optimization-accuracy trade-off

## **Tensor Decompositions**

#### The idea:

• Decomposition of original tensors to lower-rank ones which speedups computations.

#### Disadvantages:

Strong mathematics inside

#### Advantages:

- Strong mathematics inside
- Optimization-accuracy trade-off

- Non-linear least squares for low-rank CP-decomposition -> fine-tuning
- Compression of Deep Convolutional Neural Networks for Fast and Low Power Mobile Applications, Kim et al. 2015:
- Rank selection with variational Bayesian matrix factorization -> Tucker decomposition on kernel tensor -> fine-tuning

Tensorizing Neural Networks, Novikov et al. 2015, Ultimate tensorization: compressing convolutional and FC layers alike,

Garipov et al. 2016

Speeding-up Convolutional Neural Networks Using Fine-tuned CP-Decomposition, Lebedev et al. 2015:

• Decomposition of convolutional and FC leyers' weights with TT technique

### **Binarization**

### The most significant papers:

- Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1, Courbariaux / Hubara et al. 2016;
- Deep neural networks are robust to weight binarization and other non-linear distortions, Merolla et al. 2016;
- XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks, Rastegari et al. 2016;
- Loss-Aware Binarization Of Deep Networks, Hou et al. 2017.

#### The idea:

• Weights' (activations, inputs) values binarizing with the *Sign(x)* (possible variations) function which gives its compact representation and allows bitwise operations.

### Disadvantages:

• Specific GPU implementation in order to reduce computations via bitwise operations

### A divente co

Advantages:

Architecture-independent.

## **Pruning**

#### The most significant papers:

- Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding, Han et al. 2016;
- Pruning Convolutional Neural Networks for Resource Efficient Transfer Learning, Molchanov et al. 2016.

#### The idea:

• Removing weights with the minimal impact to the prediction.

#### Advantages:

- Very basic approach
- Optimization-accuracy trade-off

### **Architectural tricks**

#### The idea:

• Using modern techniques or architectural tricks makes architecture computationally-efficient but yet *powerful*.

#### Disadvantages:

- Limitation in architectural variations
- Possibly framework upgrading (not necessarily)
- Task-specific architecture (not necessarily)

### Advantages:

• No additional tricks: it <u>should</u> works every time the same

# SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and %3c0.5 MB model size, Iandola et al. 2016:

- Introducing *Fire* module
- PVANet: Lightweight Deep Neural Networks for Real-time Object Detection, Hong et al. 2016:
  - Using a bunch of modern techniques making architecture be computationally-efficient but yet powerful
  - C.ReLU, Inception, Deconv, ~20 layers

### **Architectural tricks**

#### *Tiny Darknet, Joseph Redmon & Darknet:*

• "It's only 28 MB but more importantly, it's only 800 million floating point operations. The original Alexnet is 2.3 billion. Darknet is 2.9 times faster and it's small and it's 4% more accurate."

#### 2016 - BranchyNet: Fast Inference via Early Exiting from Deep Neural Networks, Teerapittayanon et al. 2016:

 Adding additional side branch classifiers allows prediction results to exit the network early via these branches with high confidence

completeness

implementable

full

decode, AlexNet

dead?

arch-partial

full

full

full

full

Distillation the

knowledge

**HashedNets** 

**Deep Compression** 

Ristretto

**CP-Decomposition** 

**TensorNet** 

**BinaryNet** 

Binary-Weight-Network

**XNOR-Net** 

# **Comparisons. Implementations**

framework

Torch

Caffe

Caffe

Caffe / Matlab

Theano (Lasagne), Matlab,

TensorFlow

Theano, Torch

Torch

Torch

framework

customization

no

no

yes

no

no

no

no

no

references

[1]

[1]

[1]

[1]

[1], [2]

[<u>1</u>], [<u>2</u>]

[1]

[1]

customizable

yes

no

yes

yes

yes

yes

yes

yes

# **Comparisons. Implementations**

|            | completeness     | framework                 | customizable | framework<br>customization | references          |
|------------|------------------|---------------------------|--------------|----------------------------|---------------------|
| SqueezeNet | more than needed | Caffe + MXNet, Keras etc. | yes          | no                         | [1] + [2], [3], [4] |
| PVANet     | partial, R-CNN   | Caffe                     | yes          | yes                        | [1]                 |
|            |                  |                           |              |                            |                     |

yes

no

[<u>1</u>]

Darknet

**Tiny Darknet** 

**BranchyNet** 

full

implementable

# Comparisons. Optimization type

|                            |                | <b>_</b>      | <b>U</b>           |                   |  |
|----------------------------|----------------|---------------|--------------------|-------------------|--|
|                            | Train - Memory | Train - Speed | Inference - Memory | Inference - Speed |  |
| Distillation the knowledge | -              | -             | +                  | +                 |  |
| HashedNets                 | ?              | ?             | +                  | ?                 |  |
| Deep Compression           | -              | -             | +                  | +                 |  |
| CP-Decomposition           | -              | -             | +                  | +                 |  |
| TensorNet                  | ?              | -             | +                  | ?                 |  |

N/A

N/A

N/A

N/A

N/A

N/A

+

+

+

?

+

+

+

+

+

**BinaryNet** 

**Binary-Weight-Network** 

**XNOR-Net** 

SqueezeNet

**PVANet** 

**Tiny Darknet** 

**BranchyNet** 

# Comparisons. Scores Memory reduction while Memory reduction

|         | Memory reduction while training | Memory reduction while inference | Inference speedup | Accuracy gain |  |
|---------|---------------------------------|----------------------------------|-------------------|---------------|--|
| FitNets | _                               | 36                               | 13.36             | -1.17         |  |

**HashedNets** 

**Deep Compression** 

**CP-Decomposition** 

**TensorNet** 

**BinaryNet** 

Binary-Weight-Network

**XNOR-Net** 

SqueezeNet

**Tiny Darknet** 

**BranchyNet** 

64

49 (~4)

12

80

67

50

60

?

~32 (theoretical)

**Baseline model** 

Maxout

same-size

VGG-16

AlexNet

simple

Maxout

ResNet-18

AlexNet

ResNet-110

0,24

0.33

-1

-1.1

1.53

-8.5

-18.1

0.3

1.5

-1,53

?

4.5

?

3.4~23

58 (CPU)

1.

2.9

1.9

**Dataset** 

CIFAR-10

**MNIST** 

ImageNet

ImageNet?

CIFAR-10

CIFAR-10

ImageNet

ImageNet

CIFAR-10

### **Several Conclusions**

- **Pruning** is a general optimization approach, applicable to every architecture and, probably, most efficient by the complexity reduction. Unfortunately, it's still not common..
- Every standalone architecture (already optimal or not) can become a baseline to every other optimization approach.
- Using simplified architectures justified only if it gives sufficient result on your task.
- **BranchyNet** reveals a kind of general way for optimization, so it can be applied with every other method.
- From the *Binarization* methods, **XNOR-Net** is the best decision when accuracy is less important, otherwise **BWN**.
- SqueezeNet more preferable than Tiny Darknet because of Darknet implementation.
- **DeepCompression** is hard-estimated because of critical impact of the pruning.
- **DeepCompression** is *two-stage* optimization while the **HashedNets** runtime.
- **CP-decomposition** is more general approach while the **TensorNet** can give a superior performance.
- *Tensor Decomposition* techniques and <u>especially</u> *Binarization* ones are most promising for the nearest progress.

## A Super-Optimization-Scheme

- 1. Training a super-ensemble with **Snapshot Ensemble** and **vDNN** with most-powerful framework
- 2. **Distillation The Knowledge** to the lightweight (fully-convolutional, with (wide-)residual or dense connections etc. etc.) BranchyNet-like architecture
- 3. **Pruning**
- 4. Binarization
- 5. **Tensor Decomposition**
- 6. Extra-optimized inference (low-precision calculations, optimized platform etc.)

### **Experiments. Formulation**

Baseline - visual emotion recognition, <u>Levi et al. 2015</u>. Unfortunately, original <u>EmotiW 2015</u> dataset not available and <u>Radboud Faces Database</u> was used instead for training and evaluation.

- **CP-decomposition**: decomposition of every convolutional layer of the <u>author's pretrained RGB model</u>, evaluation on whole RaFD dataset.
- HashedNets, BWN, XNOR-Net: learning from scratch on RGB images from RaFD dataset (cropped by face) using originally proposed VGG-S architecture and Torch; no data augmentation, independent and balanced train / test sets.
- **TensorNet**: TensorFlow..
- SqueezeNet: learning from scratch on RGB images from RaFD dataset (cropped by face) using originally proposed VGG-S architecture and Keras (Theano); data augmentation (Z-score, rotation, zoom, horizontal flipping), independent and balanced train / test sets.

### **Experiments. CP-decomposition**

#### Characteristic:

- very *home-made* code;
- **Matlab** dependency redundant;
- manual fine-tuning?

#### The setting:

- decomposition of every convolutional layer;
- the last **Caffe** state (*master* branch);
- accuracy metric prediction proximity between original and accelerated models, call *similarity*;
- speedup metrics: prediction time both on CPU and GPU in comparison with the baseline, GPU memory consumption (directly from nvidia-smi).

#### Conclusions:

- insufficient similarity loss only for the 1st convolutional layer decomposition;
- iterative process possibly can give more more optimization but accuracy loss still expecting a high.

## **Experiments. CP-decomposition**

RANK=16, decomposition only for the 1st convolutional layer, similarity = 95.4%



### **Experiments. CP-decomposition**

RANK=16, decomposition only for the 1st convolutional layer, similarity = 95.4%



### **Experiments. HashedNets**

#### Characteristic:

- modern CUDA / gcc incompatibility: worked on 1 machine from 4 with manual fixes;
- well-done code in the rest;
- an issue: unable to save the model file.

#### The setting:

- SGD with momentum, fixed? lr-pocily without regularization;
- 100 epochs for the training;
- accuracy metrics: train / test losses and accuracies;
- speedup metrics: prediction time (GPU-only) in comparison with the baseline, averaged over 10 runs with 2 (minimal and maximal) mini-batch sizes, GPU memory consumption (directly from nvidia-smi).

#### Conclusions:

• explicit training slowdown.

# **Experiments. HashedNets**

Baseline test accuracy: 98.77%, **HashedNet** test accuracy: 99.18%



# **Experiments. HashedNets**

Baseline test accuracy: 98.77%, **HashedNet** test accuracy: 99.18%



#### Characteristic:

• the algorithm itself very simple, but implementation overloaded.

#### The setting:

- SGD with momentum, fixed? lr-pocily without regularization;
- 100 epochs for the baseline; 25 epochs for the **BWN**, 100 epochs for the **XNOR-Net**;
- XNOR-Net layers (ordering) configuration according the paper and build-in example (AlexNet): 1st *conv-bn-poll* block followed by reordering;
- accuracy metrics: train / test losses and accuracies;
- speedup metrics: prediction time (GPU-only) in comparison with the baseline, averaged over 10 runs with 2 (minimal and maximal) mini-batch sizes, GPU memory consumption (directly from nvidia-smi).

#### Conclusions:

- BWN training speedup (~4 times);
- XNOR-Net is more compact.

Baseline test accuracy: 98.77%, BWN test accuracy: 100%, XNOR-Net test accuracy: 97.34%



Baseline test accuracy: 98.77%, BWN test accuracy: 100%, XNOR-Net test accuracy: 97.34%



Baseline test accuracy: 98.77%, BWN test accuracy: 100%, XNOR-Net test accuracy: 97.34%



# **Experiments. Scores**

| Training speedup | Memory reduction while inference | Inference speedup            | Accuracy gain                                    | Parameters reduction                                             |
|------------------|----------------------------------|------------------------------|--------------------------------------------------|------------------------------------------------------------------|
| -                | ?                                | ?                            | 0.41%                                            | ?                                                                |
| N/A              | 0% / -2.28%                      | -                            | -4.6% (similarity)                               | 0.0099%                                                          |
| ?                | ?                                | ?                            | ?                                                | ?                                                                |
| 4x               | 0%                               | 0% / -3.2%                   | 1.23%                                            | 0                                                                |
| +                | 2.4%                             | -1.8% / -0.1%                | -1.43%                                           | 0.0008%                                                          |
|                  | -<br>N/A<br>?<br>4x              | Training speedup   inference | Training speedup   Interence   Interence speedup | Training speedup   Inference   Inference speedup   Accuracy gain |

?

SqueezeNet