
Scheduling Theory and Applications

Alexander Lazarev

Lomonosov Moscow State University

National Research University Higher School of Economics

Moscow Institute of Physics and Technology (State University)

V.A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences (ICS RAS)

jobmath@mail.ru

www.orsot.ru

Alexander Lazarev Scheduling Theory and Applications 1 / 210

mailto:jobmath@mail.ru
http://www.orsot.ru/index.php/en/

Outline I
1 About ORSOT

Laboratory №68
Projects

2 History of Scheduling Theory
Gantt chart
Scheduling theory term

3 Pioneers of scheduling theory
J. R. Jackson. Scheduling a production to minimize maximum
tardiness.
W. E. Smith. Various optimizers for single-stage production.
S. M. Johnson. Optimal two-and-three-stage production schedules
with set-up times included.

4 Problem of two production lines
5 NP-hard problems

Computational complexity
6 Problem classification in scheduling theory

Alexander Lazarev Scheduling Theory and Applications 2 / 210

Outline II
7 Problem 1|rj |Lmax

Minimizing maximum lateness
Solvable cases
Algorithms
Pareto optimal schedules

8 Metric
Metric + Application
Absolute error

9 Linear programming problem
10 Any not decreasing penalty functions

Dual problem
11 GCTC

Problem statement
Volume planning problem
Timetabling problem

12 Railway scheduling
Alexander Lazarev Scheduling Theory and Applications 3 / 210

Outline III
Railway scheduling pioneers
Existing approaches and solution methods
Laboratory projects in railway scheduling

13 Single track railway scheduling problem
Dynamic programming approach
Solution algorithm

14 Resource Constrained Project Scheduling Problem

15 Open problems
??? problem
P. Baptiste’s problem

16 Conclusion

Alexander Lazarev Scheduling Theory and Applications 4 / 210

orsot.ru

Laboratory’s site

Alexander Lazarev Scheduling Theory and Applications 5 / 210

http://www.orsot.ru/index.php/en/

Laboratory №68 "Scheduling theory and Discrete
Optimization"

Laboratory №68 of Scheduling Theory and Discrete Optimization was
founded in 2009 at Institute of Control Sciences. Head of the laboratory is
professor Alexander Lazarev. Currently it is the only laboratory in Russia
studying problems of Scheduling Theory.

Our site orsot.ru (Operation Research Scheduling Optimization
Timetabling)

Alexander Lazarev Scheduling Theory and Applications 6 / 210

Projects

Optimization problems in astronautics
Scheduling for ISS (International Space Station)
missions
Planning of cosmonauts training program
Managing railroad traffic
Managing railcar fleets
Operative management
Minimizing lateness and travel time
Strategical planning of manufacturing
Long-term and short-term planning
Minimizing production time
Uniform resource load

Alexander Lazarev Scheduling Theory and Applications 7 / 210

Projects

Transport logistics
Forming trains and routes

Optimizing assembly lines
Balancing and rebalancing assembly lines
Distributing operations

Composing study schedules
Program product on 1C platform

Alexander Lazarev Scheduling Theory and Applications 8 / 210

Gantt chart

Henry Laurence Gantt (1861-1919), American
mechanical engineer and management consultant
who is best known for his work in the development of
scientific management. In the 1903 he introduced a
graphical method of project schedule representation
known as the Gantt chart (Gantt diagram).

"A graphical daily balance in manufacture"(1903)
"Organizing for Work"(1919)

Alexander Lazarev Scheduling Theory and Applications 9 / 210

Gantt chart

An example of Gantt chart

Alexander Lazarev Scheduling Theory and Applications 10 / 210

Scheduling theory term

Richard Ernest Bellman (1920–1984), American
applied mathematician, famous for his work on
dynamic programming and numerous important
contributions in other fields of mathematics. In the
1954 he introduced the term "scheduling theory.

"Mathematical Aspects of Scheduling Theory"(1955)

Alexander Lazarev Scheduling Theory and Applications 11 / 210

Pioneers of scheduling theory. First results.

J. R. Jackson. Scheduling a production to minimize maximum tardiness.
Research Report 43, Management Science Research Project, University of
California at Los Angeles, 1955

W. E. Smith. Various optimizers for single-stage production. Naval
Research Logistic Quarterly, 3:59-66, 1956

S. M. Johnson. Optimal two-and-three-stage production schedules with
set-up times included. Naval Research Logistics Quarterly, 1:61-68, 1954

Alexander Lazarev Scheduling Theory and Applications 12 / 210

Pioneers of scheduling theory in USSR.

Tanaev, V.S. and Shkurba, V.V. Vvedenie v teoriyu
raspisanii (Introduction to the Scheduling Theory),
Moscow: Nauka, 1975

Alexander Lazarev Scheduling Theory and Applications 13 / 210

J. R. Jackson.
Scheduling a production to minimize maximum tardiness. 1955.

Alexander Lazarev Scheduling Theory and Applications 14 / 210

J. R. Jackson. Scheduling a production to minimize
maximum tardiness.

1 machine

n jobs, N = {1, 2, 3, . . . , n}
rj — release time
pj — processing time
dj — due date, Dj — deadline.
The due dates are allowed to be violated, but the deadlines are not.
Schedule π (permutation of jobs)

Alexander Lazarev Scheduling Theory and Applications 15 / 210

J. R. Jackson. Scheduling a production to minimize
maximum tardiness.

1 machine
n jobs, N = {1, 2, 3, . . . , n}

rj — release time
pj — processing time
dj — due date, Dj — deadline.
The due dates are allowed to be violated, but the deadlines are not.
Schedule π (permutation of jobs)

Alexander Lazarev Scheduling Theory and Applications 15 / 210

J. R. Jackson. Scheduling a production to minimize
maximum tardiness.

1 machine
n jobs, N = {1, 2, 3, . . . , n}
rj — release time

pj — processing time
dj — due date, Dj — deadline.
The due dates are allowed to be violated, but the deadlines are not.
Schedule π (permutation of jobs)

Alexander Lazarev Scheduling Theory and Applications 15 / 210

J. R. Jackson. Scheduling a production to minimize
maximum tardiness.

1 machine
n jobs, N = {1, 2, 3, . . . , n}
rj — release time
pj — processing time

dj — due date, Dj — deadline.
The due dates are allowed to be violated, but the deadlines are not.
Schedule π (permutation of jobs)

Alexander Lazarev Scheduling Theory and Applications 15 / 210

J. R. Jackson. Scheduling a production to minimize
maximum tardiness.

1 machine
n jobs, N = {1, 2, 3, . . . , n}
rj — release time
pj — processing time
dj — due date, Dj — deadline.
The due dates are allowed to be violated, but the deadlines are not.

Schedule π (permutation of jobs)

Alexander Lazarev Scheduling Theory and Applications 15 / 210

J. R. Jackson. Scheduling a production to minimize
maximum tardiness.

1 machine
n jobs, N = {1, 2, 3, . . . , n}
rj — release time
pj — processing time
dj — due date, Dj — deadline.
The due dates are allowed to be violated, but the deadlines are not.
Schedule π (permutation of jobs)

Alexander Lazarev Scheduling Theory and Applications 15 / 210

J. R. Jackson. Scheduling a production to minimize
maximum tardiness.

Note: There are two most common ways of schedule representation:

— The schedule is represented by a permutation of jobs (in what order the
jobs should be processed, one after one), for example, π = (6, 3, 2, 1, . . .)
means that firstly job 6 is processed, then job 3, then 2 and so on.
— The schedule is represented by a vector of job start times Sj , for example
π = (10, 0, 11, 5, 6, 4, . . .) means that job 1 starts at t = 10, job 2 starts at
t = 0, 3 starts at t = 11 and so on.

Depending on the formulation of considered problem, one method or
another may be more convenient to implement.

Alexander Lazarev Scheduling Theory and Applications 16 / 210

J. R. Jackson. Scheduling a production to minimize
maximum tardiness.

1 machine
n jobs, N = {1, 2, 3, . . . , n}
rj — release time
pj — processing time
dj — due date, Dj — deadline.
The due dates are allowed to be violated, but the deadlines are not.
Schedule π (permutation of jobs)

Cj (π) — completion time of job j

Alexander Lazarev Scheduling Theory and Applications 17 / 210

J. R. Jackson. Scheduling a production to minimize
maximum tardiness.

1 machine
n jobs, N = {1, 2, 3, . . . , n}
rj — release time
pj — processing time
dj — due date, Dj — deadline.
The due dates are allowed to be violated, but the deadlines are not.
Schedule π (permutation of jobs)
Cj (π) — completion time of job j

Alexander Lazarev Scheduling Theory and Applications 17 / 210

J. R. Jackson. Scheduling a production to minimize
maximum tardiness.

1 machine
n jobs, N = {1, 2, 3, . . . , n}
rj — release time
pj — processing time
dj — due date, Dj — deadline.
The due dates are allowed to be violated, but the deadlines are not.
Schedule π (permutation of jobs)
Cj (π) — completion time of job j

Alexander Lazarev Scheduling Theory and Applications 17 / 210

J. R. Jackson. Scheduling a production to minimize
maximum tardiness.

Lateness of job j : Cj (π)− dj

Alexander Lazarev Scheduling Theory and Applications 18 / 210

J. R. Jackson. Scheduling a production to minimize
maximum tardiness.

Lateness of job j : Cj (π)− dj

Alexander Lazarev Scheduling Theory and Applications 18 / 210

J. R. Jackson. Scheduling a production to minimize
maximum tardiness.

Lateness of j-th job Cj (π)− dj

The goal is to construct a schedule with minimal value of maximum
lateness:

min
π

max
j∈N
{Cj (π)− dj}

Think, how you would solve this problem.

Jackson’s result: if all release times are zero, ∀j ∈ N rj = 0, then
optimal schedule π∗ = (j1, j2, . . . , jn) consists of jobs that are sorted
according to non-decrease of their due dates:

dj1 ≤ dj2 ≤ · · · ≤ djn

Optimal schedule can be obtained by using sorting algorithm with
O(n log n) operations

Alexander Lazarev Scheduling Theory and Applications 19 / 210

J. R. Jackson. Scheduling a production to minimize
maximum tardiness.

Lateness of j-th job Cj (π)− dj

The goal is to construct a schedule with minimal value of maximum
lateness:

min
π

max
j∈N
{Cj (π)− dj}

Think, how you would solve this problem.
Jackson’s result: if all release times are zero, ∀j ∈ N rj = 0, then
optimal schedule π∗ = (j1, j2, . . . , jn) consists of jobs that are sorted
according to non-decrease of their due dates:

dj1 ≤ dj2 ≤ · · · ≤ djn

Optimal schedule can be obtained by using sorting algorithm with
O(n log n) operations

Alexander Lazarev Scheduling Theory and Applications 19 / 210

J. R. Jackson. Scheduling a production to minimize
maximum tardiness.

Jackson’s algorithm requires that all the jobs are accessible from the
beginning (∀j ∈ N rj = 0).

What if this requirement is not met (∃ j ∈ N rj 6= 0)?

Alexander Lazarev Scheduling Theory and Applications 20 / 210

J. R. Jackson. Scheduling a production to minimize
maximum tardiness.

Jackson’s algorithm requires that all the jobs are accessible from the
beginning (∀j ∈ N rj = 0).
What if this requirement is not met (∃ j ∈ N rj 6= 0)?

Alexander Lazarev Scheduling Theory and Applications 20 / 210

W. E. Smith.
Various optimizers for single-stage production. 1956

Alexander Lazarev Scheduling Theory and Applications 21 / 210

W. E. Smith. Various optimizers for single-stage production.

1 machine

n jobs, N = {1, 2, 3, . . . , n}
rj = 0, ∀j ∈ N — all jobs are released at t = 0
pj — processing time
Schedule π (permutation of jobs)
Cj (π) — completion time
Objective function: minimum total completion time

min
π

∑
j∈N

Cj (π)

Alexander Lazarev Scheduling Theory and Applications 22 / 210

W. E. Smith. Various optimizers for single-stage production.

1 machine
n jobs, N = {1, 2, 3, . . . , n}

rj = 0, ∀j ∈ N — all jobs are released at t = 0
pj — processing time
Schedule π (permutation of jobs)
Cj (π) — completion time
Objective function: minimum total completion time

min
π

∑
j∈N

Cj (π)

Alexander Lazarev Scheduling Theory and Applications 22 / 210

W. E. Smith. Various optimizers for single-stage production.

1 machine
n jobs, N = {1, 2, 3, . . . , n}
rj = 0, ∀j ∈ N — all jobs are released at t = 0

pj — processing time
Schedule π (permutation of jobs)
Cj (π) — completion time
Objective function: minimum total completion time

min
π

∑
j∈N

Cj (π)

Alexander Lazarev Scheduling Theory and Applications 22 / 210

W. E. Smith. Various optimizers for single-stage production.

1 machine
n jobs, N = {1, 2, 3, . . . , n}
rj = 0, ∀j ∈ N — all jobs are released at t = 0
pj — processing time

Schedule π (permutation of jobs)
Cj (π) — completion time
Objective function: minimum total completion time

min
π

∑
j∈N

Cj (π)

Alexander Lazarev Scheduling Theory and Applications 22 / 210

W. E. Smith. Various optimizers for single-stage production.

1 machine
n jobs, N = {1, 2, 3, . . . , n}
rj = 0, ∀j ∈ N — all jobs are released at t = 0
pj — processing time
Schedule π (permutation of jobs)

Cj (π) — completion time
Objective function: minimum total completion time

min
π

∑
j∈N

Cj (π)

Alexander Lazarev Scheduling Theory and Applications 22 / 210

W. E. Smith. Various optimizers for single-stage production.

1 machine
n jobs, N = {1, 2, 3, . . . , n}
rj = 0, ∀j ∈ N — all jobs are released at t = 0
pj — processing time
Schedule π (permutation of jobs)
Cj (π) — completion time

Objective function: minimum total completion time

min
π

∑
j∈N

Cj (π)

Alexander Lazarev Scheduling Theory and Applications 22 / 210

W. E. Smith. Various optimizers for single-stage production.

1 machine
n jobs, N = {1, 2, 3, . . . , n}
rj = 0, ∀j ∈ N — all jobs are released at t = 0
pj — processing time
Schedule π (permutation of jobs)
Cj (π) — completion time
Objective function: minimum total completion time

min
π

∑
j∈N

Cj (π)

Alexander Lazarev Scheduling Theory and Applications 22 / 210

W. E. Smith. Various optimizers for single-stage production.

Smith’s result: in optimal schedule π∗ = (j1, j2, . . . , jn) jobs are sorted
according to non-decrease of their processing times:

pj1 ≤ pj2 ≤ · · · ≤ pjn

Optimal schedule can be obtained by using sorting algorithm with
O(n log n) operations

Alexander Lazarev Scheduling Theory and Applications 23 / 210

W. E. Smith. Various optimizers for single-stage production.

Smith’s result: in optimal schedule π∗ = (j1, j2, . . . , jn) jobs are sorted
according to non-decrease of their processing times:

pj1 ≤ pj2 ≤ · · · ≤ pjn

Optimal schedule can be obtained by using sorting algorithm with
O(n log n) operations

Alexander Lazarev Scheduling Theory and Applications 23 / 210

W. E. Smith. Various optimizers for single-stage production.

In Smith’s problem all jobs are released at t = 0 (∀j ∈ N rj = 0).

What if this requirement is not met (∃ j ∈ N rj 6= 0)?

Alexander Lazarev Scheduling Theory and Applications 24 / 210

W. E. Smith. Various optimizers for single-stage production.

In Smith’s problem all jobs are released at t = 0 (∀j ∈ N rj = 0).
What if this requirement is not met (∃ j ∈ N rj 6= 0)?

Alexander Lazarev Scheduling Theory and Applications 24 / 210

S. M. Johnson.
Optimal two-and-three-stage production schedules with set-up

times included. 1954

Alexander Lazarev Scheduling Theory and Applications 25 / 210

S. M. Johnson. Optimal two-and-three-stage production
schedules with set-up times included.

2 machines

N12 jobs with processing order "Machine 1 → Machine 2
p1

j , p
2
j — processing times of job j on machines 1 ("set-up time") and

2 ("actual"processing time), respectively
C 1

j (π),C 2
j (π) — completion times on machines 1 and 2 respectively

Schedule π (permutation of jobs, each job should be processed on
machine 1 first)
Objective function: minimum total processing time (makespan)

min
π

max
j∈N
{C 2

j (π)}

Alexander Lazarev Scheduling Theory and Applications 26 / 210

S. M. Johnson. Optimal two-and-three-stage production
schedules with set-up times included.

2 machines
N12 jobs with processing order "Machine 1 → Machine 2

p1
j , p

2
j — processing times of job j on machines 1 ("set-up time") and

2 ("actual"processing time), respectively
C 1

j (π),C 2
j (π) — completion times on machines 1 and 2 respectively

Schedule π (permutation of jobs, each job should be processed on
machine 1 first)
Objective function: minimum total processing time (makespan)

min
π

max
j∈N
{C 2

j (π)}

Alexander Lazarev Scheduling Theory and Applications 26 / 210

S. M. Johnson. Optimal two-and-three-stage production
schedules with set-up times included.

2 machines
N12 jobs with processing order "Machine 1 → Machine 2
p1

j , p
2
j — processing times of job j on machines 1 ("set-up time") and

2 ("actual"processing time), respectively

C 1
j (π),C 2

j (π) — completion times on machines 1 and 2 respectively
Schedule π (permutation of jobs, each job should be processed on
machine 1 first)
Objective function: minimum total processing time (makespan)

min
π

max
j∈N
{C 2

j (π)}

Alexander Lazarev Scheduling Theory and Applications 26 / 210

S. M. Johnson. Optimal two-and-three-stage production
schedules with set-up times included.

2 machines
N12 jobs with processing order "Machine 1 → Machine 2
p1

j , p
2
j — processing times of job j on machines 1 ("set-up time") and

2 ("actual"processing time), respectively
C 1

j (π),C 2
j (π) — completion times on machines 1 and 2 respectively

Schedule π (permutation of jobs, each job should be processed on
machine 1 first)
Objective function: minimum total processing time (makespan)

min
π

max
j∈N
{C 2

j (π)}

Alexander Lazarev Scheduling Theory and Applications 26 / 210

S. M. Johnson. Optimal two-and-three-stage production
schedules with set-up times included.

2 machines
N12 jobs with processing order "Machine 1 → Machine 2
p1

j , p
2
j — processing times of job j on machines 1 ("set-up time") and

2 ("actual"processing time), respectively
C 1

j (π),C 2
j (π) — completion times on machines 1 and 2 respectively

Schedule π (permutation of jobs, each job should be processed on
machine 1 first)

Objective function: minimum total processing time (makespan)

min
π

max
j∈N
{C 2

j (π)}

Alexander Lazarev Scheduling Theory and Applications 26 / 210

S. M. Johnson. Optimal two-and-three-stage production
schedules with set-up times included.

2 machines
N12 jobs with processing order "Machine 1 → Machine 2
p1

j , p
2
j — processing times of job j on machines 1 ("set-up time") and

2 ("actual"processing time), respectively
C 1

j (π),C 2
j (π) — completion times on machines 1 and 2 respectively

Schedule π (permutation of jobs, each job should be processed on
machine 1 first)
Objective function: minimum total processing time (makespan)

min
π

max
j∈N
{C 2

j (π)}

Alexander Lazarev Scheduling Theory and Applications 26 / 210

S. M. Johnson. Optimal two-and-three-stage production
schedules with set-up times included.

Example of a feasible schedule:

Alexander Lazarev Scheduling Theory and Applications 27 / 210

S. M. Johnson. Optimal two-and-three-stage production
schedules with set-up times included.

Constraints:
1 Each machine may process only one job at a time

2 Each job may be processed at machine 2 only after it was processed at
machine 1, i.e. moment of processing completion of job j at machine 1
cannot exceed moment of processing initiation of the same job at
machine 2

3 Processing of any job cannot be interrupted: if processing of job i on
machine j was initiated at the moment of time t , it should remain
processing on the same machine until the moment of time t + pj

i

Alexander Lazarev Scheduling Theory and Applications 28 / 210

S. M. Johnson. Optimal two-and-three-stage production
schedules with set-up times included.

Constraints:
1 Each machine may process only one job at a time
2 Each job may be processed at machine 2 only after it was processed at

machine 1, i.e. moment of processing completion of job j at machine 1
cannot exceed moment of processing initiation of the same job at
machine 2

3 Processing of any job cannot be interrupted: if processing of job i on
machine j was initiated at the moment of time t , it should remain
processing on the same machine until the moment of time t + pj

i

Alexander Lazarev Scheduling Theory and Applications 28 / 210

S. M. Johnson. Optimal two-and-three-stage production
schedules with set-up times included.

Constraints:
1 Each machine may process only one job at a time
2 Each job may be processed at machine 2 only after it was processed at

machine 1, i.e. moment of processing completion of job j at machine 1
cannot exceed moment of processing initiation of the same job at
machine 2

3 Processing of any job cannot be interrupted: if processing of job i on
machine j was initiated at the moment of time t , it should remain
processing on the same machine until the moment of time t + pj

i

Alexander Lazarev Scheduling Theory and Applications 28 / 210

Johnson’s algorithm:

Algorithm 1. Input: set N12 of jobs. Output: permutation π.
Step 1 ∀i ∈ N12 pi := min{p1

i , p
2
i }

Sorting jobs according to increase of their processing duration

pi1 ≤ pi2 ≤ · · · ≤ pin

Step 2 π1 := ∅ π2 := ∅
Step 3 Let N be a set of jobs sorted according to Step 1.
If N = ∅, go to step 4.
Otherwise, let’s denote the first element of N as i1. If pi1 = p1

i1
, add it

to π1: π1 := π1∪ i1, otherwise, if pi1 = p2
i1
, add it to π2: π2 := i1 ∪π2

Step 4 π := π1 ∪ π2
End.

Alexander Lazarev Scheduling Theory and Applications 29 / 210

Johnson’s algorithm:

Algorithm 1. Input: set N12 of jobs. Output: permutation π.
Step 1 ∀i ∈ N12 pi := min{p1

i , p
2
i }

Sorting jobs according to increase of their processing duration

pi1 ≤ pi2 ≤ · · · ≤ pin

Step 2 π1 := ∅ π2 := ∅

Step 3 Let N be a set of jobs sorted according to Step 1.
If N = ∅, go to step 4.
Otherwise, let’s denote the first element of N as i1. If pi1 = p1

i1
, add it

to π1: π1 := π1∪ i1, otherwise, if pi1 = p2
i1
, add it to π2: π2 := i1 ∪π2

Step 4 π := π1 ∪ π2
End.

Alexander Lazarev Scheduling Theory and Applications 29 / 210

Johnson’s algorithm:

Algorithm 1. Input: set N12 of jobs. Output: permutation π.
Step 1 ∀i ∈ N12 pi := min{p1

i , p
2
i }

Sorting jobs according to increase of their processing duration

pi1 ≤ pi2 ≤ · · · ≤ pin

Step 2 π1 := ∅ π2 := ∅
Step 3 Let N be a set of jobs sorted according to Step 1.
If N = ∅, go to step 4.
Otherwise, let’s denote the first element of N as i1. If pi1 = p1

i1
, add it

to π1: π1 := π1∪ i1, otherwise, if pi1 = p2
i1
, add it to π2: π2 := i1 ∪π2

Step 4 π := π1 ∪ π2
End.

Alexander Lazarev Scheduling Theory and Applications 29 / 210

Johnson’s algorithm:

Algorithm 1. Input: set N12 of jobs. Output: permutation π.
Step 1 ∀i ∈ N12 pi := min{p1

i , p
2
i }

Sorting jobs according to increase of their processing duration

pi1 ≤ pi2 ≤ · · · ≤ pin

Step 2 π1 := ∅ π2 := ∅
Step 3 Let N be a set of jobs sorted according to Step 1.
If N = ∅, go to step 4.
Otherwise, let’s denote the first element of N as i1. If pi1 = p1

i1
, add it

to π1: π1 := π1∪ i1, otherwise, if pi1 = p2
i1
, add it to π2: π2 := i1 ∪π2

Step 4 π := π1 ∪ π2
End.

Alexander Lazarev Scheduling Theory and Applications 29 / 210

Johnson’s algorithm:

Algorithm 2. Input: permutation of jobs π. Output: feasible schedule.
Step 1 Moment of processing initiation of 1st job on machine 1 is 0.
Moment of processing initiation of each subsequent job on machine 1
equals to moment of processing completion of previous job on
machine 1.

Step 2 Moment of processing initiation of 1st job on machine 2
matches its moment of processing completion on machine 1. Moment
of processing initiation of each subsequent job on machine 2 equals to
maximum of two moments: moment of its processing completion on
machine 1 and moment of processing completion of previous job on
machine 2.
End.
Thus, overall computational complexity of Johnson’s algorithm is
limited by computational complexity of sorting algorithm implemented
in Algorithm 1 at Step 1, i. e. O(n log n) in case of "quick-sort

Alexander Lazarev Scheduling Theory and Applications 30 / 210

Johnson’s algorithm:

Algorithm 2. Input: permutation of jobs π. Output: feasible schedule.
Step 1 Moment of processing initiation of 1st job on machine 1 is 0.
Moment of processing initiation of each subsequent job on machine 1
equals to moment of processing completion of previous job on
machine 1.
Step 2 Moment of processing initiation of 1st job on machine 2
matches its moment of processing completion on machine 1. Moment
of processing initiation of each subsequent job on machine 2 equals to
maximum of two moments: moment of its processing completion on
machine 1 and moment of processing completion of previous job on
machine 2.

End.
Thus, overall computational complexity of Johnson’s algorithm is
limited by computational complexity of sorting algorithm implemented
in Algorithm 1 at Step 1, i. e. O(n log n) in case of "quick-sort

Alexander Lazarev Scheduling Theory and Applications 30 / 210

Johnson’s algorithm:

Algorithm 2. Input: permutation of jobs π. Output: feasible schedule.
Step 1 Moment of processing initiation of 1st job on machine 1 is 0.
Moment of processing initiation of each subsequent job on machine 1
equals to moment of processing completion of previous job on
machine 1.
Step 2 Moment of processing initiation of 1st job on machine 2
matches its moment of processing completion on machine 1. Moment
of processing initiation of each subsequent job on machine 2 equals to
maximum of two moments: moment of its processing completion on
machine 1 and moment of processing completion of previous job on
machine 2.
End.
Thus, overall computational complexity of Johnson’s algorithm is
limited by computational complexity of sorting algorithm implemented
in Algorithm 1 at Step 1, i. e. O(n log n) in case of "quick-sort

Alexander Lazarev Scheduling Theory and Applications 30 / 210

Johnson’s algorithm:

Algorithm 2. Input: permutation of jobs π. Output: feasible schedule. Here,
schedule is described by an array of numbers: for each job j , processing start
times S1

j and S2
j on machines 1 and 2 are assigned: C i

j = S i
j + pi

j , i = 1, 2,
π = (j1, j2, , . . . , jn)

Alexander Lazarev Scheduling Theory and Applications 31 / 210

Johnson’s algorithm:

Algorithm 2. Input: permutation of jobs π. Output: feasible schedule. Here,
schedule is described by an array of numbers: for each job j , processing start
times S1

j and S2
j on machines 1 and 2 are assigned: C i

j = S i
j + pi

j , i = 1, 2,
π = (j1, j2, , . . . , jn)

Alexander Lazarev Scheduling Theory and Applications 31 / 210

Johnson’s algorithm:

Algorithm 2. Input: permutation of jobs π. Output: feasible schedule. Here,
schedule is described by an array of numbers: for each job j , processing start
times S1

j and S2
j on machines 1 and 2 are assigned: C i

j = S i
j + pi

j , i = 1, 2,
π = (j1, j2, , . . . , jn)

Alexander Lazarev Scheduling Theory and Applications 31 / 210

Exercise 1.

j 1 2 3 4 5 6 7

p1
j 5 7 4 3 5 7 6

p2
j 6 5 6 7 4 6 8

π = (, , , , , ,)
π1 = ()
π2 = ()

Final schedule π will be composed of two parts: π = π1 ∪ π2. π1 contains
jobs that should be performed on machine 1 first. After all the jobs from π1
have been processed on machine 1, jobs from π2 may start processing on
that machine.

Alexander Lazarev Scheduling Theory and Applications 32 / 210

Exercise 1.

j 1 2 3 4 5 6 7

p1
j 5 7 4 3 5 7 6

p2
j 6 5 6 7 4 6 8

π = (4 , , , , , ,)
π1 = (4)
π2 = ()
Exclude job 4 from the list of pending jobs

Alexander Lazarev Scheduling Theory and Applications 33 / 210

Exercise 1.

j 1 2 3 5 6 7

p1
j 5 7 4 5 7 6

p2
j 6 5 6 4 6 8

π = (4 , , , , , ,)
π1 = (4)
π2 = ()

Alexander Lazarev Scheduling Theory and Applications 34 / 210

Exercise 1.

j 1 2 3 5 6 7

p1
j 5 7 4 5 7 6

p2
j 6 5 6 4 6 8

π = (4 , , , , , , 5)
π1 = (4)
π2 = (5)
Exclude job 5 from the list of pending jobs

Alexander Lazarev Scheduling Theory and Applications 35 / 210

Exercise 1.

j 1 2 3 6 7

p1
j 5 7 4 7 6

p2
j 6 5 6 6 8

π = (4 , 3 , , , , , 5)
π1 = (4, 3)
π2 = (5)
Exclude job 3 from the list of pending jobs

Alexander Lazarev Scheduling Theory and Applications 36 / 210

Exercise 1.

j 1 2 6 7

p1
j 5 7 7 6

p2
j 6 5 6 8

π = (4 , 3 , , , , , 5)
π1 = (4, 3)
π2 = (5)

Alexander Lazarev Scheduling Theory and Applications 37 / 210

Exercise 1.

j 1 2 6 7

p1
j 5 7 7 6

p2
j 6 5 6 8

π = (4 , 3 , , , , 2 , 5)
π1 = (4, 3)
π2 = (2, 5)
Exclude job 2 from the list of pending jobs

Alexander Lazarev Scheduling Theory and Applications 38 / 210

Exercise 1.

j 1 6 7

p1
j 5 7 6

p2
j 6 6 8

π = (4 , 3 , 1 , , , 2 , 5)
π1 = (4, 3, 1)
π2 = (2, 5)
Exclude job 1 from the list of pending jobs

Alexander Lazarev Scheduling Theory and Applications 39 / 210

Exercise 1.

j 6 7

p1
j 7 6

p2
j 6 8

π = (4 , 3 , 1 , 6 , 7 , 2 , 5) π1 = (4, 3, 1, 6) π2 = (7, 2, 5)

π = π1
⋃
π2

O(n log n)

Alexander Lazarev Scheduling Theory and Applications 40 / 210

S. M. Johnson. Optimal two-and-three-stage production
schedules with set-up times included.

So far we have only considered the case in which all the jobs have
processing order "Machine 1 → Machine 2"(further, we will denote it
simply as "1 → 2").

Let us consider a bit more complicated problem. What if there are not
only jobs with a processing order "1 → 2 but also with processing
orders "2 → 1 "1"and "2"? (In the latter two cases, the jobs should
only be processed on their respective machines).
How could we apply Johnson’s algorithm to this problem?

Alexander Lazarev Scheduling Theory and Applications 41 / 210

S. M. Johnson. Optimal two-and-three-stage production
schedules with set-up times included.

So far we have only considered the case in which all the jobs have
processing order "Machine 1 → Machine 2"(further, we will denote it
simply as "1 → 2").
Let us consider a bit more complicated problem. What if there are not
only jobs with a processing order "1 → 2 but also with processing
orders "2 → 1 "1"and "2"? (In the latter two cases, the jobs should
only be processed on their respective machines).

How could we apply Johnson’s algorithm to this problem?

Alexander Lazarev Scheduling Theory and Applications 41 / 210

S. M. Johnson. Optimal two-and-three-stage production
schedules with set-up times included.

So far we have only considered the case in which all the jobs have
processing order "Machine 1 → Machine 2"(further, we will denote it
simply as "1 → 2").
Let us consider a bit more complicated problem. What if there are not
only jobs with a processing order "1 → 2 but also with processing
orders "2 → 1 "1"and "2"? (In the latter two cases, the jobs should
only be processed on their respective machines).
How could we apply Johnson’s algorithm to this problem?

Alexander Lazarev Scheduling Theory and Applications 41 / 210

S. M. Johnson. Optimal two-and-three-stage production
schedules with set-up times included.

2 machines

N1 jobs with processing order "1"
N2 jobs with processing order "2"
N12 jobs with processing order "1 → 2"
N21 jobs with processing order "2 → 1"
p1

j , p
2
j — processing times of job j on machines 1 and 2 respectively

(consider ∀j ∈ N1 p2
j = 0, ∀j ∈ N2 p1

j = 0)
C 1

j (π),C 2
j (π) — completion times on machines 1 and 2 respectively

Schedule π = (π1, π2) (two schedules, for machines 1 and 2
respectively)
Objective function: minimum total processing duration (makespan)

min
π

max
i∈{1,2}, j∈N

{C i
j (π)}, N = N1 ∪2 ∪N12 ∪ N21

Alexander Lazarev Scheduling Theory and Applications 42 / 210

S. M. Johnson. Optimal two-and-three-stage production
schedules with set-up times included.

2 machines
N1 jobs with processing order "1"
N2 jobs with processing order "2"
N12 jobs with processing order "1 → 2"
N21 jobs with processing order "2 → 1"

p1
j , p

2
j — processing times of job j on machines 1 and 2 respectively

(consider ∀j ∈ N1 p2
j = 0, ∀j ∈ N2 p1

j = 0)
C 1

j (π),C 2
j (π) — completion times on machines 1 and 2 respectively

Schedule π = (π1, π2) (two schedules, for machines 1 and 2
respectively)
Objective function: minimum total processing duration (makespan)

min
π

max
i∈{1,2}, j∈N

{C i
j (π)}, N = N1 ∪2 ∪N12 ∪ N21

Alexander Lazarev Scheduling Theory and Applications 42 / 210

S. M. Johnson. Optimal two-and-three-stage production
schedules with set-up times included.

2 machines
N1 jobs with processing order "1"
N2 jobs with processing order "2"
N12 jobs with processing order "1 → 2"
N21 jobs with processing order "2 → 1"
p1

j , p
2
j — processing times of job j on machines 1 and 2 respectively

(consider ∀j ∈ N1 p2
j = 0, ∀j ∈ N2 p1

j = 0)

C 1
j (π),C 2

j (π) — completion times on machines 1 and 2 respectively
Schedule π = (π1, π2) (two schedules, for machines 1 and 2
respectively)
Objective function: minimum total processing duration (makespan)

min
π

max
i∈{1,2}, j∈N

{C i
j (π)}, N = N1 ∪2 ∪N12 ∪ N21

Alexander Lazarev Scheduling Theory and Applications 42 / 210

S. M. Johnson. Optimal two-and-three-stage production
schedules with set-up times included.

2 machines
N1 jobs with processing order "1"
N2 jobs with processing order "2"
N12 jobs with processing order "1 → 2"
N21 jobs with processing order "2 → 1"
p1

j , p
2
j — processing times of job j on machines 1 and 2 respectively

(consider ∀j ∈ N1 p2
j = 0, ∀j ∈ N2 p1

j = 0)
C 1

j (π),C 2
j (π) — completion times on machines 1 and 2 respectively

Schedule π = (π1, π2) (two schedules, for machines 1 and 2
respectively)
Objective function: minimum total processing duration (makespan)

min
π

max
i∈{1,2}, j∈N

{C i
j (π)}, N = N1 ∪2 ∪N12 ∪ N21

Alexander Lazarev Scheduling Theory and Applications 42 / 210

S. M. Johnson. Optimal two-and-three-stage production
schedules with set-up times included.

2 machines
N1 jobs with processing order "1"
N2 jobs with processing order "2"
N12 jobs with processing order "1 → 2"
N21 jobs with processing order "2 → 1"
p1

j , p
2
j — processing times of job j on machines 1 and 2 respectively

(consider ∀j ∈ N1 p2
j = 0, ∀j ∈ N2 p1

j = 0)
C 1

j (π),C 2
j (π) — completion times on machines 1 and 2 respectively

Schedule π = (π1, π2) (two schedules, for machines 1 and 2
respectively)

Objective function: minimum total processing duration (makespan)

min
π

max
i∈{1,2}, j∈N

{C i
j (π)}, N = N1 ∪2 ∪N12 ∪ N21

Alexander Lazarev Scheduling Theory and Applications 42 / 210

S. M. Johnson. Optimal two-and-three-stage production
schedules with set-up times included.

2 machines
N1 jobs with processing order "1"
N2 jobs with processing order "2"
N12 jobs with processing order "1 → 2"
N21 jobs with processing order "2 → 1"
p1

j , p
2
j — processing times of job j on machines 1 and 2 respectively

(consider ∀j ∈ N1 p2
j = 0, ∀j ∈ N2 p1

j = 0)
C 1

j (π),C 2
j (π) — completion times on machines 1 and 2 respectively

Schedule π = (π1, π2) (two schedules, for machines 1 and 2
respectively)
Objective function: minimum total processing duration (makespan)

min
π

max
i∈{1,2}, j∈N

{C i
j (π)}, N = N1 ∪2 ∪N12 ∪ N21

Alexander Lazarev Scheduling Theory and Applications 42 / 210

S. M. Johnson. Optimal two-and-three-stage production
schedules with set-up times included.

Without going into any deep detail on this problem, let us formulate
the following theorem:

Theorem. Let π12 be a permutation of jobs obtained by applying
Algorithm 1 to set of jobs N12, let π21 be a permutation of jobs
obtained by applying Algorithm 1 to set of jobs N21 (by swapping the
machines), and let π1 and π2 be two arbitrary permutations of jobs
from sets N1 and N2. Then the optimal solution to of this problem
would consist of two sequences of jobs: π1 = (π12, π1, π21) for machine
1 and π2 = (π21, π2, π12) for machine 2. Computational complexity of
this algorithm is O(n log n), where n is total number of jobs.

Alexander Lazarev Scheduling Theory and Applications 43 / 210

S. M. Johnson. Optimal two-and-three-stage production
schedules with set-up times included.

Without going into any deep detail on this problem, let us formulate
the following theorem:
Theorem. Let π12 be a permutation of jobs obtained by applying
Algorithm 1 to set of jobs N12, let π21 be a permutation of jobs
obtained by applying Algorithm 1 to set of jobs N21 (by swapping the
machines), and let π1 and π2 be two arbitrary permutations of jobs
from sets N1 and N2. Then the optimal solution to of this problem
would consist of two sequences of jobs: π1 = (π12, π1, π21) for machine
1 and π2 = (π21, π2, π12) for machine 2. Computational complexity of
this algorithm is O(n log n), where n is total number of jobs.

Alexander Lazarev Scheduling Theory and Applications 43 / 210

S. M. Johnson. Optimal two-and-three-stage production
schedules with set-up times included.

Schedule π1 = (π12, π1, π21) for machine 1
Schedule π2 = (π21, π2, π12) for machine 2

Alexander Lazarev Scheduling Theory and Applications 44 / 210

S. M. Johnson. Optimal two-and-three-stage production
schedules with set-up times included.

Suppose that there are more than 2 machines, for example, 3
machines, and some jobs have processing orders such as "1 → 2 →
3 "2 → 3 → 1"and so on.

Is it possible to use Johnson’s algorithm in that case?

Alexander Lazarev Scheduling Theory and Applications 45 / 210

S. M. Johnson. Optimal two-and-three-stage production
schedules with set-up times included.

Suppose that there are more than 2 machines, for example, 3
machines, and some jobs have processing orders such as "1 → 2 →
3 "2 → 3 → 1"and so on.
Is it possible to use Johnson’s algorithm in that case?

Alexander Lazarev Scheduling Theory and Applications 45 / 210

Computational complexity of Jackson’s, Smith’s and
Johnon’s problems

The following problems:
— Smith’s problem with non-zero release times (∃ j ∈ N rj 6= 0)
— Jackson’s problem with non-zero release times (∃ j ∈ N rj 6= 0)
— Johnson’s problem with more than 2 machines
are known to be at least NP-hard.

Alexander Lazarev Scheduling Theory and Applications 46 / 210

Meaning of the objective function in a problem

As we have discussed before, Jackson’s, Smith’s and Johnson’s
problems have objective functions Lmax ,

∑
Cj and Cmax ,

correspondingly.

Now, take a moment and try to answer the following question:
What sense do these objective functions make in real life?

Alexander Lazarev Scheduling Theory and Applications 47 / 210

Meaning of the objective function in a problem

As we have discussed before, Jackson’s, Smith’s and Johnson’s
problems have objective functions Lmax ,

∑
Cj and Cmax ,

correspondingly.

Now, take a moment and try to answer the following question:
What sense do these objective functions make in real life?

Alexander Lazarev Scheduling Theory and Applications 47 / 210

Problem of two production lines

Alexander Lazarev Scheduling Theory and Applications 48 / 210

Problem of two production lines

2 production lines that have n workplaces denoted as S11, . . . ,S1n and
S21, . . . ,S2n, i ∈ {1, 2}, j ∈ {1. . . . , n}

1 job (product) that should pass all the n workplaces (stages of
production) according to their order. Between stages of production the
product may be transferred to another production line, i.e. different
stages may be processed at different production lines.
aij — processing time at workplace Sij

tij — transfer time from workplace Sij at production line i to (j + 1)th
workplace at the other production line; j ∈ {1, . . . , n − 1}. Transfer
times between adjacent workplaces on the same production line are
equal to 0.
Schedule π (each stage of the job is assigned to a workplace at the
corresponding production line)

Alexander Lazarev Scheduling Theory and Applications 49 / 210

Problem of two production lines

2 production lines that have n workplaces denoted as S11, . . . ,S1n and
S21, . . . ,S2n, i ∈ {1, 2}, j ∈ {1. . . . , n}
1 job (product) that should pass all the n workplaces (stages of
production) according to their order. Between stages of production the
product may be transferred to another production line, i.e. different
stages may be processed at different production lines.

aij — processing time at workplace Sij

tij — transfer time from workplace Sij at production line i to (j + 1)th
workplace at the other production line; j ∈ {1, . . . , n − 1}. Transfer
times between adjacent workplaces on the same production line are
equal to 0.
Schedule π (each stage of the job is assigned to a workplace at the
corresponding production line)

Alexander Lazarev Scheduling Theory and Applications 49 / 210

Problem of two production lines

2 production lines that have n workplaces denoted as S11, . . . ,S1n and
S21, . . . ,S2n, i ∈ {1, 2}, j ∈ {1. . . . , n}
1 job (product) that should pass all the n workplaces (stages of
production) according to their order. Between stages of production the
product may be transferred to another production line, i.e. different
stages may be processed at different production lines.
aij — processing time at workplace Sij

tij — transfer time from workplace Sij at production line i to (j + 1)th
workplace at the other production line; j ∈ {1, . . . , n − 1}. Transfer
times between adjacent workplaces on the same production line are
equal to 0.
Schedule π (each stage of the job is assigned to a workplace at the
corresponding production line)

Alexander Lazarev Scheduling Theory and Applications 49 / 210

Problem of two production lines

2 production lines that have n workplaces denoted as S11, . . . ,S1n and
S21, . . . ,S2n, i ∈ {1, 2}, j ∈ {1. . . . , n}
1 job (product) that should pass all the n workplaces (stages of
production) according to their order. Between stages of production the
product may be transferred to another production line, i.e. different
stages may be processed at different production lines.
aij — processing time at workplace Sij

tij — transfer time from workplace Sij at production line i to (j + 1)th
workplace at the other production line; j ∈ {1, . . . , n − 1}. Transfer
times between adjacent workplaces on the same production line are
equal to 0.

Schedule π (each stage of the job is assigned to a workplace at the
corresponding production line)

Alexander Lazarev Scheduling Theory and Applications 49 / 210

Problem of two production lines

2 production lines that have n workplaces denoted as S11, . . . ,S1n and
S21, . . . ,S2n, i ∈ {1, 2}, j ∈ {1. . . . , n}
1 job (product) that should pass all the n workplaces (stages of
production) according to their order. Between stages of production the
product may be transferred to another production line, i.e. different
stages may be processed at different production lines.
aij — processing time at workplace Sij

tij — transfer time from workplace Sij at production line i to (j + 1)th
workplace at the other production line; j ∈ {1, . . . , n − 1}. Transfer
times between adjacent workplaces on the same production line are
equal to 0.

Schedule π (each stage of the job is assigned to a workplace at the
corresponding production line)

Alexander Lazarev Scheduling Theory and Applications 49 / 210

Problem of two production lines

2 production lines that have n workplaces denoted as S11, . . . ,S1n and
S21, . . . ,S2n, i ∈ {1, 2}, j ∈ {1. . . . , n}
1 job (product) that should pass all the n workplaces (stages of
production) according to their order. Between stages of production the
product may be transferred to another production line, i.e. different
stages may be processed at different production lines.
aij — processing time at workplace Sij

tij — transfer time from workplace Sij at production line i to (j + 1)th
workplace at the other production line; j ∈ {1, . . . , n − 1}. Transfer
times between adjacent workplaces on the same production line are
equal to 0.
Schedule π (each stage of the job is assigned to a workplace at the
corresponding production line)

Alexander Lazarev Scheduling Theory and Applications 49 / 210

Problem of two production lines

Cj (π) — completion time of stage j according to schedule π

Objective function: minimum total processing duration (makespan):

min
π
{Cn(π)}

Alexander Lazarev Scheduling Theory and Applications 50 / 210

Problem of two production lines

Cj (π) — completion time of stage j according to schedule π
Objective function: minimum total processing duration (makespan):

min
π
{Cn(π)}

Alexander Lazarev Scheduling Theory and Applications 50 / 210

Problem of two production lines

Cj (π) — completion time of stage j according to schedule π
Objective function: minimum total processing duration (makespan):

min
π
{Cn(π)}

Alexander Lazarev Scheduling Theory and Applications 50 / 210

Solution. Dynamic programming.

Let us suppose that the job is now at the stage j at production line 1, i.e.
the product is at workplace S1j . Let us also suppose that the current
schedule π is optimal.
In order to proceed to stage j , the job must have first gone through stage
j − 1, which means that the product came to workplace S1j either from
workplace S1(j−1) or S2(j−1). Suppose it came from workplace S1(j−1).
According to our supposition that current schedule is optimal (which means
that product got to workplace S1j in the fastest possible way), the product
must have gotten to workplace S1(j−1) in the fastest possible way, too. This
means that the optimal solution of the problem for the first j workplaces
includes optimal solution of the problem for the first j − 1 workplaces.
This property of the solution is called optimal substructure.

Alexander Lazarev Scheduling Theory and Applications 51 / 210

Solution. Dynamic programming.

Recursive algorithm: According to the optimal substructure of the problem,
let us calculate consequently C i

j — the least moments of time in which the
product could have gone through stage j , being at the moment of
completion of this stage at production line i .

C 1
1 := a11

C 2
1 := a21

for j := 2 to n do

begin

C 1
j := min

{
C 1

j−1,C
2
j−1 + t2(j−1)

}
+ a1j

C 2
j := min

{
C 2

j−1,C
1
j−1 + t1(j−1)

}
+ a2j

end

These equations are the simplest case of Bellmann equations.

Alexander Lazarev Scheduling Theory and Applications 52 / 210

Solution. Dynamic programming.

Total processing duration is Cn := min
{
C 1

n ,C
2
n

}
i.e. it doesn’t matter at

which production line the product finished processing.
Recovering the schedule itself is a fairly easy task: we just have to
"remember"from which workplace the product came to the current
workplace.
Total computational complexity of this algorithm is O(n) operations.

Alexander Lazarev Scheduling Theory and Applications 53 / 210

Elements of computational comlexity theory. Classes P and NP.

Alexander Lazarev Scheduling Theory and Applications 54 / 210

S. A. Cook. The complexity of theorem-proving procedures. In Proceedings
of 3rd Annual ACM Symposium on Theory of Computing, pg. 151-158.
ACM-Press 1971.

Alexander Lazarev Scheduling Theory and Applications 55 / 210

Computational complexity

Suppose we are examining some instance of a recognition problem.

Let us denote as n a numerical characteristic of input data that affects
computational complexity of this problem in the most significant way
(usually it is either the amount of input data itself, or dimensionality
of the problem — the number of variables, equations and inequalities
that define an instance of the problem).
Suppose we also know some sort of algorithm that can be used to
solve this problem within a finite time period.

Alexander Lazarev Scheduling Theory and Applications 56 / 210

Computational complexity

Suppose we are examining some instance of a recognition problem.
Let us denote as n a numerical characteristic of input data that affects
computational complexity of this problem in the most significant way
(usually it is either the amount of input data itself, or dimensionality
of the problem — the number of variables, equations and inequalities
that define an instance of the problem).

Suppose we also know some sort of algorithm that can be used to
solve this problem within a finite time period.

Alexander Lazarev Scheduling Theory and Applications 56 / 210

Computational complexity

Suppose we are examining some instance of a recognition problem.
Let us denote as n a numerical characteristic of input data that affects
computational complexity of this problem in the most significant way
(usually it is either the amount of input data itself, or dimensionality
of the problem — the number of variables, equations and inequalities
that define an instance of the problem).
Suppose we also know some sort of algorithm that can be used to
solve this problem within a finite time period.

Alexander Lazarev Scheduling Theory and Applications 56 / 210

Computational complexity

• If computational complexity of the algorithm that solves the problem
is O(nk) operations, where k is some constant number independent
from n, then this problem is called solvable in polynomial time.
Algorithms to the 4 problems mentioned before (Jackson’s, Smith’s,
Johnson’s problems and the problem of two production lines) are
polynomial.

• All problems that are solvable within polynomial time formulate a
class of problems denoted as P . Algorithms with corresponding
computational complexity are called polynomial .
• If complexity of the algorithm depends on the values of numerical
parameters of an example, for example, O(nA), then this algorithm is
called pseudo-polynomial .
• If complexity of the algorithm has the form of O(nxyn), where x
and y are some constants, then this algorithm is called exponential .

Alexander Lazarev Scheduling Theory and Applications 57 / 210

Computational complexity

• If computational complexity of the algorithm that solves the problem
is O(nk) operations, where k is some constant number independent
from n, then this problem is called solvable in polynomial time.
Algorithms to the 4 problems mentioned before (Jackson’s, Smith’s,
Johnson’s problems and the problem of two production lines) are
polynomial.
• All problems that are solvable within polynomial time formulate a
class of problems denoted as P . Algorithms with corresponding
computational complexity are called polynomial .

• If complexity of the algorithm depends on the values of numerical
parameters of an example, for example, O(nA), then this algorithm is
called pseudo-polynomial .
• If complexity of the algorithm has the form of O(nxyn), where x
and y are some constants, then this algorithm is called exponential .

Alexander Lazarev Scheduling Theory and Applications 57 / 210

Computational complexity

• If computational complexity of the algorithm that solves the problem
is O(nk) operations, where k is some constant number independent
from n, then this problem is called solvable in polynomial time.
Algorithms to the 4 problems mentioned before (Jackson’s, Smith’s,
Johnson’s problems and the problem of two production lines) are
polynomial.
• All problems that are solvable within polynomial time formulate a
class of problems denoted as P . Algorithms with corresponding
computational complexity are called polynomial .
• If complexity of the algorithm depends on the values of numerical
parameters of an example, for example, O(nA), then this algorithm is
called pseudo-polynomial .

• If complexity of the algorithm has the form of O(nxyn), where x
and y are some constants, then this algorithm is called exponential .

Alexander Lazarev Scheduling Theory and Applications 57 / 210

Computational complexity

• If computational complexity of the algorithm that solves the problem
is O(nk) operations, where k is some constant number independent
from n, then this problem is called solvable in polynomial time.
Algorithms to the 4 problems mentioned before (Jackson’s, Smith’s,
Johnson’s problems and the problem of two production lines) are
polynomial.
• All problems that are solvable within polynomial time formulate a
class of problems denoted as P . Algorithms with corresponding
computational complexity are called polynomial .
• If complexity of the algorithm depends on the values of numerical
parameters of an example, for example, O(nA), then this algorithm is
called pseudo-polynomial .
• If complexity of the algorithm has the form of O(nxyn), where x
and y are some constants, then this algorithm is called exponential .

Alexander Lazarev Scheduling Theory and Applications 57 / 210

Class NP

Suppose that we have a computer that includes a special
"guessing"component (oracle). The oracle, given correct input data
(the solution exists), provides some (possibly correct) output data.
The output data provided by oracle needs to be verified, i. e. we
should construct an algorithm that checks if the output data contains
a correct solution that is in accordance with provided input data.

Alexander Lazarev Scheduling Theory and Applications 58 / 210

Class NP

Class NP includes all the problems that, for each instance that has a
solution, may be guessed by an oracle, and the answer provided by
oracle is such that:

• the amount of data in solution provided by oracle is limited
polynomially
• the solution provided by oracle could be verified in polynomial time.

Alexander Lazarev Scheduling Theory and Applications 59 / 210

Class NP

Class NP includes all the problems that, for each instance that has a
solution, may be guessed by an oracle, and the answer provided by
oracle is such that:
• the amount of data in solution provided by oracle is limited
polynomially

• the solution provided by oracle could be verified in polynomial time.

Alexander Lazarev Scheduling Theory and Applications 59 / 210

Class NP

Class NP includes all the problems that, for each instance that has a
solution, may be guessed by an oracle, and the answer provided by
oracle is such that:
• the amount of data in solution provided by oracle is limited
polynomially
• the solution provided by oracle could be verified in polynomial time.

Alexander Lazarev Scheduling Theory and Applications 59 / 210

Reduction of one problem to another

It is said that problem A can be reduced to problem B in polynomial
time (A ∝ B), if a modification algorithm exists, such that this
algorithm follows two next conditions:

• The algorithm transforms any given instance IA of problem A into a
corresponding instance IB of problem B in polynomial time
• The answer to received instance IB of problem B is ”YES”
if and only if the answer to the corresponding instance IA of
problem A is ”YES” , too. (or, less strictly, the solutions of
corresponding instances IA, IB of problems A, B always match)

Alexander Lazarev Scheduling Theory and Applications 60 / 210

Reduction of one problem to another

It is said that problem A can be reduced to problem B in polynomial
time (A ∝ B), if a modification algorithm exists, such that this
algorithm follows two next conditions:
• The algorithm transforms any given instance IA of problem A into a
corresponding instance IB of problem B in polynomial time

• The answer to received instance IB of problem B is ”YES”
if and only if the answer to the corresponding instance IA of
problem A is ”YES” , too. (or, less strictly, the solutions of
corresponding instances IA, IB of problems A, B always match)

Alexander Lazarev Scheduling Theory and Applications 60 / 210

Reduction of one problem to another

It is said that problem A can be reduced to problem B in polynomial
time (A ∝ B), if a modification algorithm exists, such that this
algorithm follows two next conditions:
• The algorithm transforms any given instance IA of problem A into a
corresponding instance IB of problem B in polynomial time
• The answer to received instance IB of problem B is ”YES”
if and only if the answer to the corresponding instance IA of
problem A is ”YES” , too. (or, less strictly, the solutions of
corresponding instances IA, IB of problems A, B always match)

Alexander Lazarev Scheduling Theory and Applications 60 / 210

Problem classification in scheduling theory

Alexander Lazarev Scheduling Theory and Applications 61 / 210

Problem classification in scheduling theory

In scheduling theory, problems are classified according to:
• Type of solution
• Type of objective function
• Way input data is provided
• Subfields of Scheduling Theory

Alexander Lazarev Scheduling Theory and Applications 62 / 210

Problem classification in scheduling theory

Problem classification according to the type of solution:
• Arrangement problems
• Matching problems
• Distribution problems

Alexander Lazarev Scheduling Theory and Applications 63 / 210

Problem classification in scheduling theory

Problem classification according to the type of objective function:
• Problems with summary optimization criteria
• Problems with min-max optimization criteria
• Multicriterial optimization problems
• Problem on constructing a feasible schedule

Alexander Lazarev Scheduling Theory and Applications 64 / 210

Problem classification in scheduling theory

Problem classification according to the way input data is provided:
• Deterministic problems (offline)
• Dynamic problems (online)

Alexander Lazarev Scheduling Theory and Applications 65 / 210

Problem classification in scheduling theory

Problem classification according to subfields of Scheduling Theory:
• Project scheduling (PS)
• Machine scheduling (MS)
• Timetabling
• Shop-floor scheduling
• Transport scheduling and vehicle routing
• Sports scheduling

Alexander Lazarev Scheduling Theory and Applications 66 / 210

Denotations in Scheduling Theory

In Scheduling Theory, tasks are referred to as requests or jobs. Parameters
of requests:

• rj — release time
• pj — processing time
• dj — due date (may be violated, but a penalty is issued)
• Dj — deadline (should never be violated)
• wj — job weight

Alexander Lazarev Scheduling Theory and Applications 67 / 210

Denotations in Scheduling Theory

Additional denotations:
• pmtn — preemptive scheduling is allowed
• prec — precedence relations between the jobs are defined (also: tree,
out − tree, in − tree, chain)
• batch — the batching problem is considered (jobs are grouped into
batches)

Alexander Lazarev Scheduling Theory and Applications 68 / 210

Denotations in Scheduling Theory

Objective functions:
• Cj — completion time
• Lj = Cj − dj — lateness
• Tj = max{0, Cj − dj} — tardiness
• Ej = max{0, dj − Cj} — earliness
• Uj — equals 1 if job j is late (Cj > dj) and 0 in the opposite case

If request weights wj are provided, all of the previous objective functions
are called weighed, and are multiplied by the value of request weight (ex.,
weighed tardiness wjTj is calculated as wj max{0, Cj − dj})

Alexander Lazarev Scheduling Theory and Applications 69 / 210

Denotations in Scheduling Theory

Optimization criteria:
1. min-max criteria
• Cmax → min — minimizing maximum completion time
(makespan), Cmax = max

j∈N
Cj . These problems are also called

performance problems.
• Lmax → min — minimizing maximum lateness Lmax = max

j∈N
Lj

2. summary criteria
•
∑
j∈N

Cj → min — minimizing total completion time

•
∑
j∈N

Tj → min — minimizing total tardiness

•
∑
j∈N

Uj → min — minimizing total number of late jobs

Also, problems of maximizing these objective functions are considered (ex.,∑
j∈N

Tj → max).

Alexander Lazarev Scheduling Theory and Applications 70 / 210

Project scheduling

Alexander Lazarev Scheduling Theory and Applications 71 / 210

Resource-Constrained Project Scheduling Problem (RCPSP)

• Set of n requests N = {1, . . . , n}
• k renewable resources K = 1, . . . ,Qk

• pi — processing time of request i , ∀i ∈ N.
• During processing of request i amount qik ≤ Qk of resource k is
used, k = 1, . . . , n.
• Some requests are bound by precedence relations:i → j means
request j cannot start processing before request i has finished
processing, i , j ∈ N.

Alexander Lazarev Scheduling Theory and Applications 72 / 210

Resource-Constrained Project Scheduling Problem (RCPSP)

The goal is to find processing start times Si for all requests i ∈ N so that
minimum makespan Cmax is achieved:

Cmax = max
i∈N
{Ci}, Ci = Si + pi , Cmax → min

Obtained schedule should comply to the following conditions:
• Resource constraints are not violated:
∀ t ∈ [0,Cmax), ∀ k = 1, . . . ,K

n∑
i=1

qikϕi (t) ≤ Qk

• Precedence relations are not violated:
∀ i , j ∈ N : if i → j , then Si + pi ≤ Sj

It is necessary to notice that RCPSP is not the only problem in project
scheduling, though it is the main one. For example, some resources can be
non-renewable, such as money, fuel, oils and so on.

Alexander Lazarev Scheduling Theory and Applications 73 / 210

Machine scheduling

Alexander Lazarev Scheduling Theory and Applications 74 / 210

Machine scheduling

In Project Scheduling, processing of each request requires participation of
several processors (renewable resources could be viewed as equipment).
In Machine scheduling, usually each request is processed by only one
processor at a time.
Processors can also be referred to as machines or devices. If not specified
otherwise, machines are considered equivalent.

Alexander Lazarev Scheduling Theory and Applications 75 / 210

Machine scheduling

• Single-machine problems: only one request can be processed at a
time.
• Parallel machines’ problems: each request can be processed by any
of the machines. Machines can be non-equivalent (processing time can
vary). Precedence relations can be specified.
• Shop scheduling : m, machines M1, . . . ,Mm. Each request j ∈ N
includes a number of stages (”operations”) O1, . . . ,Onj j . Precedence
relations between operations can be specified. Each operation Oij is
assigned to a machine µij that it should be processed on. For each
request, only one operation can be processed at a time. Each machine
can only process one operation at a time.
• Job-shop: Precedence relations between operations are
O1j → O2j → · · · → Onj j . No precedence relations between requests.
Number of operations may vary between requests.

Alexander Lazarev Scheduling Theory and Applications 76 / 210

Machine scheduling

• Flow-shop (”Conveyor problem”): Each request contains the same
number of operations: ∀ j ∈ N nj = m. Same operations are assigned
to the same machine: µij = Mi , i = 1, . . . ,m, j = 1, . . . , n.
• Open-shop: same as Flow-shop, but no precedence relations between
operations.
• Other problems: batching problems, multiprocessor problems, . . .

Alexander Lazarev Scheduling Theory and Applications 77 / 210

Classification of problems in Machine scheduling

Alexander Lazarev Scheduling Theory and Applications 78 / 210

Classification of problems in Machine scheduling

Each problem is denoted as α|β|γ, where
• α describes characteristics of the problem that are related to
machines
• β describes constraints and conditions of processing of requests.
• γ describes objective function.

Alexander Lazarev Scheduling Theory and Applications 79 / 210

Classification of problems in Machine scheduling

α describes characteristics of the problem related to machines. Possible
values of α:

• 1 — single machine
• Pm — parallel machines
• Qm — parallel machines (non-equivalent)
• Fm — Flow-shop problem
• Om — Open-shop problem
• Jm — Job-shop problem
• Other values: na, nd , . . .

Alexander Lazarev Scheduling Theory and Applications 80 / 210

Classification of problems in Machine scheduling

β describes constraints and conditions of processing of requests. Possible
contents of field β:

• rj — release dates are specified
• dj — due dates are specified
• Dj — deadlines are specified
• prec — precedence relations are specified
• pmnt — preemption is allowe
• batch — batching problem: groups of requests (batches) can be
processed simultaneously.
• Other values: pj = p, . . .

γ describes objective function (ex., Cmax).

Alexander Lazarev Scheduling Theory and Applications 81 / 210

Classification of problems in Machine scheduling

Thus, record F2|rj |Cmax denotes problem of minimizing makespan in
Flow-shop system with two machines in case of non-simultaneous
admission of requests. Other examples: 1|pj = p, rj |

∑
wjTj ,

Pm|rj , pmtn|
∑

Cj , . . .

Let’s review some of previously considered problems in terms of
machine scheduling:
• 1|rj |Lmax (Jackson’s problem with non-zero release times)
is NP-hard in the strong sense
• 1|rj |

∑
Cj (Smith’s problem with non-zero release times)

is NP-hard
• F3||Cmax (Johnson’s problem with more than 2 machines)
is NP-hard in the strong sense

Alexander Lazarev Scheduling Theory and Applications 82 / 210

Classification of problems in Machine scheduling

Thus, record F2|rj |Cmax denotes problem of minimizing makespan in
Flow-shop system with two machines in case of non-simultaneous
admission of requests. Other examples: 1|pj = p, rj |

∑
wjTj ,

Pm|rj , pmtn|
∑

Cj , . . .

Let’s review some of previously considered problems in terms of
machine scheduling:
• 1|rj |Lmax (Jackson’s problem with non-zero release times)
is NP-hard in the strong sense
• 1|rj |

∑
Cj (Smith’s problem with non-zero release times)

is NP-hard
• F3||Cmax (Johnson’s problem with more than 2 machines)
is NP-hard in the strong sense

Alexander Lazarev Scheduling Theory and Applications 82 / 210

Minimizing maximum lateness

1|rj |Lmax

Single machine, n jobs
rj – release time;
pj > 0 – processing time;
dj – due date.
j ∈ N = {1, 2, . . . , n}

Preemptions of a job are not allowed. The machine can process at most
one job at any time.

Graham R.L., Lawler E.L., Lenstra J.K., Rinnooy Kan A.H.G. 1979

Alexander Lazarev Scheduling Theory and Applications 83 / 210

Minimizing maximum lateness

1|rj |Lmax

Single machine, n jobs
rj – release time;
pj > 0 – processing time;
dj – due date.
j ∈ N = {1, 2, . . . , n}

Preemptions of a job are not allowed. The machine can process at most
one job at any time.

Graham R.L., Lawler E.L., Lenstra J.K., Rinnooy Kan A.H.G. 1979

Alexander Lazarev Scheduling Theory and Applications 83 / 210

Minimizing maximum lateness

1|rj |Lmax

Single machine, n jobs
rj – release time;
pj > 0 – processing time;
dj – due date.
j ∈ N = {1, 2, . . . , n}

Preemptions of a job are not allowed. The machine can process at most
one job at any time.

Graham R.L., Lawler E.L., Lenstra J.K., Rinnooy Kan A.H.G. 1979

Alexander Lazarev Scheduling Theory and Applications 83 / 210

0

π i

pi

Cidiri

j

pj

Cj djrj

F (π) = max
j∈N
{Cj − dj} → min

π

NP-hard in strong sense

Lenstra J.K., Rinnooy Kan A.H.G., Brucker, P. 1977

Alexander Lazarev Scheduling Theory and Applications 84 / 210

0

π i

pi

Cidiri

j

pj

Cj djrj

F (π) = max
j∈N
{Cj − dj} → min

π

NP-hard in strong sense

Lenstra J.K., Rinnooy Kan A.H.G., Brucker, P. 1977

Alexander Lazarev Scheduling Theory and Applications 84 / 210

1|rj |Lmax

Alexander Lazarev Scheduling Theory and Applications 85 / 210

1|rj |Lmax

Alexander Lazarev Scheduling Theory and Applications 85 / 210

1|rj |Lmax

Alexander Lazarev Scheduling Theory and Applications 85 / 210

1|rj |Lmax

Alexander Lazarev Scheduling Theory and Applications 85 / 210

1|rj |Lmax

Alexander Lazarev Scheduling Theory and Applications 85 / 210

Solvable cases:

1) rj = 0,∀ j ∈ N. O(n log n)
Jackson J.R. 1955

1’) dj = const,∀ j ∈ N. O(n log n)

1”) pj = const,∀ j ∈ N.
Simons B. 1983. O(n log n)

2) O(n3 log n){
d1 ≤ d2 ≤ · · · ≤ dn;
d1 − r1 − p1 ≥ d2 − r2 − p2 ≥ · · · ≥ dn − rn − pn.

(1)

2’) dj = rj + pj + const,∀ j ∈ N. O(n3 log n)

{1,P,Q,R}|rj |{Lmax,Cmax} O(n3 log n)

Lazarev A.A., Sadykov R.R., Sevastyanov S.V. 1988-2007

Alexander Lazarev Scheduling Theory and Applications 86 / 210

Solvable cases:

1) rj = 0, ∀ j ∈ N. O(n log n)
Jackson J.R. 1955

1’) dj = const,∀ j ∈ N. O(n log n)

1”) pj = const,∀ j ∈ N.
Simons B. 1983. O(n log n)

2) O(n3 log n){
d1 ≤ d2 ≤ · · · ≤ dn;
d1 − r1 − p1 ≥ d2 − r2 − p2 ≥ · · · ≥ dn − rn − pn.

(1)

2’) dj = rj + pj + const,∀ j ∈ N. O(n3 log n)

{1,P,Q,R}|rj |{Lmax,Cmax} O(n3 log n)

Lazarev A.A., Sadykov R.R., Sevastyanov S.V. 1988-2007

Alexander Lazarev Scheduling Theory and Applications 86 / 210

Solvable cases:

1) rj = 0, ∀ j ∈ N. O(n log n)
Jackson J.R. 1955

1’) dj = const,∀ j ∈ N. O(n log n)

1”) pj = const,∀ j ∈ N.
Simons B. 1983. O(n log n)

2) O(n3 log n){
d1 ≤ d2 ≤ · · · ≤ dn;
d1 − r1 − p1 ≥ d2 − r2 − p2 ≥ · · · ≥ dn − rn − pn.

(1)

2’) dj = rj + pj + const,∀ j ∈ N. O(n3 log n)

{1,P,Q,R}|rj |{Lmax,Cmax} O(n3 log n)

Lazarev A.A., Sadykov R.R., Sevastyanov S.V. 1988-2007
Alexander Lazarev Scheduling Theory and Applications 86 / 210

Solvable cases:

3) max
k∈N
{dk − rk − pk} ≤ dj − rj ,∀ j ∈ N. O(n2 log n)

Hoogeveen J. A. 1996

4) NP-hard in ordinary sense O(n2P + npmaxP)
d1 ≤ d2 ≤ · · · ≤ dn;
r1 ≥ r2 ≥ · · · ≥ rn;
rj , pj , dj ∈ Z+, ∀ j ∈ N.

(2)

Lazarev A.A., Schulgina O.N. 1998

P = rmax +
n∑

j=1
pj − rmin, rmax = max

j∈N
rj , rmin = min

j∈N
rj , pmax = max

j∈N
pj

Alexander Lazarev Scheduling Theory and Applications 87 / 210

Solvable cases:

3) max
k∈N
{dk − rk − pk} ≤ dj − rj ,∀ j ∈ N. O(n2 log n)

Hoogeveen J. A. 1996

4) NP-hard in ordinary sense O(n2P + npmaxP)
d1 ≤ d2 ≤ · · · ≤ dn;
r1 ≥ r2 ≥ · · · ≥ rn;
rj , pj , dj ∈ Z+, ∀ j ∈ N.

(2)

Lazarev A.A., Schulgina O.N. 1998

P = rmax +
n∑

j=1
pj − rmin, rmax = max

j∈N
rj , rmin = min

j∈N
rj , pmax = max

j∈N
pj

Alexander Lazarev Scheduling Theory and Applications 87 / 210

Solvable cases:

3) max
k∈N
{dk − rk − pk} ≤ dj − rj ,∀ j ∈ N. O(n2 log n)

Hoogeveen J. A. 1996

4) NP-hard in ordinary sense O(n2P + npmaxP)
d1 ≤ d2 ≤ · · · ≤ dn;
r1 ≥ r2 ≥ · · · ≥ rn;
rj , pj , dj ∈ Z+, ∀ j ∈ N.

(2)

Lazarev A.A., Schulgina O.N. 1998

P = rmax +
n∑

j=1
pj − rmin, rmax = max

j∈N
rj , rmin = min

j∈N
rj , pmax = max

j∈N
pj

Alexander Lazarev Scheduling Theory and Applications 87 / 210

Solvable cases:

5)


d1 ≤ d2 ≤ · · · ≤ dn;
d1 − αr1 − βp1 ≥ d2 − αr2 − βp2 ≥ · · · ≥ dn − αrn − βpn;
α ∈ [1,∞), β ∈ [0, 1].

(3)

5’)
dj = αrj + βpj + const, ∀ j ∈ N, α ∈ [1,∞), β ∈ [0, 1]. 2009

O(n3 log n)

Alexander Lazarev Scheduling Theory and Applications 88 / 210

Solvable cases:

5)


d1 ≤ d2 ≤ · · · ≤ dn;
d1 − αr1 − βp1 ≥ d2 − αr2 − βp2 ≥ · · · ≥ dn − αrn − βpn;
α ∈ [1,∞), β ∈ [0, 1].

(3)

5’)
dj = αrj + βpj + const, ∀ j ∈ N, α ∈ [1,∞), β ∈ [0, 1]. 2009

O(n3 log n)

Alexander Lazarev Scheduling Theory and Applications 88 / 210

Solvable cases:

5)


d1 ≤ d2 ≤ · · · ≤ dn;
d1 − αr1 − βp1 ≥ d2 − αr2 − βp2 ≥ · · · ≥ dn − αrn − βpn;
α ∈ [1,∞), β ∈ [0, 1].

(3)

5’)
dj = αrj + βpj + const, ∀ j ∈ N, α ∈ [1,∞), β ∈ [0, 1]. 2009

O(n3 log n)

Alexander Lazarev Scheduling Theory and Applications 88 / 210

Solvable cases:

5)


d1 ≤ d2 ≤ · · · ≤ dn;
d1 − αr1 − βp1 ≥ d2 − αr2 − βp2 ≥ · · · ≥ dn − αrn − βpn;
α ∈ [1,∞), β ∈ [0, 1].

(3)

5’)
dj = αrj + βpj + const, ∀ j ∈ N, α ∈ [1,∞), β ∈ [0, 1]. 2009

O(n3 log n)

Alexander Lazarev Scheduling Theory and Applications 88 / 210

Algorithm 1. O(n log n)
Step 0) ω = �; t = −∞;
Step 1) f := f (N, t) and s := s(N, t);

f (N, t) = arg min
j∈N
{dj | rj (t) = r(N, t)},

s(N, t) = arg min
j∈N\{f }

{dj | rj (t) = r(N \ {f }, t)},

rj (t) = max{rj , t}, r(N, t) = min
j∈N
{rj (t)}.

Step 2) if df ≤ ds then
begin
ω := (ω, f); N := N \ {f }, t := rf (t) + pf and goto Step 1)
end
else RETURN.

Alexander Lazarev Scheduling Theory and Applications 89 / 210

Algorithm 2. α ∈ [1,∞), β ∈ [0, 1] O(n2 log n)
1 | di ≤ dj , di − αri − βpi ≥ dj − αrj − βpj ; Lmax ≤ y | Cmax

Step 0) θ := ω(N, t); if Lmax(θ, t) > y then θ := � and RETURN.

Step 1) N := N \ {θ}; t := Cmax(θ);
ω1 = (f , ω(N \ {f }, rf (t) + pf);ω2 = (s, ω(N \ {s}, rs(t) + ps);

if Lmax(ω1, t) ≤ y then θ := (θ, ω1) and goto Step 1);

Step 2) if Lmax(ω1, t) > y and Lmax(ω2, t) ≤ y then θ := (θ, ω2) and goto
Step 1);

Step 3) if Lmax(ω1, t) > y and Lmax(ω2, t) > y then θ := � and RETURN.

Alexander Lazarev Scheduling Theory and Applications 90 / 210

Algorithm 3. α ∈ [1,∞), β ∈ [0, 1] O(n3 log n)
1 | di ≤ dj , di − αri − βpi ≥ dj − αrj − βpj | Lmax

Step 0) y := +∞; π∗ := ω(N, t); Φ := �; m := 0; N ′ := N \ {π∗};
t ′ := Cmax(π∗); if N ′ = � then Φ := Φ ∪ (π∗);m := 1 and RETURN.

Step 1) if Lmax(ω1, t ′) ≤ Lmax(π∗) then π∗ := (π∗, ω1); N ′ := N \ {π∗};
t ′ := Cmax(π∗); goto Step 1);

Step 2) if (Lmax(ω1, t ′) > Lmax(π∗))&(Lmax(ω1, t ′) < y) then
θ := θ(N ′, t ′, y ′), y ′ := Lmax(ω1, t ′);
if θ = � then π∗ := (π∗, ω1); goto Step 1) else π′ := (π∗, θ);
if Cmax(πm) < Cmax(π′) then m := m + 1; πm := π′; Φ := Φ ∪ (πm);
y = Lmax(πm) else πm = π′; goto Step 1);

Step 3) if (Lmax(ω1, t ′) ≥ y)& (Lmax(ω2, t ′) < y) then π∗ = (π∗, ω2); goto
Step 1) else π∗ = π′m and RETURN.

Alexander Lazarev Scheduling Theory and Applications 91 / 210

Pareto optimal schedules for
1 | di ≤ dj , di − αri − βpi ≥ dj − αrj − βpj | Lmax,Cmax


d1 ≤ d2 ≤ · · · ≤ dn;
d1 − αr1 − βp1 ≥ d2 − αr2 − βp2 ≥ · · · ≥ dn − αrn − βpn;
α ∈ [1,∞), β ∈ [0, 1].

(4)

1 | di ≤ dj , di − αri − βpi ≥ dj − αrj − βpj | Lmax,Cmax

1 ≤|| Φ(N, t) ||≤ n

O(n3 log n)

Alexander Lazarev Scheduling Theory and Applications 92 / 210

Pareto optimal schedules for
1 | di ≤ dj , di − αri − βpi ≥ dj − αrj − βpj | Lmax,Cmax

1 ≤|| Φ(N, t) ||= m ≤ n

O(n3 log n)

Alexander Lazarev Scheduling Theory and Applications 93 / 210

Any instance is point in m = 3n-dimension space.

A – "hard" instance

0

polynomially (pseudo-polynomially) solvable cone

B
ρ(A,B) = FA(πB)− FA(πA)

Alexander Lazarev Scheduling Theory and Applications 94 / 210

Any instance is point in m = 3n-dimension space.

A – "hard" instance

0

polynomially (pseudo-polynomially) solvable cone

B
ρ(A,B) = FA(πB)− FA(πA)

Alexander Lazarev Scheduling Theory and Applications 94 / 210

Any instance is point in m = 3n-dimension space.

A – "hard" instance

0

polynomially (pseudo-polynomially) solvable cone

B

ρ(A,B) = FA(πB)− FA(πA)

Alexander Lazarev Scheduling Theory and Applications 94 / 210

Any instance is point in m = 3n-dimension space.

A – "hard" instance

0

polynomially (pseudo-polynomially) solvable cone

B
ρ(A,B) = FA(πB)− FA(πA)

Alexander Lazarev Scheduling Theory and Applications 94 / 210

Metric

1|rj |Lmax

0 ≤ ρ(A,B) = FA(πB) − FA(πA) ≤
(max{rA

j − rB
j } −min{rA

j − rB
j }) +

(
∑
|pA

j − pB
j |) +

(max{dA
j − dB

j } −min{dA
j − dB

j })

Property of metric

ϕ(A) = max
j∈N

(rA
j)−min

j∈N
(rA

j) + max
j∈N

(dA
j)−min

j∈N
(dA

j) +
∑
j∈N

|pA
j | ≥ 0.


ϕ(A) = 0⇐⇒ A ≡ 0;
ϕ(αA) = αϕ(A);
ϕ(A + B) ≤ ϕ(A) + ϕ(B).

(5)

||A|| = ϕ(A) ρ(A,B) = ||A− B||.

Alexander Lazarev Scheduling Theory and Applications 95 / 210

Metric

1|rj |Lmax

0 ≤ ρ(A,B) = FA(πB) − FA(πA) ≤
(max{rA

j − rB
j } −min{rA

j − rB
j }) +

(
∑
|pA

j − pB
j |) +

(max{dA
j − dB

j } −min{dA
j − dB

j })

Property of metric

ϕ(A) = max
j∈N

(rA
j)−min

j∈N
(rA

j) + max
j∈N

(dA
j)−min

j∈N
(dA

j) +
∑
j∈N

|pA
j | ≥ 0.


ϕ(A) = 0⇐⇒ A ≡ 0;
ϕ(αA) = αϕ(A);
ϕ(A + B) ≤ ϕ(A) + ϕ(B).

(5)

||A|| = ϕ(A) ρ(A,B) = ||A− B||.

Alexander Lazarev Scheduling Theory and Applications 95 / 210

Metric + Application

||A|| = ϕ(A) ρ(A,B) = ||A− B||

Polynomially (pseudo-polynomially) solvable case

AR + BP + CD ≤ H

A, B, C – matrixes, R,P,D,H – vectors.

Alexander Lazarev Scheduling Theory and Applications 96 / 210

Metric + Application

||A|| = ϕ(A) ρ(A,B) = ||A− B||

Polynomially (pseudo-polynomially) solvable case

AR + BP + CD ≤ H

A, B, C – matrixes, R,P,D,H – vectors.

Alexander Lazarev Scheduling Theory and Applications 96 / 210

Absolute error approximate solution of the problem 1|rj |Lmax

Polynomially (pseudo-polynomially) solvable case

AR + BP + CD ≤ H

A, B, C – matrixes, R,P,D,H – vectors.

Projection of an instance A to a polynomially (pseudo-polynomially)
solvable case
The minimum absolute error among all instances from solvable area,–
instance B .

O(n log n)



ρ(A,B) = (xr − yr) +
∑

(xp − yp) + (xd − yd)→ min

yr ≤ rA
j − rB

j ≤ xr , ∀ j ;

−x j
p ≤ pA

j − pB
j ≤ x j

p,∀ j , x j
p ≥ 0;

yd ≤ dA
j − dB

j ≤ xd ,∀ j ;

ARB + BPB + CDB ≤ H.

Alexander Lazarev Scheduling Theory and Applications 97 / 210

Absolute error approximate solution of the problem 1|rj |Lmax

Polynomially (pseudo-polynomially) solvable case

AR + BP + CD ≤ H

A, B, C – matrixes, R,P,D,H – vectors.

Projection of an instance A to a polynomially (pseudo-polynomially)
solvable case
The minimum absolute error among all instances from solvable area,–
instance B .

O(n log n)



ρ(A,B) = (xr − yr) +
∑

(xp − yp) + (xd − yd)→ min

yr ≤ rA
j − rB

j ≤ xr , ∀ j ;

−x j
p ≤ pA

j − pB
j ≤ x j

p,∀ j , x j
p ≥ 0;

yd ≤ dA
j − dB

j ≤ xd , ∀ j ;

ARB + BPB + CDB ≤ H.Alexander Lazarev Scheduling Theory and Applications 97 / 210

Linear programming problem



ρ(A,B) = (xr − yr) +
∑

j
(x j

p − y j
p) + (xd − yd)→ min

xr ,yr ,x
j
p ,xd ,yd ,

rB
j ,p

B
j ,d

B
j ,∀ j

yr ≤ rA
j − rB

j ≤ xr ,∀ j ;

−x j
p ≤ pA

j − pB
j ≤ x j

p,∀ j , x j
p ≥ 0;

yd ≤ dA
j − dB

j ≤ xd ,∀ j ;

dB
1 ≤ dB

2 ≤ · · · ≤ dB
n ;

dB
1 − αrB

1 − βpB
1 ≥ dB

2 − αrB
2 − βpB

2 ≥ · · · ≥ dB
n − αrB

n − βpB
n ;

α ∈ [1,∞), β ∈ [0, 1].

4 + 4n variables, 8n − 2 inequalities O(n log n)

Alexander Lazarev Scheduling Theory and Applications 98 / 210

Any penalties

Initial problem

µ∗ = min
π∈Π(N)

max
k=1,n

ϕjk (Cjk (π)), (6)

Not decreasing functions ϕj (Cj (π))

Dual problem

ν∗ = max
k=1,n

min
π∈Π(N)

ϕjk (Cjk (π)). (7)

rj = 0, ∀ j ∈ N
Conway R.W., Maxwell W.L., Miller L.W. Theory of Scheduling //
Addison-Wesley, Reading, MA. 1967.

Alexander Lazarev Scheduling Theory and Applications 99 / 210

Any penalties

Initial problem

µ∗ = min
π∈Π(N)

max
k=1,n

ϕjk (Cjk (π)), (6)

Not decreasing functions ϕj (Cj (π))

Dual problem

ν∗ = max
k=1,n

min
π∈Π(N)

ϕjk (Cjk (π)). (7)

rj = 0, ∀ j ∈ N
Conway R.W., Maxwell W.L., Miller L.W. Theory of Scheduling //
Addison-Wesley, Reading, MA. 1967.

Alexander Lazarev Scheduling Theory and Applications 99 / 210

Any penalties

Initial problem

µ∗ = min
π∈Π(N)

max
k=1,n

ϕjk (Cjk (π)), (6)

Not decreasing functions ϕj (Cj (π))

Dual problem

ν∗ = max
k=1,n

min
π∈Π(N)

ϕjk (Cjk (π)). (7)

rj = 0, ∀ j ∈ N
Conway R.W., Maxwell W.L., Miller L.W. Theory of Scheduling //
Addison-Wesley, Reading, MA. 1967.

Alexander Lazarev Scheduling Theory and Applications 99 / 210

Dual problem

ν∗ = max
k=1,n

min
π∈Π(N)

ϕjk (Cjk (π))

νk = min
π∈Π(N)

ϕjk (Cjk (π)), k = 1, 2, . . . , n. (8)

ν∗ = max
k=1,n

νk . (9)

Alexander Lazarev Scheduling Theory and Applications 100 / 210

Dual problem

ν∗ = max
k=1,n

min
π∈Π(N)

ϕjk (Cjk (π))

νk = min
π∈Π(N)

ϕjk (Cjk (π)), k = 1, 2, . . . , n. (8)

ν∗ = max
k=1,n

νk . (9)

Alexander Lazarev Scheduling Theory and Applications 100 / 210

Dual problem

ν∗ = max
k=1,n

min
π∈Π(N)

ϕjk (Cjk (π))

νk = min
π∈Π(N)

ϕjk (Cjk (π)), k = 1, 2, . . . , n. (8)

ν∗ = max
k=1,n

νk . (9)

Alexander Lazarev Scheduling Theory and Applications 100 / 210

Lemma

ϕj (t), j = 1, 2, . . . , n, any not decreasing functions 1 | rj | ϕmax,
∀ k = 1, 2, . . . , n, νn ≥ νk , ν∗ = νn.

Algorithm
πr = (i1, i2, . . . , in), ri1 ≤ ri2 ≤ · · · ≤ rin ;
πk = (πr \ ik , ik), k = 1, 2, . . . , n, ϕik (Cik (πk));
ν∗ = max

k=1,n
ϕik (Cik (πk)).

O(n2)

Alexander Lazarev Scheduling Theory and Applications 101 / 210

Lemma

ϕj (t), j = 1, 2, . . . , n, any not decreasing functions 1 | rj | ϕmax,
∀ k = 1, 2, . . . , n, νn ≥ νk , ν∗ = νn.

Algorithm
πr = (i1, i2, . . . , in), ri1 ≤ ri2 ≤ · · · ≤ rin ;
πk = (πr \ ik , ik), k = 1, 2, . . . , n, ϕik (Cik (πk));
ν∗ = max

k=1,n
ϕik (Cik (πk)).

O(n2)

Alexander Lazarev Scheduling Theory and Applications 101 / 210

Lemma

ϕj (t), j = 1, 2, . . . , n, any not decreasing functions 1 | rj | ϕmax,
∀ k = 1, 2, . . . , n, νn ≥ νk , ν∗ = νn.

Algorithm
πr = (i1, i2, . . . , in), ri1 ≤ ri2 ≤ · · · ≤ rin ;
πk = (πr \ ik , ik), k = 1, 2, . . . , n, ϕik (Cik (πk));
ν∗ = max

k=1,n
ϕik (Cik (πk)).

O(n2)

Alexander Lazarev Scheduling Theory and Applications 101 / 210

Initial problem

µ∗ = min
π∈Π(N)

max
k=1,n

ϕjk (Cjk (π)), (10)

Not decreasing function ϕj (Cj (π))

Dual problem

ν∗ = max
k=1,n

min
π∈Π(N)

ϕjk (Cjk (π)). (11)

Theorem

ϕj (t), j = 1, 2, . . . , n, any not decreasing functions 1 | rj | ϕmax,
∀ k = 1, 2, . . . , n, µ∗ ≥ ν∗.

Branch and bounds

Alexander Lazarev Scheduling Theory and Applications 102 / 210

Initial problem

µ∗ = min
π∈Π(N)

max
k=1,n

ϕjk (Cjk (π)), (10)

Not decreasing function ϕj (Cj (π))

Dual problem

ν∗ = max
k=1,n

min
π∈Π(N)

ϕjk (Cjk (π)). (11)

Theorem

ϕj (t), j = 1, 2, . . . , n, any not decreasing functions 1 | rj | ϕmax,
∀ k = 1, 2, . . . , n, µ∗ ≥ ν∗.

Branch and bounds

Alexander Lazarev Scheduling Theory and Applications 102 / 210

Initial problem

µ∗ = min
π∈Π(N)

max
k=1,n

ϕjk (Cjk (π)), (10)

Not decreasing function ϕj (Cj (π))

Dual problem

ν∗ = max
k=1,n

min
π∈Π(N)

ϕjk (Cjk (π)). (11)

Theorem

ϕj (t), j = 1, 2, . . . , n, any not decreasing functions 1 | rj | ϕmax,
∀ k = 1, 2, . . . , n, µ∗ ≥ ν∗.

Branch and bounds

Alexander Lazarev Scheduling Theory and Applications 102 / 210

Initial problem

µ∗ = min
π∈Π(N)

max
k=1,n

ϕjk (Cjk (π)), (10)

Not decreasing function ϕj (Cj (π))

Dual problem

ν∗ = max
k=1,n

min
π∈Π(N)

ϕjk (Cjk (π)). (11)

Theorem

ϕj (t), j = 1, 2, . . . , n, any not decreasing functions 1 | rj | ϕmax,
∀ k = 1, 2, . . . , n, µ∗ ≥ ν∗.

Branch and bounds

Alexander Lazarev Scheduling Theory and Applications 102 / 210

Preceding, Dual problem
G single machine O(n2)
G many machines NP-hard

Not decreasing penalty functions ϕj (Cj (π))

Alexander Lazarev Scheduling Theory and Applications 103 / 210

Cosmonauts Training Scheduling Problem

Alexander Lazarev Scheduling Theory and Applications 104 / 210

Problem statement

• Set of on-board systems.
• Sets of cosmonauts and crews.
• Set of resources (equipment, teachers, etc.).
• Dates of starts.

It is necessary to prepare appropriate crews to dates of their starts.

Alexander Lazarev Scheduling Theory and Applications 105 / 210

Our goals

• to develop mathematical model
• to find approaches to solve it
• to implement Planner system
• to reduce labor costs
• to form new and reschedule available timetable

Alexander Lazarev Scheduling Theory and Applications 106 / 210

Cosmonauts Training Scheduling Problem

Mathematical formulation — RCPSP (Resource-Constrained Project
Scheduling Problem).
• Resource constraints.
• Precedence constraints.
• More than 4000 publications are devoted to this problem at

scholar.google.ru.
• NP-hard in strong sense, there are no pseudo-polynomial algorithms.

Alexander Lazarev Scheduling Theory and Applications 107 / 210

Methods for solving RCPSP

• Dynamic programming.
• Methods of Integer Linear Programming.
• Methods of Constraint Programming.
• Heuristic algorithms.

Alexander Lazarev Scheduling Theory and Applications 108 / 210

Volume planning problem

Problem statement
• set of on-board systems (near 140);
• required number of cosmonauts of different skills for each on-board

system.

Goal: to distribute training qualifications between cosmonauts, minimizing
the difference between the maximum and minimum total time of training of
cosmonauts.

Results
• heuristic greedy algorithm;
• branch and bound method (CPLEX).

Alexander Lazarev Scheduling Theory and Applications 109 / 210

Initial data
for volume planning problem

Alexander Lazarev Scheduling Theory and Applications 110 / 210

The experimental results
for volume planning problem

Measure of unsolvability

Alexander Lazarev Scheduling Theory and Applications 111 / 210

Timetabling problem

• Planing horizon is about 3 years.
• Each cosmonaut has an individual learning plan.
• 10 crews are studying simultaneously.
• There are main and backup crews.

Alexander Lazarev Scheduling Theory and Applications 112 / 210

Review of other space agencies systems

NASA – TAMS, FOCAS, STAR

KAREN AU, SAMUEL SANTIAGO, RICHARD PAPASIN, MAY WINDERM, TRISTAN LE. Streamlining Space

Training Mission Operations with Web Technologies. An Approach to Developing Integral Business Applications for

Large Organizations // IEEE 4th International Conference on. Space Mission Challenges for Information Technology

(SMC-IT), 2011, pp.159-166.

Alexander Lazarev Scheduling Theory and Applications 113 / 210

ЕКА

SPAGNULO, M., FLEETER, R., BALDUCCINI, M., NASINI, F. Space Program Management : Methods and Tools

// Spagnulo, M., Fleeter, R., Balduccini, M., Nasini, F., Springer-Verlag New York - 2013. - 352 с.

Alexander Lazarev Scheduling Theory and Applications 114 / 210

Problem statement

K – a number of cosmonauts;
Jk – each cosmonaut k has his own set of training tasks;
pj – execution time of task j ∈ J;
R – set of resources.

The goal is
to form a training schedule for each cosmonaut

Alexander Lazarev Scheduling Theory and Applications 115 / 210

Time intervals

W – set of planning weeks, where |W | = 156 weeks (3 years);
Dw = {1,2,3,4,5} – set of work days per week, w ∈W ;
Hwd = {1, ..., 18} – set of half-hour intervals of day d ∈ Dw of week
w ∈W .

Y = {(w , d , h)|w ∈W , d ∈ Dw , h ∈ Hwd}, |Y | ≈ 14040

t(w , d , h) – considering time moment.

Alexander Lazarev Scheduling Theory and Applications 116 / 210

Variables

xjwdh =


1, iff task j is started

from interval h of day d of week w ;
0, else.

Alexander Lazarev Scheduling Theory and Applications 117 / 210

Constraints

Precedence relations between the tasks (academic plan)∑
(w ,d ,h)∈Y

t(w , d , h)(xj2wdh − xj1wdh) ≥ pj1 , (12)

∀(j1, j2) ∈ Γk .

The resource limits (teachers, simulators, trainers)∑
j∈J

rc jr

∑
h′ > 0,

h − pj + 1 ≤ h′ ≤ h

xjwdh′ ≤ rarwdh, (13)

∀r ∈ R, ∀(w , d , h) ∈ Y . |Y | ≈ 14040, |R| ≈ 100.

Alexander Lazarev Scheduling Theory and Applications 118 / 210

Constraints

No more than ... (frequency of classes)∑
j∈JF

∑
d∈Dw

∑
h∈Hwd

xjwdh ≤ 2, ∀w ∈W . (14)

Each cosmonaut may have no more than 2 physical trainings per week.

Excluding some time intervals∑
j∈J[h1;h2]

∑
h1−pj +1≤h≤h2

xjwdh = 0, (15)

∀w ∈W , ∀d ∈ Dw ;

[h1; h2] – time period when performing task j is forbidden.

It is forbidden to practice in the hyperbaric chamber after lunch.

Alexander Lazarev Scheduling Theory and Applications 119 / 210

Comparison of two approaches to solving
the scheduling problem for 1 crew

N CPLEX MIP CPLEX CP
Time, с Var. Constr. Iter. Time, с Var. Constr. Branch.

1 09.06 26820 37620 21922 0.250 291 2170 1272
2 30.75 52680 60066 54234 0.329 363 2788 1512
3 559.84 73500 87846 5019412 0.438 492 3548 2008
4 375.834 108720 121578 2032790 0.703 606 4263 2784
5 374.63 115200 125466 2022320 0.610 642 4348 2912
7 346.30 144480 157920 820534 0.640 654 4374 2648
10 6657.98 204000 210646 16 917 014 1.317 852 5738 3 448

N is a number of on-board systems.

Alexander Lazarev Scheduling Theory and Applications 120 / 210

Conclusion

Our results
Schedule for 1 crew for 1 year 3 moths

Our plans
Schedule for 2 crew for 2 year

Alexander Lazarev Scheduling Theory and Applications 121 / 210

Railway scheduling pioneers

Frank, O., Two-Way Traffic on a Single Line of Railway, Oper. Res., 1966,
vol. 14, no. 5, pp. 801–811.

Szpigel, B., Optimal Train Scheduling on a Single Line Railway, Oper. Res.,
1973, pp. 344–351.

Relation between railway planning problems and classical scheduling
problems
• track segments = «machines»
• trains = «jobs»

Alexander Lazarev Scheduling Theory and Applications 122 / 210

Existing approaches and solution methods

1. Considering in terms of job-shop.

Szpigel B. Optimal train scheduling on a single line railway. Oper Res, 344 - 351,
1973.

Sotskov Y. Shifting bottleneck algorithm for train scheduling in a single-track
railway. Proccedings of the 14th IFAC Symposium on Information Control
Problems. Part 1. Bucharest/Romania. 87 - 92. 2012.

Gafarov E.R., Dolgui A., Lazarev A.A. Two-Station Single-Track Railway
Scheduling Problem With Trains of Equal Speed. Computers and Industrial
Engineering. 85:260 - 267. 2015.

Harbering J., Ranade A., Schmidt M. Single Track Train Scheduling. Institute of
Numerical and Applied Mathematics. preprint. 18. 2015.

Alexander Lazarev Scheduling Theory and Applications 123 / 210

Existing approaches and solution methods

2. Integer linear programming

Brannlund U., Lindberg P.O, Nou A. and Nilsson J.E.
Railway Timetabling Using Lagrangian Relaxation.
Transportation Science 32(4):358 - 369. 1998.

Lazarev, A.A. and Musatova, E.G.
Integer Formulations of the Problem of Railway Train Formation and Timetabling,
Upravlen. Bol’shimi Sist., 2012, no. 38, pp. 161–169.

Alexander Lazarev Scheduling Theory and Applications 124 / 210

Exicting approaches and solution methods

3. Heuristics

Sotskov Y.
Shifting bottleneck algorithm for train scheduling in a single-track railway.
Proccedings of the 14th IFAC Symposium on Information Control Problems. Part
1. Bucharest/Romania. 87 - 92. 2012.

Mu S., Maged D.
Scheduling freight trains traveling on complex networks.
Transportation Research Part B: Methodological. 45(7):1103 - 1123. 2011.

Carey M., and Lockwood D.
A model, algorithms and strategy for train pathing.
The Journal of Operational Research Society. 8(46):988 - 1005. 1995.

Alexander Lazarev Scheduling Theory and Applications 125 / 210

Exicting approaches and solution methods

Allocation of polynomially solvable cases of railway scheduling problems

Gafarov E.R., Dolgui A., Lazarev A.A.
Two-Station Single-Track Railway Scheduling Problem With Trains of Equal
Speed.
Computers and Industrial Engineering. 85:260 - 267. 2015.

Harbering J., Ranade A., Schmidt M.
Single Track Train Scheduling.
Institute of Numerical and Applied Mathematics. preprint. 18. 2015.

Disser Y., Klimm M., Lubbecke E.
Scheduling Bidirectional Traffic on a Path.
In Proceedings of the 42nd International Colloquium on Automata, Languages,
and Programming (ICALP). 406 - 418. 2015.

Alexander Lazarev Scheduling Theory and Applications 126 / 210

Laboratory projects in railway scheduling

Small-scale problems
• Scheduling problem on single railway tracks.
• Goal – the development of exact polynomially solvable algorithms with

small computational complexity.
• Solution approach – dynamical programming.

Large-scale problems
• The freight car routing problem.
• Goal – the construction of operational plan with feasible solution time.
• Solution approach – integer linear programming, LP-relaxation,

column generation.

Alexander Lazarev Scheduling Theory and Applications 127 / 210

Single track railway scheduling problem

N1→ ←N2

St. 1 St. 2p

Initial data
• |N1| = n, |N2| = n′, N = N1 ∪ N2, |N| = n + n′.
• All trains have equal speed, track traversing time – p.
• Minimal time between the departure of two trains from one station – β.

• The transportation starts at time t = 0.

Denote the problem as STR2 (Single Track Railway Scheduling Problem).

Alexander Lazarev Scheduling Theory and Applications 128 / 210

Problem formulation

Schedule
In schedule σ, for each train i ∈ N

Si (σ) – it’s departure time;

Ci (σ) – arrival time, Ci (σ) = Si (σ) + p.

Objective function

Family of objective functions.

The approach will be demonstrated on the maximum lateness objective
function Lmax (σ),

Lmax (σ) = max
i∈N

Li = max
i∈N
{Ci (σ)− di}.

Alexander Lazarev Scheduling Theory and Applications 129 / 210

Dynamic programming approach

Assumption
We will consider schedule schedule σ which possess the following property: for
any point in time t such that 0 ≤ t ≤ Cmax (σ) there exists at least one train
i ∈ N satisfying the condition Si (σ) ≤ t ≤ Ci (σ).

-tStation 1

Station 2

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�A

A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A -�

p

A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A

-�β

-�
β

Alexander Lazarev Scheduling Theory and Applications 130 / 210

Dynamic programming approach

Assumption
Train departure order is specified.

Maximum lateness Lmax

For objective function Lmax (σ) = max
i∈N
{Ci (σ)− di} there exists an optimal

schedule σ in which trains depart from each station in a nondecreasing
order of due dates di .

Numbering of trains
On each station trains are numbered in the decreasing order of their
departure times, i > j implies that, in any schedule σ, Si (σ) < Sj (σ).

Alexander Lazarev Scheduling Theory and Applications 131 / 210

Dynamic programming approach

Subproblem P(𝒌𝟏, 𝒌𝟐, 𝒔)

set of unsent trains
on station 1,

𝑘1 ∈ {0,1,2, … , 𝑛} ∈ 𝑁1

set of unsent trains on station 2,

𝑘2 ∈ {0,1,2,… , 𝑛′} ∈ 𝑁2

additional condition:
first train depart from

station s∈ {1,2}

Number of different subproblems ‒ O((n+n’)2)Optimal value of the objective function for P(k1, k
′
2, s)

f (k1, k
′
2, s) = F (σ∗),

where σ∗ is an optimal schedule for P(k1, k
′
2, s).

Alexander Lazarev Scheduling Theory and Applications 132 / 210

Solution algorithm

-tStation 1

Station 2

Siding

�
�
�
�
�
�
�
�
�
�

f (k1, k
′
2, 1)

-tStation 1

Station 2

Siding

A
A
A
A
A
A
A
A
A
A

f (k1, k
′
2, 2)

f (k1, k
′
2 + 1, 2) = ?

Alexander Lazarev Scheduling Theory and Applications 133 / 210

Solution algorithm

-tStation 1

Station 2

�
�
�
�
�
�
�
�
�
�

f (k1, k
′
2, 1) + p

max{f (k1, k
′
2, 1) + p, p − dk ′

2+1}

-�

pA
A
A
A
A
A
A
A
A
A

p − dk ′
2+1

-tStation 1

Station 2 A
A
A
A
A
A
A
A
A
A

f (k1, k
′
2, 2) + β

max{f (k1, k
′
2, 2) + β, p − dk ′

2+1}

-�
β

A
A
A
A
A
A
A
A
A
A

p − dk ′
2+1

f (k1, k
′
2 + 1, 2) = max{f (k1, k

′
2, 1) + p, p − dk ′

2+1}

Alexander Lazarev Scheduling Theory and Applications 134 / 210

Dynamic programming approach

f (k1, k
′
2 + 1, 2) = max


p − dk ′

2+1;

min

{
f (k1, k

′
2, 1) + p;

f (k1, k
′
2, 2) + β;

for each k ′2 ∈ {1′, ..., n′ − 1′}, k1 6= 0.

Alexander Lazarev Scheduling Theory and Applications 135 / 210

Dynamic programming approach

Setting

f (1, 0′, 1) = p − d1

f (0, 1′, 2) = p − d1′

Bellman equation

f (k1 + 1, k ′
2, 1) = max


p − dk1+1;

min

{
f (k1, k

′
2, 1) + β;

f (k1, k
′
2, 2) + p.

k1 ∈ {1, ..., n − 1}, k ′
2 6= 0′

f (k1, k
′
2 + 1, 2) = max


p − dk′

2+1;

min

{
f (k1, k

′
2, 1) + p;

f (k1, k
′
2, 2) + β.

k ′
2 ∈ {1′, ..., n′ − 1′}, k1 6= 0

Alexander Lazarev Scheduling Theory and Applications 136 / 210

Dynamic programming approach

Optimal objective function value of the original problem

min{f (n, n′, 1), f (n, n′, 2)}

Computational complexity

O((n + n′)2)

Value of f (k1, k
′
2, s) is computed for:

each pair of k1, k1 ∈ {1, ..., n}), and k ′2, k2 ∈ {1, ..., n′}.

Alexander Lazarev Scheduling Theory and Applications 137 / 210

Dynamic programming approach

Other objective functions
This solution procedure can applied to a set of objective functions, for
example for ∑

wiCi (σ) =
∑
i∈N

wiCi (σ)

Condition
"Shifted" schedule σt of schedule σ, Ci (σ)− Ci (σt) = t for all i ∈ N.
There exists G (k1, k

′
2, s) so that F (σt) = F (σ) + G (k1, k

′
2, t).

for Lmax : G (k1, k
′
2, t) = t;

for
∑

wiCi (σ): G (k1, k
′
2, t) =

∑k1
i=1 wi t +

∑k ′2
j=1′ wj t.

Alexander Lazarev Scheduling Theory and Applications 138 / 210

Dynamic programming approach

General form of objective functions⊙
i∈N

ϕi (Ci (σ)),

where
ϕi (·) – nondecreasing function, defined for each train i ∈ N,
� – some commutative and associative operation such,
for any numbers a1, a2, b1, b2, � satisfy a1 ≤ a2 and b1 ≤ b2,

a1 � b1 ≤ a2 � b2.

Alexander Lazarev Scheduling Theory and Applications 139 / 210

Dynamic programming approach

Solution procedure

STR2||
⊙
i∈N

ϕi (Ci (σ))

Specified train departure order on each station.
Polynomial set of possible departure times T , |T | = O((n + n′)2).
Subproblem: P(k1, k

′
2, s, t), f (k1, k

′
2, s, t) is calculated for

each pair of k1, k1 ∈ {1, ..., n};
each pair of k ′2, k2 ∈ {1, ..., n′};
all t ∈ T .

Computational complexity – O((n + n′)4).

Alexander Lazarev Scheduling Theory and Applications 140 / 210

Dynamic programming approach

Minimization of maximum cost functions

Fmax (σ) = max
i∈N

ϕi (Ci (σ))

No specified order of train departure on each station.

Iterative optimization procedure
dynamic programming algorithm for STR2||Lmax

general optimisation scheme, presented by Zinder and Shkurba1

1Zinder, Y. and Shkurba, V. Effective iterative algorithms in scheduling
theory. Cybernetics, 21(1), 86–90. 1985.

Alexander Lazarev Scheduling Theory and Applications 141 / 210

Dynamic programming approach

Iterative optimisation procedure

Computational complexity
O((n + n′)5 log(n + n′))

Alexander Lazarev Scheduling Theory and Applications 142 / 210

Conclusion

Dynamic programming procedure for a set of objective functions

F (σ) =
⊙
i∈N

ϕi (Ci (σ))

Computational complexity is O((n + n′)4),
can be reduced for a subset of objective functions – O((n + n′)2).

Iterative optimisation procedure for maximum cost functions

Fmax (σ) = max
i∈N

ϕi (Ci (σ))

Computational complexity is O((n + n′)5 log(n + n′)).

Alexander Lazarev Scheduling Theory and Applications 143 / 210

Single track railway scheduling problem

Solution algorithm complexity

Problem Complexity
STR2 | |Lmax O(n2)

STR2 | |
∑

wjCj O(n2)
STR2 | |max

j∈N
ϕj (Cj (σ)) O(n5 log n)

STR2 |p(j), λ |Lmax O(nλ)
STR2 |p(j), λ |

∑
wjCj O(nλ)

STR2 |p(j), λ |
∑

Uj (σ) O(n2λ)

STR2 |p(j), λ |
⊙

j

ϕ(Cj) O(nα
2+αnλ)

STR2 |p(j), λ,V |max
j∈N

ϕj (Cj (σ)) O(q2 log qn2α2+2α+1nλ log n)

λ – the number of subsets with possible fixed departure order p(j) – different
train traversing times V – feasible intervals of movement

Alexander Lazarev Scheduling Theory and Applications 144 / 210

Single track railway scheduling problem with a siding

What is the siding?

Additional track

Main track

Alexander Lazarev Scheduling Theory and Applications 145 / 210

Single track railway scheduling problem with a siding

N1→ ←N2
Siding

St. 1 St. 2p1 p2

Initial data
One siding, capacity is one train.
|N1| = n1, |N2| = n2, all trains have equal speed.
Traversing times: p1, p2, p1 ≥ p2.
For each train i from station s, i ∈ Ns , s ∈ {1, 2}, due date d i

s and cost
coefficient w i

s are given;

Release times: r i
s = 0, i ∈ Ns , s ∈ {1, 2}.

Denote the problem as STRSP2 (Single Track Railway Scheduling
Problem).

Alexander Lazarev Scheduling Theory and Applications 146 / 210

Single track railway scheduling problem with a siding

Schedule
We need to construct optimal schedule σ, i.e. to set for each train number i
moving from station s, i ∈ Ns , s ∈ {1, 2}, it’s departure time S i

s(σ), stop time in
the siding τ i

s (σ) and arrival time C i
s (σ).

Objective function
Minimizing maximum lateness

Lmax = max
i∈Ns ,s∈{1,2}

{Li
s},

where
Li

s = C i
s − d i

s ,

and weighted sum of arrival moments∑
wjCj =

∑
i∈Ns , s∈{1,2}

w i
sC

i
s .

Alexander Lazarev Scheduling Theory and Applications 147 / 210

Schedule properties for presented model

Express
Express is the train i moving from station s, i ∈ Ns , s ∈ {1, 2}, if it doesn’t
stop in the siding, i.e. τ i

s = 0.

-tStation 1

Station 2

Siding
A
A
A
A
A
A
A

A
A
A

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�A

A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A

Alexander Lazarev Scheduling Theory and Applications 148 / 210

Schedule properties for presented model

-tStation 1

Station 2

Siding
A
A
A
A
A
A
A

A
A
A

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�A

A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A

Feasible schedule

-tStation 1

Station 2

Siding
A
A
A
A
A
A
A

A
A
A

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�A

A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A

Left-shifted schedule

Alexander Lazarev Scheduling Theory and Applications 149 / 210

Schedule properties for presented model

-tStation 1

Station 2

Siding
A
A
A
A
A
A
A

A
A
A

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�A

A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A

Left-shifted schedule

-tStation 1

Station 2

Siding
A
A
A
A
A
A
A

A
A
A

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�A

A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A

Regular schedule

τ i
s = mβ

-�β

Alexander Lazarev Scheduling Theory and Applications 150 / 210

States

-
tStation 1

Station 2

Siding

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

1) Batch moving from station 1 with empty siding.

Alexander Lazarev Scheduling Theory and Applications 151 / 210

States

-
tStation 1

Station 2

Siding

A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A

2) Batch moving from station 2 with empty siding.

Alexander Lazarev Scheduling Theory and Applications 152 / 210

States

-
tStation 1

Station 2

Siding
A
A
A
A
A
A
A

A
A
A

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

3) Batch moving from station 1 with occupied siding.

Alexander Lazarev Scheduling Theory and Applications 153 / 210

States

-
tStation 1

Station 2

Siding

�
�
�
�
�
�
�

�
�
�A

A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A

4) Batch moving from station 2 with occupied siding.

Alexander Lazarev Scheduling Theory and Applications 154 / 210

States

Express state (𝒔, 𝒃)

express departure station,
𝑠 ∈ {1,2}

Alexander Lazarev Scheduling Theory and Applications 155 / 210

States

Express state (𝒔, 𝒃)

express departure station,
𝑠 ∈ {1,2}

«0»

Alexander Lazarev Scheduling Theory and Applications 156 / 210

States

Express state (𝒔, 𝒃)

express departure station,
𝑠 ∈ {1,2}

«0» «1»

Alexander Lazarev Scheduling Theory and Applications 157 / 210

States

Express state (𝒔, 𝒃)

express departure station,
𝑠 ∈ {1,2}

«0» «1»«1»…

Alexander Lazarev Scheduling Theory and Applications 158 / 210

States

Express state (𝒔, 𝒃)

express departure station,
𝑠 ∈ {1,2}

«0» «1»«1»… «2»

Alexander Lazarev Scheduling Theory and Applications 159 / 210

Regular schedule and expresses states sequences

Theorem 1.
For each regular schedule there exists one and only one sequence of
expresses states.

-tStation 1

Station 2

Siding

�
�
�
�
�
�
�

�
�
�A

A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A

A
A
A

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
� A

A
A
A
A
A
A
A
A
A

(2,1) (2,1) (2,2) (1,1) (1,1) (1,1) (1,2) (2,0)

Alexander Lazarev Scheduling Theory and Applications 160 / 210

States

(1,0)

t

(1,0)

(2,0)

(1,1)

(2,1)

(1,2)

(2,2)

(2,0)

(1,0)

(2,0)

(1,1)

(2,1)

(1,2)

(2,2)

(1,2)

(1,0)

(2,0)

(1,1)

(2,1)

(1,2)

(2,2)

(2,2)

(1,0)

(2,0)

(1,1)

(2,1)

(1,2)

(2,2)

(1,1)
(1,1)

(1,2)
(2,1)

(2,1)

(2,2)

Alexander Lazarev Scheduling Theory and Applications 161 / 210

States

-
tStation 1

Station 2

Siding

�
�
�
�
�
�
�
�
�
�A

A
A
A
A
A
A
A
A
A �

�
�
�
�
�
�
�
�
� A

A
A
A
A
A
A
A
A
A

(2,2) (1,0) (2,0)

Alexander Lazarev Scheduling Theory and Applications 162 / 210

Solution algorithm

Subproblem P(𝒌𝟏, 𝒌𝟐, 𝒔, 𝒃)

number of unsent trains

on station 1, 𝑘1 ∈ {0,1,2,… , 𝑛1}

number of unsent trains on

station 2, 𝑘2 ∈ {0,1,2,… , 𝑛2}

additional condition:
state of the first express,

s∈ {1,2}, 𝑏 ∈ {0,1,2}

Number of different subproblems ‒ O(n2)

Alexander Lazarev Scheduling Theory and Applications 163 / 210

Solution algorithm

(n1,n2,1,0)

(n1,n2,2,0)

(n1,n2,1,1) . . .

(1,0,1,0)

(2,0,1,0)
(1,1,2,0)

(2,1,1,2)

t

(n1,n2,2,1)

(n1,n2,1,2)

(n1,n2,2,2)

(2,1,2,2)

(0,1,2,0)

(1,1,1,0)

(0,2,2,0)
(1,2,1,2)

(1,2,2,2)

(1,1,1,2)
(2,1,1,0)
(1,2,2,0)
(2,1,1,1)

(1,1,2,2)
(2,1,1,0)
(1,2,2,0)
(1,2,2,1)

Alexander Lazarev Scheduling Theory and Applications 164 / 210

Solution algorithm

Initial values

F (1, 0, 1, 0)) = p1 + p2 − d1
1 ;

F (0, 1, 2, 0)) = p1 + p2 − d1
2 ;

F (1, 1, 1, 2) = max

{
2p1 − d1

2 ;

p2 + p1 − d1
1 ;

F (1, 1, 2, 2) = max

{
2p2 − d1

1 ;

p2 + p1 − d1
2 .

Exclusion of impossible subtasks
F (0, k2, 1, 0) =∞;
F (k1, 0, 2, 0) =∞;
F (k1, k2, s, b) =∞ if k1 = 0 or k2 = 0, where (s, b) /∈ {(1, 0), (2, 0)}.

Alexander Lazarev Scheduling Theory and Applications 165 / 210

Solution algorithm

Bellman equation
Optimal objective function value in the subproblem P(k1, k2, s, b)

F (k1, k2, s, b) = min
(k ′1,k

′
2,s
′,b′)∈T (k1,k2,s,b)

max

{
H(k1, k2, s, b);

F (k ′1, k
′
2, s
′, b′) + g((s, b), (s ′, b′));

Objective function value of express in state (s, b) and skipping train

H(k1, k2, s, b) =

{
max{p1 + p2 − dks

s ; 2ps − dks̄
s̄ }, if b = 2,

p1 + p2 − dks
s otherwise.

Alexander Lazarev Scheduling Theory and Applications 166 / 210

Solution algorithm

Algorithm for
∑

wjCj

For objective function
∑

wjCj algorithm is the same, some operations and
variables changes.

Alexander Lazarev Scheduling Theory and Applications 167 / 210

Single track railway scheduling problem with a siding

Results
Exact solution algorithm based on the dynamical programming
method was proposed for the described problem.
Presented algorithm allows to construct set of optimal schedules in
O(n2) operations.

Alexander Lazarev Scheduling Theory and Applications 168 / 210

The freight car routing problem: overview

Alexander Lazarev Scheduling Theory and Applications 169 / 210

Specificity of freight rail transportation in Russia

Freight car
blocking
Freight train
scheduling
Locomotives
management
Personnel
management

The state company

Assignment of
transportation
demands to freight
cars
Freight car routing

Independent freight car
management companies

Transp. costs matrix (M)
Transp. times matrix (D)

car movements

Distances are large, and average freight train speed is low (≈ 300 km/day):
discretization in periods of 1 day is reasonable

Alexander Lazarev Scheduling Theory and Applications 170 / 210

The freight car routing problem: input and output

Input
Railroad network (stations)
Initial locations of cars (sources)
Transportation demands and associated profits
Costs: transfer costs and standing (waiting) daily rates;

Output: operational plan
A set of accepted demands and their execution dates
Empty and loaded cars movements to meet the demands (car routing)

Objective
Maximize the total net profit

Alexander Lazarev Scheduling Theory and Applications 171 / 210

Similar works in the literature

[Fukasawa, Poggi, Porto, Uchoa, ATMOS02]
Train schedule is known
Cars should be assigned to trains to be transported
Discretization by the moments of arrival and departure of trains.
Smaller time horizon (7 days)

Other works
[Holmberg, Joborn, Lundren, TS98]
[Löbel, MS98]
[Campetella, Lulli, Pietropaoli, Ricciardi, ATMOS06]
[Caprara, Malaguti, Toth, TS11]

Alexander Lazarev Scheduling Theory and Applications 172 / 210

Data: overview

T — planning horizon (set of time periods);
I — set of stations;
C — set of car types;
K — set of product types;
Q — set of demands;
S — set of sources (initial car locations);
M — empty transfer cost function;
D — empty transfer duration function;

Alexander Lazarev Scheduling Theory and Applications 173 / 210

Demands data

For each order q ∈ Q

origin and destination stations;
product type
set of car types, which can be used for this demand — Cq ⊆ C

maximum (minimum) number of cars, needed to fulfill (partially) the
demand — nmax

q (nmin
q)

time window for starting the transportation
profit vector (for delivery of one car with the product), depends on the
period on which the transportation is started
transportation time of the demand
daily standing rates charged for one car waiting before loading (after
unloading) the product at origin (destination) station

Alexander Lazarev Scheduling Theory and Applications 174 / 210

Sources and car types data

For each source s ∈ S

station where cars are located
type of cars
period, starting from which cars can be used
daily standing rate charged for cars
type of the latest delivered product
number of cars in the source — ~ns ∈ N

For each car type c ∈ C

Qc — set of demands, which a car of type c can fulfill
Sc — set of sources for car type c

Alexander Lazarev Scheduling Theory and Applications 175 / 210

Commodity graph

Commodity c ∈ C represents the flow (movements) of cars of type c .

Graph Gc = (Vc ,Ac) for commodity c ∈ C :

· · ·

· · ·

· · ·

station 1

station 2

station 3

· · · · · · · · · · · ·

· · · · · · · · · · · ·
waiting arc

empty transfer arc

loaded transfer arc

time

Each vertex v ∈ Vc represent location of cars of type c on a certain station
at a certain time standing at a certain rate
ga — cost of arc a ∈ Ac

Alexander Lazarev Scheduling Theory and Applications 176 / 210

Multi-commodity flow formulation

Variables
xa ∈ Z+ — flow size along arc a ∈ Ac , c ∈ C

yq ∈ {0, 1} — demand q ∈ Q is accepted or not

min
∑
c∈C

∑
a∈Ac

gaxa∑
c∈Cq

∑
a∈Acq

xa ≤ nmax
q yq ∀q ∈ Q

∑
c∈Cq

∑
a∈Acq

xa ≥ nmin
q yq ∀q ∈ Q

∑
a∈δ−(v)

xa −
∑

a∈δ+(v)

xa = ~nv ∀c ∈ C , v ∈ Vc

xa ∈ Z+ ∀c ∈ C , a ∈ Vc

yq ∈ {0, 1} ∀q ∈ Q

We concentrate on solving its LP-relaxation
Alexander Lazarev Scheduling Theory and Applications 177 / 210

Multi-commodity flow formulation

Variables
xa ∈ Z+ — flow size along arc a ∈ Ac , c ∈ C

yq ∈ {0, 1} — demand q ∈ Q is accepted or not

min
∑
c∈C

∑
a∈Ac

gaxa∑
c∈Cq

∑
a∈Acq

xa ≤ nmax
q yq ∀q ∈ Q

∑
c∈Cq

∑
a∈Acq

xa ≥ nmin
q yq ∀q ∈ Q

∑
a∈δ−(v)

xa −
∑

a∈δ+(v)

xa = ~nv ∀c ∈ C , v ∈ Vc

xa ∈ Z+ ∀c ∈ C , a ∈ Vc

yq ∈ {0, 1} ∀q ∈ Q

We concentrate on solving its LP-relaxation
Alexander Lazarev Scheduling Theory and Applications 177 / 210

Multi-commodity flow formulation

Variables
xa ∈ Z+ — flow size along arc a ∈ Ac , c ∈ C

yq ∈ {0, 1} — demand q ∈ Q is accepted or not

min
∑
c∈C

∑
a∈Ac

gaxa∑
c∈Cq

∑
a∈Acq

xa ≤ nmax
q yq ∀q ∈ Q

∑
c∈Cq

∑
a∈Acq

xa ≥ nmin
q yq ∀q ∈ Q

∑
a∈δ−(v)

xa −
∑

a∈δ+(v)

xa = ~nv ∀c ∈ C , v ∈ Vc

0 ≤ xa ∀c ∈ C , a ∈ Vc

0 ≤ yq ≤ 1 ∀q ∈ Q

We concentrate on solving its LP-relaxation
Alexander Lazarev Scheduling Theory and Applications 177 / 210

Path reformulation

Ps — set of paths (car routes) from source s ∈ S

Variables
λs ∈ Z+ — flow size along path p ∈ Ps , s ∈ S

min
∑
c∈C

∑
s∈Sc

∑
p∈Ps

gpath
p λp∑

c∈Cq

∑
s∈Sc

∑
p∈Ps : q∈Qpath

p

λa ≤ nmax
q yq ∀q ∈ Q

∑
c∈Cq

∑
s∈Sc

∑
p∈Ps : q∈Qpath

p

λa ≥ nmin
q yq ∀q ∈ Q

∑
p∈Ps

λp = ~ns ∀c ∈ C , s ∈ Sc

λp ∈ Z+ ∀c ∈ C , s ∈ Sc , p ∈ Ps

yq ∈ {0, 1} ∀q ∈ Q
Alexander Lazarev Scheduling Theory and Applications 178 / 210

Column generation for path reformulation

Pricing problem decomposes to shortest path problems, one for each
source

slow: number of sources are thousands

To accelerate, for each commodity c ∈ C , we search for a shortest
path in-tree to the terminal vertex from all sources in Sc

drawback: some demands are severely “overcovered”, bad
convergence

We developed iterative procedure which removes covered demands and
cars assigned to them, and the repeats search for a shortest path
in-tree

Alexander Lazarev Scheduling Theory and Applications 179 / 210

Column generation for path reformulation

Pricing problem decomposes to shortest path problems, one for each
source

slow: number of sources are thousands
To accelerate, for each commodity c ∈ C , we search for a shortest
path in-tree to the terminal vertex from all sources in Sc

drawback: some demands are severely “overcovered”, bad
convergence

We developed iterative procedure which removes covered demands and
cars assigned to them, and the repeats search for a shortest path
in-tree

Alexander Lazarev Scheduling Theory and Applications 179 / 210

Column generation for path reformulation

Pricing problem decomposes to shortest path problems, one for each
source

slow: number of sources are thousands
To accelerate, for each commodity c ∈ C , we search for a shortest
path in-tree to the terminal vertex from all sources in Sc

drawback: some demands are severely “overcovered”, bad
convergence

We developed iterative procedure which removes covered demands and
cars assigned to them, and the repeats search for a shortest path
in-tree

Alexander Lazarev Scheduling Theory and Applications 179 / 210

Flow enumeration reformulation

Fc — set of fixed flows for commodity c ∈ C

Variables
ωf ∈ {0, 1} — commodity c is routed accordity to flow f ∈ Fc or not

min
∑
c∈C

∑
f ∈Fs

gflow
f ωf∑

c∈Cq

∑
f ∈Fc

∑
a∈Acq

faωf ≤ nmax
q yq ∀q ∈ Q

∑
c∈Cq

∑
f ∈Fc

∑
a∈Acq

faωf ≥ nmin
q yq ∀q ∈ Q

∑
f ∈Fc

ωf = 1 ∀c ∈ C

ωp ∈ {0, 1} ∀c ∈ C , f ∈ Fc

yq ∈ {0, 1} ∀q ∈ Q

Alexander Lazarev Scheduling Theory and Applications 180 / 210

Approach CGEF

Pricing problem decomposes to minimum cost flow problems, one for
each commodity

slow: very bad convergence

“Column generation for extended formulations” (CGEF) approach: we
disaggregate the pricing problem solution to arc flow variables, which
are added to the master.
The master then becomes the multi-commodity flow formulation with
restricter number of arc flow variables, i.e. “improving” variables are
generated dynamically

<+-> If an arc flow variable x has a negative reduced cost, there exists a
negative reduced cost pricing problem solution in which x > 0.
(consequence of the theorem in [S. and Vanderbeck, 13])

Alexander Lazarev Scheduling Theory and Applications 181 / 210

Approach CGEF

Pricing problem decomposes to minimum cost flow problems, one for
each commodity

slow: very bad convergence
“Column generation for extended formulations” (CGEF) approach: we
disaggregate the pricing problem solution to arc flow variables, which
are added to the master.

The master then becomes the multi-commodity flow formulation with
restricter number of arc flow variables, i.e. “improving” variables are
generated dynamically

<+-> If an arc flow variable x has a negative reduced cost, there exists a
negative reduced cost pricing problem solution in which x > 0.
(consequence of the theorem in [S. and Vanderbeck, 13])

Alexander Lazarev Scheduling Theory and Applications 181 / 210

Approach CGEF

Pricing problem decomposes to minimum cost flow problems, one for
each commodity

slow: very bad convergence
“Column generation for extended formulations” (CGEF) approach: we
disaggregate the pricing problem solution to arc flow variables, which
are added to the master.
The master then becomes the multi-commodity flow formulation with
restricter number of arc flow variables, i.e. “improving” variables are
generated dynamically

<+-> If an arc flow variable x has a negative reduced cost, there exists a
negative reduced cost pricing problem solution in which x > 0.
(consequence of the theorem in [S. and Vanderbeck, 13])

Alexander Lazarev Scheduling Theory and Applications 181 / 210

Tested approaches

Direct: solution of the multi-commodity flow formulation by the Clp
LP solver

Problem specific solver source code modifications
Problem specific preprocessing is applied (not public)
Tested inside the company

ColGen: solution of the path reformulation by column generation
(BaPCod library and Cplex LP solver)

Initialization of the master by “doing nothing” routes
Stabilization by dual prices smoothing
Restricted master clean-up

ColGenEF: “dynamic” solution of multi-commodity flow formulation
by the CGEF approach (BaPCod library, Lemon min-cost flow solver
and Cplex LP solver)

Initialization of the master by all waiting arcs
Only trivial preprocessing is applied

Alexander Lazarev Scheduling Theory and Applications 182 / 210

Tested approaches

Direct: solution of the multi-commodity flow formulation by the Clp
LP solver

Problem specific solver source code modifications
Problem specific preprocessing is applied (not public)
Tested inside the company

ColGen: solution of the path reformulation by column generation
(BaPCod library and Cplex LP solver)

Initialization of the master by “doing nothing” routes
Stabilization by dual prices smoothing
Restricted master clean-up

ColGenEF: “dynamic” solution of multi-commodity flow formulation
by the CGEF approach (BaPCod library, Lemon min-cost flow solver
and Cplex LP solver)

Initialization of the master by all waiting arcs
Only trivial preprocessing is applied

Alexander Lazarev Scheduling Theory and Applications 182 / 210

Tested approaches

Direct: solution of the multi-commodity flow formulation by the Clp
LP solver

Problem specific solver source code modifications
Problem specific preprocessing is applied (not public)
Tested inside the company

ColGen: solution of the path reformulation by column generation
(BaPCod library and Cplex LP solver)

Initialization of the master by “doing nothing” routes
Stabilization by dual prices smoothing
Restricted master clean-up

ColGenEF: “dynamic” solution of multi-commodity flow formulation
by the CGEF approach (BaPCod library, Lemon min-cost flow solver
and Cplex LP solver)

Initialization of the master by all waiting arcs
Only trivial preprocessing is applied

Alexander Lazarev Scheduling Theory and Applications 182 / 210

First test set of real-life instances

Instance name x3 x3double 5k0711q
Number of stations 371 371 1’900
Number of demands 1’684 3’368 7’424
Number of car types 17 17 1
Number of cars 1’013 1’013 15’008
Number of sources 791 791 11’215
Time horizon, days 37 74 35
Number of vertices, thousands 62 152 22
Number of arcs, thousands 794 2’846 1’843
Solution time for Direct 20s 1h34m 55s
Solution time for ColGen 22s 7m53s 8m59s
Solution time for ColGenEF 3m55s >2h 43s

Alexander Lazarev Scheduling Theory and Applications 183 / 210

Real-life instances with larger planning horizon

1’025 stations, up to 6’800 demands, 11 car types, 12’651 cars, and 8’232
sources.
Up to ≈ 300 thousands nodes and 10 millions arcs.

80 100 120 140 160 180
0

20

40

60

80

planning horizon length, days

so
lu
tio

n
tim

e,
m
in
ut
es

Direct
ColGen

ColGenEF

Horizon Direct ColGenEF
80 5m24s 1m52s
90 7m05s 1m47s

100 9m42s 2m19s
110 13m38s 3m11s
120 17m19s 3m57s
130 25m52s 5m03s
140 35m08s 5m25s
150 44m58s 7m02s
160 57m11s 8m19s
170 1h13m58s 10m53s
180 1h26m46s 12m16s

Convergence of ColGenEF in less than 15 iterations.
About 3% of arc flow variables at the last iteration.

Alexander Lazarev Scheduling Theory and Applications 184 / 210

Conclusions

Three approaches tested for a freight car routing problem on real-life
instances
Approach ColGen is the best for instances with small number of
sources
Problem-specific preprocessing is important: good results for Direct

Approach ColGenEF is the best for large instances
Combination of ColGenEF and problem-specific preprocessing
would allow to increase discretization and improve solutions quality

Alexander Lazarev Scheduling Theory and Applications 185 / 210

Perspectives

Some practical considerations are not taken into account:
Progressive standing daily rates
Special stations for long-time stay (with lower rates)
Compatibility between two consecutive types of loaded products.
Penalties for refused demands
Groups of cars are transferred faster and for lower unitary costs.

Alexander Lazarev Scheduling Theory and Applications 186 / 210

RCPSP

Resource Constrained Project Scheduling Problem (RCPSP)
Considers resources of limited availability and activities of known durations
and resource requests, linked by precedence relations. The problem consists
of finding a schedule of minimal duration by assigning a start time to each
activity such that the precedence relations and the resource availabilities
are respected.

Alexander Lazarev Scheduling Theory and Applications 187 / 210

RCPSP

Examples of RCPSP
Plannig of production and maintenance processes on the enterprise.
Software development tasks distribution.
Planning of training processes.

Number of publications in last 5 years

Keyword GoogleScholar Science Direct
RCPSP 1 560 161
project scheduling 73 300 63 694

Alexander Lazarev Scheduling Theory and Applications 188 / 210

Classical RCPSP formulation

Set of renewable resources R
ci – capacity of resource Xi ∈ R .

Set of activities N = {A1, . . . ,An}
|N| = n;
G (N,E) – precedence relations graph;
rj – release time of Aj ∈ N;
pj – processing time of Aj ∈ N;
aji – amount of resource Xi ∈ R required to process Aj ∈ N.

All variables belong to Z+.

Alexander Lazarev Scheduling Theory and Applications 189 / 210

Classical RCPSP formulation

Schedule π
Sj (π) – start time of activitiy Aj ∈ N under π;
Cj (π) = Sj (π) + pj – completion time of task Aj ∈ N under π.

Feasible schedules Π(N ,R)

Sj (π) ≥ rj holds for any Aj ∈ N, π ∈ Π(N,R) – release times not
violated;
Cj (π) ≤ Sk (π) for any ejk ∈ E – precedence relations satisfied;∑
j∈N:Sj (π)≤t<Cj (π)

aji ≤ ci for any Xi ∈ R, t ≥ 0 – resource capacity not

violated.

Alexander Lazarev Scheduling Theory and Applications 190 / 210

Classical RCPSP formulation

Problem statement
The RCPSP is the problem of finding a feasible schedule of minimal
makespan subject to precedence constraints and resource constraints, i.e.

min
π∈Π(N,R)

max
Aj∈N

Cj (π).

Complexity
Problem is NP-complete in a strong sense (Garey, Johnson 1975).

Alexander Lazarev Scheduling Theory and Applications 191 / 210

Example

Problem data
2 resources X1 and X2 with capacities c1 = 7 and c2 = 4;
10 activities.

Aj A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

pj 6 1 1 2 3 5 6 3 2 4
aj1 2 1 3 2 1 2 3 1 1 1
aj2 1 0 1 0 1 1 0 2 2 1

Alexander Lazarev Scheduling Theory and Applications 192 / 210

Example

Precedence relations

Alexander Lazarev Scheduling Theory and Applications 193 / 210

Example

Schedule with minimal makespan

Alexander Lazarev Scheduling Theory and Applications 194 / 210

RCPSP

Decision variant of RCPSP
The decision variant of the RCPSP is the problem of determining whether
a schedule π of makespan not greater than H subject to precedence and
resource constraints exists or not.

NP-complete in a strong sense
Garey and Johnson (1975) have shown that the decision variant of the
RCPSP with a single resource and no precedence constraints, called the
resource-constrained scheduling problem, is NP-complete in the strong
sense by reduction from the 3-partition problem.

Alexander Lazarev Scheduling Theory and Applications 195 / 210

RCPSP

Exact solution methods for RCPSP
There is a variety of methods to find the exact solutions. Most of them are
based on the following ideas.

Branch-and-Bound approach;
Column Generation;
Constraint Programming.

Alexander Lazarev Scheduling Theory and Applications 196 / 210

Makespan lower bound

Correct makespan lower bound
LB – amount of time which is not higher than makespan value for any
schedule π ∈ Π(N,R), i.e.

LB ≤ max
Aj∈N

Cj (π).

Alexander Lazarev Scheduling Theory and Applications 197 / 210

Existed lower bound estimation methods

Critical path
Pmax – length of the longest path in graph G (N,E).
Makespan is not lower than critical path length for any π ∈ Π(N,R).

Pmax = LBP .

Alexander Lazarev Scheduling Theory and Applications 198 / 210

Existed lower bound estimation methods

Resource load
RLi =

∑
Aj∈N

pjaji – total amount of reource Xi required for the project.

Then, under any feasible schedule makespan value should be enough to use
requred amount of any resource Xi ∈ R subject to its capacity, i.e.

LBR = dmax
i∈R

RLi

ci
e.

In our example
RL1

c1
=

60
7

= 8
4
7
,
RL2

c2
=

29
4

= 7
1
4
,

LBR = d84
7
e = 9.

Alexander Lazarev Scheduling Theory and Applications 199 / 210

Existed lower bound estmiation methods

Destructive lower bound techniques
Deals with decision variant of RCPSP. The objective is to prove that for
defined horizon H there are no feasible schedule with makespan not higher
than H:

desjunctive lower bounds i.e. maximum clique computation;
Linear Programming (LP) relaxations;
relaxations of decision variant of RCPSP to Cumulative Scheduling
Problem (CuSP);
other constraint programming based approaches;
exact methods of solving decision variant of RCPSP.

Alexander Lazarev Scheduling Theory and Applications 200 / 210

Existed lower bound estmiation methods

Satisfiability tests (SAT)
1. Find makespan lower bound LB and upper bound UB using algorithms

with low computational complexity.
2. Consider time horizon H such as LB ≤ H ≤ UB and use some of

destructive lower bound techniques to check the existance of feasible
schedule with makespan not lower than H.

3. Use logarithmic search to find the highest horizon H∗ which not allows
the existance of feasible schedule.

4. Set the lower bound equals to H∗ + 1.

Alexander Lazarev Scheduling Theory and Applications 201 / 210

Existed lower bound estmiation methods

Satisfiability tests (SAT)
1. Find makespan lower bound LB and upper bound UB using algorithms

with low computational complexity.
2. Consider time horizon H such as LB ≤ H ≤ UB and use some of

destructive lower bound techniques to check the existance of feasible
schedule with makespan not lower than H.

3. Use logarithmic search to find the highest horizon H∗ which not allows
the existance of feasible schedule.

4. Set the lower bound equals to H∗ + 1.

Alexander Lazarev Scheduling Theory and Applications 201 / 210

Existed lower bound estmiation methods

Satisfiability tests (SAT)
1. Find makespan lower bound LB and upper bound UB using algorithms

with low computational complexity.
2. Consider time horizon H such as LB ≤ H ≤ UB and use some of

destructive lower bound techniques to check the existance of feasible
schedule with makespan not lower than H.

3. Use logarithmic search to find the highest horizon H∗ which not allows
the existance of feasible schedule.

4. Set the lower bound equals to H∗ + 1.

Alexander Lazarev Scheduling Theory and Applications 201 / 210

Existed lower bound estmiation methods

Satisfiability tests (SAT)
1. Find makespan lower bound LB and upper bound UB using algorithms

with low computational complexity.
2. Consider time horizon H such as LB ≤ H ≤ UB and use some of

destructive lower bound techniques to check the existance of feasible
schedule with makespan not lower than H.

3. Use logarithmic search to find the highest horizon H∗ which not allows
the existance of feasible schedule.

4. Set the lower bound equals to H∗ + 1.

Alexander Lazarev Scheduling Theory and Applications 201 / 210

Existed lower bound estmiation methods

Satisfiability tests (SAT)
1. Find makespan lower bound LB and upper bound UB using algorithms

with low computational complexity.
2. Consider time horizon H such as LB ≤ H ≤ UB and use some of

destructive lower bound techniques to check the existance of feasible
schedule with makespan not lower than H.

3. Use logarithmic search to find the highest horizon H∗ which not allows
the existance of feasible schedule.

4. Set the lower bound equals to H∗ + 1.

Alexander Lazarev Scheduling Theory and Applications 201 / 210

Existed lower bound estmiation methods

Satisfiability tests (SAT)
1. Find makespan lower bound LB and upper bound UB using algorithms

with low computational complexity.
2. Consider time horizon H such as LB ≤ H ≤ UB and use some of

destructive lower bound techniques to check the existance of feasible
schedule with makespan not lower than H.

3. Use logarithmic search to find the highest horizon H∗ which not allows
the existance of feasible schedule.

4. Set the lower bound equals to H∗ + 1.

Alexander Lazarev Scheduling Theory and Applications 201 / 210

Existed lower bound estmiation methods

Satisfiability tests (SAT)
1. Find makespan lower bound LB and upper bound UB using algorithms

with low computational complexity.
2. Consider time horizon H such as LB ≤ H ≤ UB and use some of

destructive lower bound techniques to check the existance of feasible
schedule with makespan not lower than H.

3. Use logarithmic search to find the highest horizon H∗ which not allows
the existance of feasible schedule.

4. Set the lower bound equals to H∗ + 1.

Alexander Lazarev Scheduling Theory and Applications 201 / 210

Existed lower bound estimation methods

Constraint Propagation to tighten the problem
These approaches makes an interval [rj ,Dj] of possible processing of
activity Aj ∈ N tighter and improve the performances of algorithms. The
most popular approaches are:

timetabling techniques are based on the computation of an
aggregation of the resource demand at every time-point;
edge finding and activity intervals techniques rely on the analysis of
the resource demand over time intervals;
conjunctive reasoning with temporal constraints are based on an
analysis of the current temporal constraint network.

Alexander Lazarev Scheduling Theory and Applications 202 / 210

Existed lower bound estmiation methods

Trivial algorithms
Advantages: low calculation complexity, algorithms can be applied for
large-scaled problems.
Disadvantages: low precision of obtained bound.

Advanced algorithms
Advantages: high precision of obtained bound.
Disadvantages: exponential complexity decrease the efficiency of obtained
bound and make algorithms not possible to be applied for some
large-scaled problems.

Problem!
There is a strong need in the method which can obtain suitable lower
bound for large-scaled instances!

Alexander Lazarev Scheduling Theory and Applications 203 / 210

RCPSP

Some generalizations of RCPSP
RCPSP with time-dependent resource capacities.
RCPSP with minimal and maximal time lags (RCPSP/max) –
generalized precedence relations express relations of start-to-start,
start-to-end, end-to-start, and end-to-end times between pairs of
activities.
Multi-Mode RCPSP (MRCPSP) – activities can be processed in
several modes each of which charachterized by processing time and
required amounts of resources.
RCPSP with flexible resource profile (FRCPSP) – only total amounts
of required resources are given for activies instead, processing times
are not defined.

Alexander Lazarev Scheduling Theory and Applications 204 / 210

RCPSP

PSPLIB benchmark
The library of instances of problems RCPSP, RCPSP/max, MRCPSP,
MRCPSP/max, FRCPSP and others.
Website: http://www.om-db.wi.tum.de/psplib/main.html

Kolisch, R. and A. Sprecher (1996)
PSPLIB - A project scheduling library // European Journal of Operational
Research, Vol. 96, pp. 205–216.

R. Kolisch, C. Schwindt und A.Sprecher (1999)
Benchmark instances for project scheduling problems In: Kluwer; Weglarz,
J. (Hrsg.): Handbook on recent advances in project scheduling, pp.
197-212.

Alexander Lazarev Scheduling Theory and Applications 205 / 210

Our publications

Лазарев А.А., Бронников С.В., Герасимов А.Р., Мусатова Е.Г., Петров А.С., Пономарев К.В.,
Харламов М.М., Хуснуллин Н.Ф., Ядренцев Д.А. Математическое моделирование планирования
подготовки космонавтов // Управление большими системами, 2016 (принято к печати)

Musatova E., Lazarev A., Ponomarev K., Yadrentsev D., Bronnikov S., Khusnullin N. A Mathematical Model
for the Astronaut Training Scheduling Problem // IFAC-PapersOnLine, Volume 49, Issue 12, 2016, Pages
221-225.

Бронников С.В., Долгий А.Б., Лазарев А.А., Морозов Н.Ю., Петров А.С., Садыков Р.Р., Сологуб А.А.,
Вернер Ф., Ядренцев Д.А., Мусатова Е.Г., Хуснуллин Н.Ф. Approaches for planning the ISS cosmonaut
training. Preprint Nr. 12. Magdeburg: Institut fur Mathematische Optimierung, 2015. – 33 с.

С.В.Бронников, А.Р.Герасимов, А.А.Лазарев, Е.Г.Мусатова, А.С.Петров, К.В.Пономарев,
М.М.Харламов, Н.Ф.Хуснуллин, Д.А.Ядренцев. К решению задачи автоматизации планирования
подготовки космонавтов для работы на МКС / Труды 7-й Международной научной конференции
«Теория расписаний и методы декомпозиции. Танаевские чтения» (Беларусь, Минск, 2016). Минск:
ОИПИ НАН Беларуси, 2016. C. 23-27.

Alexander Lazarev Scheduling Theory and Applications 206 / 210

Our publications

Бронников С.В., Лазарев А.А., Морозов Н.Ю., Харламов М.М., Ядренцев Д.А. Mathematical models
and approaches in problem of volume planning of ISS cosmonauts trainings / Abstracts of the 28th
Conference of the European Chapter on Combinatorial Optimization (Catania, 2015), 2015. С. 61.

Бронников С.В., Лазарев А.А., Петров А.С., Ядренцев Д.А. Models and Approaches for Planning the ISS
Cosmonaut Training / Труды VI International Conference on Optimization Methods and Applications.
(OPTIMA-2015, Petrovac). М.: ФГБУН ВЦ им. А.А.Дородницына РАН, 2015. С. 196-197
http://www.cima.uevora.pt/optima2015/Optima2015.pdf.

Лазарев А.А., Петров А.С., Сологуб А.А., Гущина В.П., Морозов Н.Ю. Модели и алгоритмы решения
задач объёмно-календарного планирования подготовки экипажа МКС / Тезисы докладов
Всероссийской молодёжной научно-практической конференции «Космодром «Восточный» и
перспективы развития российской космонавтики» (Благовещенск, 2015). Благовещенск: СГАУ, 2015.
С. 200-201.

Ядренцев Д.А., Бронников С.В., Лазарев А.А., Мусатова Е.Г., Хуснуллин Н.Ф. Календарное
планирование подготовки космонавтов к выполнению космического полета / Материалы 11-й
Международной научно-практической конференции "Пилотируемые полеты в космос"(Звездный
городок, 2015). Звездный городок: ФБГУ ЦПК им. Ю.А. Гагарина», 2015. С. 95-96.

Alexander Lazarev Scheduling Theory and Applications 207 / 210

Open problems

1 machine
2 jobs
rj — release times
pj — processing times
dj — due dates
. . . and so on — we assume that all parameters of the jobs are known
beforehand.
k known schedules π−k , π−k+1, . . . , π−1 that are optimal according
to an unknown objective function
The goal is to construct a new schedule π that would be optimal
according to the same objective function, or at least would
approximate the optimal. Perhaps the discrepancy between obtained
solution and the optimal schedule would decrease with the number of
known schedules?

Alexander Lazarev Scheduling Theory and Applications 208 / 210

Scheduling Theory and Applications

Alexander Lazarev

Lomonosov Moscow State University

National Research University Higher School of Economics

Moscow Institute of Physics and Technology (State University)

V.A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences (ICS RAS)

jobmath@mail.ru

www.orsot.ru

Alexander Lazarev Scheduling Theory and Applications 209 / 210

mailto:jobmath@mail.ru
http://www.orsot.ru/index.php/en/

Thank you for your attention!

Alexander Lazarev Scheduling Theory and Applications 210 / 210

	About ORSOT
	Laboratory №68
	Projects

	History of Scheduling Theory
	Gantt chart
	Scheduling theory term

	Pioneers of scheduling theory
	J. R. Jackson. Scheduling a production to minimize maximum tardiness.
	W. E. Smith. Various optimizers for single-stage production.
	S. M. Johnson. Optimal two-and-three-stage production schedules with set-up times included.

	Problem of two production lines
	NP-hard problems
	Computational complexity

	Problem classification in scheduling theory
	Problem 1|rj|Lmax
	Minimizing maximum lateness
	Solvable cases
	Algorithms
	Pareto optimal schedules

	Metric
	Metric + Application
	Absolute error

	Linear programming problem
	Any not decreasing penalty functions
	Dual problem

	GCTC
	Problem statement
	Volume planning problem
	Timetabling problem

	Railway scheduling
	Railway scheduling pioneers
	Existing approaches and solution methods
	Laboratory projects in railway scheduling

	Single track railway scheduling problem
	Dynamic programming approach
	Solution algorithm

	Resource Constrained Project Scheduling Problem
	Open problems
	??? problem
	P. Baptiste's problem

	Conclusion

