Scheduling Theory and Applications

Alexander Lazarev

Lomonosov Moscow State University
National Research University Higher School of Economics
Moscow Institute of Physics and Technology (State University)
V.A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences (ICS RAS)
jobmath@mail.ru
www.orsot.ru

Outline I

(1) About ORSOT

- Laboratory №68
- Projects
(2) History of Scheduling Theory
- Gantt chart
- Scheduling theory term
(3) Pioneers of scheduling theory
- J. R. Jackson. Scheduling a production to minimize maximum tardiness.
- W. E. Smith. Various optimizers for single-stage production.
- S. M. Johnson. Optimal two-and-three-stage production schedules with set-up times included.
(4) Problem of two production lines
(5) NP-hard problems
- Computational complexity
(6) Problem classification in scheduling theory

Outline II

(7) Problem $1\left|r_{j}\right| L_{\text {max }}$

- Minimizing maximum lateness
- Solvable cases
- Algorithms
- Pareto optimal schedules
(8) Metric
- Metric + Application
- Absolute error
(9) Linear programming problem
(10) Any not decreasing penalty functions
- Dual problem
(11) GCTC
- Problem statement
- Volume planning problem
- Timetabling problem
(12) Railway scheduling

Outline III

- Railway scheduling pioneers
- Existing approaches and solution methods
- Laboratory projects in railway scheduling
(13) Single track railway scheduling problem
- Dynamic programming approach
- Solution algorithm
(14) Resource Constrained Project Scheduling Problem
(15) Open problems
- ??? problem
- P. Baptiste's problem
(16) Conclusion

orsot.ru

$$
\begin{aligned}
& \text { ORSOT } \\
& \text { operations research, scheduiling optimurnon, Timeraning } \\
& \text { Tel.: +7 (495) 334-87-51 } \\
& \text { E-mail info@orsot.ru }
\end{aligned}
$$

Laboratory № 68 ICS RAS "Scheduling theory and discrete optimization"

Laboratory's site

Laboratory №68 "Scheduling theory and Discrete Optimization"

Laboratory №68 of Scheduling Theory and Discrete Optimization was founded in 2009 at Institute of Control Sciences. Head of the laboratory is professor Alexander Lazarev. Currently it is the only laboratory in Russia studying problems of Scheduling Theory.

Our site orsot.ru (Operation Research Scheduling Optimization Timetabling)

Projects

Optimization problems in astronautics Scheduling for ISS (International Space Station) missions
Planning of cosmonauts training program
Managing railroad traffic Managing railcar fleets
Operative management
Minimizing lateness and travel time
Strategical planning of manufacturing
Long-term and short-term planning
Minimizing production time
Uniform resource load

Projects

Transport logistics
 Forming trains and routes

Optimizing assembly lines Balancing and rebalancing assembly lines Distributing operations

Composing study schedules Program product on 1C platform

Gantt chart

Gantt chart

An example of Gantt chart

Scheduling theory term

Richard Ernest Bellman (1920-1984), American applied mathematician, famous for his work on dynamic programming and numerous important contributions in other fields of mathematics. In the 1954 he introduced the term "scheduling theory.
"Mathematical Aspects of Scheduling Theory"(1955)

Pioneers of scheduling theory. First results.

J. R. Jackson. Scheduling a production to minimize maximum tardiness. Research Report 43, Management Science Research Project, University of California at Los Angeles, 1955
W. E. Smith. Various optimizers for single-stage production. Naval Research Logistic Quarterly, 3:59-66, 1956
S. M. Johnson. Optimal two-and-three-stage production schedules with set-up times included. Naval Research Logistics Quarterly, 1:61-68, 1954

Pioneers of scheduling theory in USSR.

Tanaev, V.S. and Shkurba, V.V. Vvedenie v teoriyu raspisanii (Introduction to the Scheduling Theory), Moscow: Nauka, 1975

J. R. Jackson.

Scheduling a production to minimize maximum tardiness. 1955.

J. R. Jackson. Scheduling a production to minimize maximum tardiness.

1 machine

J. R. Jackson. Scheduling a production to minimize maximum tardiness.

1 machine
n jobs, $N=\{1,2,3, \ldots, n\}$

J. R. Jackson. Scheduling a production to minimize maximum tardiness.

1 machine
n jobs, $N=\{1,2,3, \ldots, n\}$
r_{j} - release time

J. R. Jackson. Scheduling a production to minimize maximum tardiness.

1 machine
n jobs, $N=\{1,2,3, \ldots, n\}$
r_{j} - release time
p_{j} - processing time

J. R. Jackson. Scheduling a production to minimize maximum tardiness.

1 machine
n jobs, $N=\{1,2,3, \ldots, n\}$
r_{j} - release time
$p_{j}-$ processing time
d_{j} - due date, D_{j} - deadline.
The due dates are allowed to be violated, but the deadlines are not.

J. R. Jackson. Scheduling a production to minimize maximum tardiness.

1 machine
n jobs, $N=\{1,2,3, \ldots, n\}$
r_{j} - release time
$p_{j}-$ processing time
d_{j} - due date, D_{j} - deadline.
The due dates are allowed to be violated, but the deadlines are not. Schedule π (permutation of jobs)

J. R. Jackson. Scheduling a production to minimize maximum tardiness.

Note: There are two most common ways of schedule representation:

- The schedule is represented by a permutation of jobs (in what order the jobs should be processed, one after one), for example, $\pi=(6,3,2,1, \ldots)$ means that firstly job 6 is processed, then job 3 , then 2 and so on.
- The schedule is represented by a vector of job start times S_{j}, for example $\pi=(10,0,11,5,6,4, \ldots)$ means that job 1 starts at $t=10$, job 2 starts at $t=0,3$ starts at $t=11$ and so on.

Depending on the formulation of considered problem, one method or another may be more convenient to implement.

J. R. Jackson. Scheduling a production to minimize maximum tardiness.

1 machine
n jobs, $N=\{1,2,3, \ldots, n\}$
r_{j} - release time
p_{j} - processing time
d_{j} - due date, D_{j} - deadline.
The due dates are allowed to be violated, but the deadlines are not.
Schedule π (permutation of jobs)

J. R. Jackson. Scheduling a production to minimize maximum tardiness.

1 machine
n jobs, $N=\{1,2,3, \ldots, n\}$
r_{j} - release time
p_{j} - processing time
d_{j} - due date, D_{j} - deadline.
The due dates are allowed to be violated, but the deadlines are not.
Schedule π (permutation of jobs)
$C_{j}(\pi)$ - completion time of job j

J. R. Jackson. Scheduling a production to minimize maximum tardiness.

1 machine
n jobs, $N=\{1,2,3, \ldots, n\}$
r_{j} - release time
p_{j} - processing time
d_{j} - due date, D_{j} - deadline.
The due dates are allowed to be violated, but the deadlines are not.
Schedule π (permutation of jobs)
$C_{j}(\pi)$ - completion time of job j

$$
\text { schedule } \pi
$$

J. R. Jackson. Scheduling a production to minimize maximum tardiness.

Lateness of job $j: C_{j}(\pi)-d_{j}$

J. R. Jackson. Scheduling a production to minimize maximum tardiness.

Lateness of job $j: C_{j}(\pi)-d_{j}$
Lateness of job 2: $C_{2}(\pi)-d_{2}=1$

J. R. Jackson. Scheduling a production to minimize maximum tardiness.

Lateness of j-th job $C_{j}(\pi)-d_{j}$
The goal is to construct a schedule with minimal value of maximum lateness:

$$
\min _{\pi} \max _{j \in N}\left\{C_{j}(\pi)-d_{j}\right\}
$$

Think, how you would solve this problem.

J. R. Jackson. Scheduling a production to minimize maximum tardiness.

Lateness of j-th job $C_{j}(\pi)-d_{j}$
The goal is to construct a schedule with minimal value of maximum lateness:

$$
\min _{\pi} \max _{j \in N}\left\{C_{j}(\pi)-d_{j}\right\}
$$

Think, how you would solve this problem.
Jackson's result: if all release times are zero, $\forall j \in N r_{j}=0$, then optimal schedule $\pi^{*}=\left(j_{1}, j_{2}, \ldots, j_{n}\right)$ consists of jobs that are sorted according to non-decrease of their due dates:

$$
d_{j_{1}} \leq d_{j_{2}} \leq \cdots \leq d_{j_{n}}
$$

Optimal schedule can be obtained by using sorting algorithm with $O(n \log n)$ operations

J. R. Jackson. Scheduling a production to minimize maximum tardiness.

Jackson's algorithm requires that all the jobs are accessible from the beginning ($\forall j \in N r_{j}=0$).

J. R. Jackson. Scheduling a production to minimize maximum tardiness.

Jackson's algorithm requires that all the jobs are accessible from the beginning ($\forall j \in N r_{j}=0$).
What if this requirement is not met $\left(\exists j \in N r_{j} \neq 0\right)$?

W. E. Smith.
 Various optimizers for single-stage production. 1956

W. E. Smith. Various optimizers for single-stage production.

1 machine

W. E. Smith. Various optimizers for single-stage production.

1 machine
n jobs, $N=\{1,2,3, \ldots, n\}$

W. E. Smith. Various optimizers for single-stage production.

1 machine
n jobs, $N=\{1,2,3, \ldots, n\}$
$r_{j}=0, \forall j \in N-$ all jobs are released at $t=0$

W. E. Smith. Various optimizers for single-stage production.

1 machine
n jobs, $N=\{1,2,3, \ldots, n\}$
$r_{j}=0, \forall j \in N-$ all jobs are released at $t=0$
$p_{j}-$ processing time

W. E. Smith. Various optimizers for single-stage production.

1 machine
n jobs, $N=\{1,2,3, \ldots, n\}$
$r_{j}=0, \forall j \in N-$ all jobs are released at $t=0$
p_{j} - processing time
Schedule π (permutation of jobs)

W. E. Smith. Various optimizers for single-stage production.

1 machine
n jobs, $N=\{1,2,3, \ldots, n\}$
$r_{j}=0, \forall j \in N-$ all jobs are released at $t=0$
$p_{j}-$ processing time
Schedule π (permutation of jobs)
$C_{j}(\pi)$ - completion time

W. E. Smith. Various optimizers for single-stage production.

1 machine
n jobs, $N=\{1,2,3, \ldots, n\}$
$r_{j}=0, \forall j \in N-$ all jobs are released at $t=0$
$p_{j}-$ processing time
Schedule π (permutation of jobs)
$C_{j}(\pi)$ - completion time
Objective function: minimum total completion time

$$
\min _{\pi} \sum_{j \in N} C_{j}(\pi)
$$

W. E. Smith. Various optimizers for single-stage production.

Smith's result: in optimal schedule $\pi^{*}=\left(j_{1}, j_{2}, \ldots, j_{n}\right)$ jobs are sorted according to non-decrease of their processing times:

$$
p_{j_{1}} \leq p_{j_{2}} \leq \cdots \leq p_{j_{n}}
$$

schedule π

	1		3		2			4							
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

W. E. Smith. Various optimizers for single-stage production.

Smith's result: in optimal schedule $\pi^{*}=\left(j_{1}, j_{2}, \ldots, j_{n}\right)$ jobs are sorted according to non-decrease of their processing times:

$$
p_{j_{1}} \leq p_{j_{2}} \leq \cdots \leq p_{j_{n}}
$$

schedule π

	1		3		2			4							
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Optimal schedule can be obtained by using sorting algorithm with $O(n \log n)$ operations

W. E. Smith. Various optimizers for single-stage production.

In Smith's problem all jobs are released at $t=0\left(\forall j \in N r_{j}=0\right)$.

W. E. Smith. Various optimizers for single-stage production.

In Smith's problem all jobs are released at $t=0\left(\forall j \in N r_{j}=0\right)$. What if this requirement is not met $\left(\exists j \in N r_{j} \neq 0\right)$?

S. M. Johnson.
 Optimal two-and-three-stage production schedules with set-up times included. 1954

S. M. Johnson. Optimal two-and-three-stage production schedules with set-up times included.

2 machines

S. M. Johnson. Optimal two-and-three-stage production schedules with set-up times included.

2 machines
N_{12} jobs with processing order "Machine $1 \rightarrow$ Machine 2

S. M. Johnson. Optimal two-and-three-stage production schedules with set-up times included.

2 machines
N_{12} jobs with processing order "Machine $1 \rightarrow$ Machine 2
p_{j}^{1}, p_{j}^{2} - processing times of job j on machines 1 ("set-up time") and
2 ("actual"processing time), respectively

S. M. Johnson. Optimal two-and-three-stage production schedules with set-up times included.

2 machines
N_{12} jobs with processing order "Machine $1 \rightarrow$ Machine 2
p_{j}^{1}, p_{j}^{2} - processing times of job j on machines 1 ("set-up time") and
2 ("actual"processing time), respectively
$C_{j}^{1}(\pi), C_{j}^{2}(\pi)$ - completion times on machines 1 and 2 respectively

S. M. Johnson. Optimal two-and-three-stage production schedules with set-up times included.

2 machines
N_{12} jobs with processing order "Machine $1 \rightarrow$ Machine 2
p_{j}^{1}, p_{j}^{2} - processing times of job j on machines 1 ("set-up time") and
2 ("actual"processing time), respectively
$C_{j}^{1}(\pi), C_{j}^{2}(\pi)$ - completion times on machines 1 and 2 respectively Schedule π (permutation of jobs, each job should be processed on machine 1 first)

S. M. Johnson. Optimal two-and-three-stage production schedules with set-up times included.

2 machines
N_{12} jobs with processing order "Machine $1 \rightarrow$ Machine 2
p_{j}^{1}, p_{j}^{2} - processing times of job j on machines 1 ("set-up time") and
2 ("actual"processing time), respectively
$C_{j}^{1}(\pi), C_{j}^{2}(\pi)$ - completion times on machines 1 and 2 respectively
Schedule π (permutation of jobs, each job should be processed on machine 1 first)
Objective function: minimum total processing time (makespan)

$$
\min _{\pi} \max _{j \in N}\left\{C_{j}^{2}(\pi)\right\}
$$

S. M. Johnson. Optimal two-and-three-stage production schedules with set-up times included.

Example of a feasible schedule:

S. M. Johnson. Optimal two-and-three-stage production schedules with set-up times included.

Constraints:
1 Each machine may process only one job at a time

S. M. Johnson. Optimal two-and-three-stage production schedules with set-up times included.

Constraints:
1 Each machine may process only one job at a time
2 Each job may be processed at machine 2 only after it was processed at machine 1, i.e. moment of processing completion of job j at machine 1 cannot exceed moment of processing initiation of the same job at machine 2

S. M. Johnson. Optimal two-and-three-stage production schedules with set-up times included.

Constraints:
1 Each machine may process only one job at a time
2 Each job may be processed at machine 2 only after it was processed at machine 1, i.e. moment of processing completion of job j at machine 1 cannot exceed moment of processing initiation of the same job at machine 2

3 Processing of any job cannot be interrupted: if processing of job i on machine j was initiated at the moment of time t, it should remain processing on the same machine until the moment of time $t+p_{i}^{j}$

Johnson's algorithm:

Algorithm 1. Input: set N_{12} of jobs. Output: permutation π.
Step $1 \forall i \in N_{12} p_{i}:=\min \left\{p_{i}^{1}, p_{i}^{2}\right\}$
Sorting jobs according to increase of their processing duration

$$
p_{i_{1}} \leq p_{i_{2}} \leq \cdots \leq p_{i_{n}}
$$

Johnson's algorithm:

Algorithm 1. Input: set N_{12} of jobs. Output: permutation π.
Step $1 \forall i \in N_{12} p_{i}:=\min \left\{p_{i}^{1}, p_{i}^{2}\right\}$
Sorting jobs according to increase of their processing duration

$$
p_{i_{1}} \leq p_{i_{2}} \leq \cdots \leq p_{i_{n}}
$$

Step $2 \pi_{1}:=\emptyset \pi_{2}:=\emptyset$

Johnson's algorithm:

Algorithm 1. Input: set N_{12} of jobs. Output: permutation π.
Step $1 \forall i \in N_{12} p_{i}:=\min \left\{p_{i}^{1}, p_{i}^{2}\right\}$
Sorting jobs according to increase of their processing duration

$$
p_{i_{1}} \leq p_{i_{2}} \leq \cdots \leq p_{i_{n}}
$$

Step $2 \pi_{1}:=\emptyset \pi_{2}:=\emptyset$
Step 3 Let N be a set of jobs sorted according to Step 1 .
If $N=\emptyset$, go to step 4 .
Otherwise, let's denote the first element of N as i_{1}. If $p_{i_{1}}=p_{i_{1}}^{1}$, add it to $\pi_{1}: \pi_{1}:=\pi_{1} \cup i_{1}$, otherwise, if $p_{i_{1}}=p_{i_{1}}^{2}$, add it to $\pi_{2}: \pi_{2}:=i_{1} \cup \pi_{2}$

Johnson's algorithm:

Algorithm 1. Input: set N_{12} of jobs. Output: permutation π.
Step $1 \forall i \in N_{12} p_{i}:=\min \left\{p_{i}^{1}, p_{i}^{2}\right\}$
Sorting jobs according to increase of their processing duration

$$
p_{i_{1}} \leq p_{i_{2}} \leq \cdots \leq p_{i_{n}}
$$

Step $2 \pi_{1}:=\emptyset \pi_{2}:=\emptyset$
Step 3 Let N be a set of jobs sorted according to Step 1 .
If $N=\emptyset$, go to step 4 .
Otherwise, let's denote the first element of N as i_{1}. If $p_{i_{1}}=p_{i_{1}}^{1}$, add it to $\pi_{1}: \pi_{1}:=\pi_{1} \cup i_{1}$, otherwise, if $p_{i_{1}}=p_{i_{1}}^{2}$, add it to $\pi_{2}: \pi_{2}:=i_{1} \cup \pi_{2}$
Step $4 \pi:=\pi_{1} \cup \pi_{2}$
End.

Johnson's algorithm:

Algorithm 2. Input: permutation of jobs π. Output: feasible schedule. Step 1 Moment of processing initiation of 1st job on machine 1 is 0 . Moment of processing initiation of each subsequent job on machine 1 equals to moment of processing completion of previous job on machine 1 .

Johnson's algorithm:

Algorithm 2. Input: permutation of jobs π. Output: feasible schedule.
Step 1 Moment of processing initiation of 1st job on machine 1 is 0 . Moment of processing initiation of each subsequent job on machine 1 equals to moment of processing completion of previous job on machine 1.
Step 2 Moment of processing initiation of 1st job on machine 2 matches its moment of processing completion on machine 1 . Moment of processing initiation of each subsequent job on machine 2 equals to maximum of two moments: moment of its processing completion on machine 1 and moment of processing completion of previous job on machine 2.

Johnson's algorithm:

Algorithm 2. Input: permutation of jobs π. Output: feasible schedule.
Step 1 Moment of processing initiation of 1st job on machine 1 is 0 . Moment of processing initiation of each subsequent job on machine 1 equals to moment of processing completion of previous job on machine 1.
Step 2 Moment of processing initiation of 1st job on machine 2 matches its moment of processing completion on machine 1 . Moment of processing initiation of each subsequent job on machine 2 equals to maximum of two moments: moment of its processing completion on machine 1 and moment of processing completion of previous job on machine 2.

End.

Thus, overall computational complexity of Johnson's algorithm is limited by computational complexity of sorting algorithm implemented in Algorithm 1 at Step 1, i. e. $O(n \log n)$ in case of "quick-sort

Johnson's algorithm:

Algorithm 2. Input: permutation of jobs π. Output: feasible schedule. Here, schedule is described by an array of numbers: for each job j, processing start times S_{j}^{1} and S_{j}^{2} on machines 1 and 2 are assigned: $C_{j}^{i}=S_{j}^{i}+p_{j}^{i}, i=1,2$, $\pi=\left(j_{1}, j_{2}, \ldots, j_{n}\right)$

Johnson's algorithm:

Algorithm 2. Input: permutation of jobs π. Output: feasible schedule. Here, schedule is described by an array of numbers: for each job j, processing start times S_{j}^{1} and S_{j}^{2} on machines 1 and 2 are assigned: $C_{j}^{i}=S_{j}^{i}+p_{j}^{i}, i=1,2$, $\pi=\left(j_{1}, j_{2}, \ldots, j_{n}\right)$

Johnson's algorithm:

Algorithm 2. Input: permutation of jobs π. Output: feasible schedule. Here, schedule is described by an array of numbers: for each job j, processing start times S_{j}^{1} and S_{j}^{2} on machines 1 and 2 are assigned: $C_{j}^{i}=S_{j}^{i}+p_{j}^{i}, i=1,2$, $\pi=\left(j_{1}, j_{2}, \ldots, j_{n}\right)$

Exercise 1.

j	1	2	3	4	5	6	7
p_{j}^{1}	5	7	4	3	5	7	6
p_{j}^{2}	6	5	6	7	4	6	8

$\pi=(, \quad, \quad, \quad, \quad)$
$\pi_{1}=()$
$\pi_{2}=()$

Final schedule π will be composed of two parts: $\pi=\pi_{1} \cup \pi_{2} . \pi_{1}$ contains jobs that should be performed on machine 1 first. After all the jobs from π_{1} have been processed on machine 1 , jobs from π_{2} may start processing on that machine.

Exercise 1.

$$
\begin{array}{llllllll}
j & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
p_{j}^{1} & 5 & 7 & 4 & 3 & 5 & 7 & 6 \\
p_{j}^{2} & 6 & 5 & 6 & 7 & 4 & 6 & 8
\end{array}
$$

$$
\pi=(4,,,,, \quad,)
$$

$$
\pi_{1}=(4)
$$

$$
\pi_{2}=()
$$

Exclude job 4 from the list of pending jobs

Exercise 1.

$$
\begin{array}{lllllll}
j & 1 & 2 & 3 & 5 & 6 & 7 \\
p_{j}^{1} & 5 & 7 & 4 & 5 & 7 & 6 \\
p_{j}^{2} & 6 & 5 & 6 & 4 & 6 & 8 \\
\pi=(4, & , & , & , & \\
\pi=(4) \\
\pi_{1}=(4) & \\
\pi_{2}=()
\end{array}
$$

Exercise 1.

$$
\begin{array}{lllllll}
j & 1 & 2 & 3 & 5 & 6 & 7 \\
p_{j}^{1} & 5 & 7 & 4 & 5 & 7 & 6 \\
p_{j}^{2} & 6 & 5 & 6 & 4 & 6 & 8 \\
\pi=(4, & , & , & , 5) \\
\pi_{1}=(4) \\
\pi_{2}=(5)
\end{array}
$$

Exclude job 5 from the list of pending jobs

Exercise 1.

$$
\begin{array}{llllll}
j & 1 & 2 & 3 & 6 & 7 \\
p_{j}^{1} & 5 & 7 & 4 & 7 & 6 \\
p_{j}^{2} & 6 & 5 & 6 & 6 & 8 \\
\pi=(4,3, & \\
\pi= & , & , 5) \\
\pi_{1}=(4,3) \\
\pi_{2}=(5)
\end{array}
$$

Exclude job 3 from the list of pending jobs

Exercise 1.

$$
\begin{aligned}
& \begin{array}{lllll}
j & 1 & 2 & 6 & 7
\end{array} \\
& \begin{array}{lllll}
p_{j}^{1} & 5 & 7 & 7 & 6 \\
p_{j}^{2} & 6 & 5 & 6 & 8
\end{array} \\
& \pi=(4,3,,, \quad, 5) \\
& \pi_{1}=(4,3) \\
& \pi_{2}=(5)
\end{aligned}
$$

Exercise 1.

$$
\left.\begin{array}{lllll}
j & 1 & 2 & 6 & 7 \\
p_{j}^{1} & 5 & 7 & 7 & 6 \\
p_{j}^{2} & 6 & 5 & 6 & 8
\end{array}\right] \begin{aligned}
& \pi=(4,3, \\
& \pi=, \\
& \left.\pi_{1}=(4,3), 2,5\right) \\
& \pi_{2}=(2,5)
\end{aligned}
$$

Exclude job 2 from the list of pending jobs

Exercise 1.

$$
\left.\begin{array}{llll}
j & 1 & 6 & 7 \\
p_{j}^{1} & 5 & 7 & 6 \\
p_{j}^{2} & 6 & 6 & 8
\end{array}\right] \begin{aligned}
& \pi=(4,3,1,,, 2,5) \\
& \pi_{1}=(4,3,1) \\
& \pi_{2}=(2,5)
\end{aligned}
$$

Exclude job 1 from the list of pending jobs

Exercise 1.

$$
\begin{array}{lll}
j & 6 & 7 \\
p_{j}^{1} & 7 & 6 \\
p_{j}^{2} & 6 & 8
\end{array}
$$

$$
\pi=(4,3,1,6,7,2,5) \quad \pi_{1}=(4,3,1,6) \quad \pi_{2}=(7,2,5)
$$

$$
\pi=\pi_{1} \bigcup \pi_{2}
$$

$O(n \log n)$

S. M. Johnson. Optimal two-and-three-stage production schedules with set-up times included.

So far we have only considered the case in which all the jobs have processing order "Machine $1 \rightarrow$ Machine 2"(further, we will denote it simply as "1 $\rightarrow 2$ ").

S. M. Johnson. Optimal two-and-three-stage production schedules with set-up times included.

So far we have only considered the case in which all the jobs have processing order "Machine $1 \rightarrow$ Machine 2"(further, we will denote it simply as "1 $\rightarrow 2$ ").
Let us consider a bit more complicated problem. What if there are not only jobs with a processing order " $1 \rightarrow 2$ but also with processing orders " $2 \rightarrow 1$ "1"and "2"? (In the latter two cases, the jobs should only be processed on their respective machines).

S. M. Johnson. Optimal two-and-three-stage production schedules with set-up times included.

So far we have only considered the case in which all the jobs have processing order "Machine $1 \rightarrow$ Machine 2"(further, we will denote it simply as "1 $\rightarrow 2$ ").
Let us consider a bit more complicated problem. What if there are not only jobs with a processing order " $1 \rightarrow 2$ but also with processing orders " $2 \rightarrow 1$ "1"and "2"? (In the latter two cases, the jobs should only be processed on their respective machines).
How could we apply Johnson's algorithm to this problem?

S. M. Johnson. Optimal two-and-three-stage production schedules with set-up times included.

2 machines

S. M. Johnson. Optimal two-and-three-stage production schedules with set-up times included.

2 machines
N_{1} jobs with processing order "1"
N_{2} jobs with processing order "2"
N_{12} jobs with processing order " $1 \rightarrow 2$ "
N_{21} jobs with processing order " $2 \rightarrow 1$ "

S. M. Johnson. Optimal two-and-three-stage production schedules with set-up times included.

2 machines
N_{1} jobs with processing order "1"
N_{2} jobs with processing order "2"
N_{12} jobs with processing order " $1 \rightarrow 2$ "
N_{21} jobs with processing order " $2 \rightarrow 1$ "
p_{j}^{1}, p_{j}^{2} - processing times of job j on machines 1 and 2 respectively
(consider $\forall j \in N_{1} p_{j}^{2}=0, \quad \forall j \in N_{2} p_{j}^{1}=0$)

S. M. Johnson. Optimal two-and-three-stage production schedules with set-up times included.

2 machines
N_{1} jobs with processing order "1"
N_{2} jobs with processing order "2"
N_{12} jobs with processing order " $1 \rightarrow 2$ "
N_{21} jobs with processing order " $2 \rightarrow 1$ "
p_{j}^{1}, p_{j}^{2} - processing times of job j on machines 1 and 2 respectively
(consider $\forall j \in N_{1} p_{j}^{2}=0, \quad \forall j \in N_{2} p_{j}^{1}=0$)
$C_{j}^{1}(\pi), C_{j}^{2}(\pi)$ - completion times on machines 1 and 2 respectively

S. M. Johnson. Optimal two-and-three-stage production schedules with set-up times included.

2 machines
N_{1} jobs with processing order "1"
N_{2} jobs with processing order "2"
N_{12} jobs with processing order " $1 \rightarrow 2$ "
N_{21} jobs with processing order " $2 \rightarrow 1$ "
p_{j}^{1}, p_{j}^{2} - processing times of job j on machines 1 and 2 respectively (consider $\forall j \in N_{1} p_{j}^{2}=0, \quad \forall j \in N_{2} p_{j}^{1}=0$)
$C_{j}^{1}(\pi), C_{j}^{2}(\pi)$ - completion times on machines 1 and 2 respectively Schedule $\pi=\left(\pi^{1}, \pi^{2}\right)$ (two schedules, for machines 1 and 2 respectively)

S. M. Johnson. Optimal two-and-three-stage production schedules with set-up times included.

2 machines
N_{1} jobs with processing order "1"
N_{2} jobs with processing order "2"
N_{12} jobs with processing order " $1 \rightarrow 2$ "
N_{21} jobs with processing order " $2 \rightarrow 1$ "
p_{j}^{1}, p_{j}^{2} - processing times of job j on machines 1 and 2 respectively
(consider $\forall j \in N_{1} p_{j}^{2}=0, \quad \forall j \in N_{2} p_{j}^{1}=0$)
$C_{j}^{1}(\pi), C_{j}^{2}(\pi)$ - completion times on machines 1 and 2 respectively
Schedule $\pi=\left(\pi^{1}, \pi^{2}\right)$ (two schedules, for machines 1 and 2
respectively)
Objective function: minimum total processing duration (makespan)

$$
\min _{\pi} \max _{i \in\{1,2\}, j \in N}\left\{C_{j}^{i}(\pi)\right\}, N=N_{1} \cup_{2} \cup N_{12} \cup N_{21}
$$

S. M. Johnson. Optimal two-and-three-stage production schedules with set-up times included.

Without going into any deep detail on this problem, let us formulate the following theorem:

S. M. Johnson. Optimal two-and-three-stage production schedules with set-up times included.

Without going into any deep detail on this problem, let us formulate the following theorem:
Theorem. Let π_{12} be a permutation of jobs obtained by applying Algorithm 1 to set of jobs N_{12}, let π_{21} be a permutation of jobs obtained by applying Algorithm 1 to set of jobs N_{21} (by swapping the machines), and let π_{1} and π_{2} be two arbitrary permutations of jobs from sets N_{1} and N_{2}. Then the optimal solution to of this problem would consist of two sequences of jobs: $\pi^{1}=\left(\pi_{12}, \pi_{1}, \pi_{21}\right)$ for machine 1 and $\pi^{2}=\left(\pi_{21}, \pi_{2}, \pi_{12}\right)$ for machine 2. Computational complexity of this algorithm is $O(n \log n)$, where n is total number of jobs.

S. M. Johnson. Optimal two-and-three-stage production schedules with set-up times included.

Schedule $\pi^{1}=\left(\pi_{12}, \pi_{1}, \pi_{21}\right)$ for machine 1
Schedule $\pi^{2}=\left(\pi_{21}, \pi_{2}, \pi_{12}\right)$ for machine 2

S. M. Johnson. Optimal two-and-three-stage production schedules with set-up times included.

Suppose that there are more than 2 machines, for example, 3 machines, and some jobs have processing orders such as " $1 \rightarrow 2 \rightarrow$ 3" $2 \rightarrow 3 \rightarrow 1$ "and so on.

S. M. Johnson. Optimal two-and-three-stage production schedules with set-up times included.

Suppose that there are more than 2 machines, for example, 3 machines, and some jobs have processing orders such as " $1 \rightarrow 2 \rightarrow$ 3 " $2 \rightarrow 3 \rightarrow 1$ "and so on.
Is it possible to use Johnson's algorithm in that case?

Computational complexity of Jackson's, Smith's and Johnon's problems

The following problems:

- Smith's problem with non-zero release times $\left(\exists j \in N r_{j} \neq 0\right)$
- Jackson's problem with non-zero release times $\left(\exists j \in N r_{j} \neq 0\right)$
- Johnson's problem with more than 2 machines are known to be at least NP-hard.

Meaning of the objective function in a problem

As we have discussed before, Jackson's, Smith's and Johnson's problems have objective functions $L_{\text {max }}, \sum C_{j}$ and $C_{\text {max }}$, correspondingly.

Meaning of the objective function in a problem

As we have discussed before, Jackson's, Smith's and Johnson's problems have objective functions $L_{\max }, \sum C_{j}$ and $C_{\text {max }}$, correspondingly.

Now, take a moment and try to answer the following question: What sense do these objective functions make in real life?

Problem of two production lines

Problem of two production lines

2 production lines that have n workplaces denoted as $S_{11}, \ldots, S_{1 n}$ and $S_{21}, \ldots, S_{2 n}, i \in\{1,2\}, j \in\{1 \ldots, n\}$

Problem of two production lines

2 production lines that have n workplaces denoted as $S_{11}, \ldots, S_{1 n}$ and $S_{21}, \ldots, S_{2 n}, i \in\{1,2\}, j \in\{1 \ldots, n\}$
1 job (product) that should pass all the n workplaces (stages of production) according to their order. Between stages of production the product may be transferred to another production line, i.e. different stages may be processed at different production lines.

Problem of two production lines

2 production lines that have n workplaces denoted as $S_{11}, \ldots, S_{1 n}$ and $S_{21}, \ldots, S_{2 n}, i \in\{1,2\}, j \in\{1 \ldots, n\}$
1 job (product) that should pass all the n workplaces (stages of production) according to their order. Between stages of production the product may be transferred to another production line, i.e. different stages may be processed at different production lines.
$a_{i j}$ - processing time at workplace $S_{i j}$

Problem of two production lines

2 production lines that have n workplaces denoted as $S_{11}, \ldots, S_{1 n}$ and $S_{21}, \ldots, S_{2 n}, i \in\{1,2\}, j \in\{1 \ldots, n\}$
1 job (product) that should pass all the n workplaces (stages of production) according to their order. Between stages of production the product may be transferred to another production line, i.e. different stages may be processed at different production lines.
$a_{i j}$ - processing time at workplace $S_{i j}$
$t_{i j}$ - transfer time from workplace $S_{i j}$ at production line i to $(j+1)$ th workplace at the other production line; $j \in\{1, \ldots, n-1\}$. Transfer times between adjacent workplaces on the same production line are equal to 0 .

Problem of two production lines

2 production lines that have n workplaces denoted as $S_{11}, \ldots, S_{1 n}$ and $S_{21}, \ldots, S_{2 n}, i \in\{1,2\}, j \in\{1 \ldots, n\}$
1 job (product) that should pass all the n workplaces (stages of production) according to their order. Between stages of production the product may be transferred to another production line, i.e. different stages may be processed at different production lines.
$a_{i j}$ - processing time at workplace $S_{i j}$
$t_{i j}$ - transfer time from workplace $S_{i j}$ at production line i to $(j+1)$ th workplace at the other production line; $j \in\{1, \ldots, n-1\}$. Transfer times between adjacent workplaces on the same production line are equal to 0 .

Problem of two production lines

2 production lines that have n workplaces denoted as $S_{11}, \ldots, S_{1 n}$ and $S_{21}, \ldots, S_{2 n}, i \in\{1,2\}, j \in\{1 \ldots, n\}$
1 job (product) that should pass all the n workplaces (stages of production) according to their order. Between stages of production the product may be transferred to another production line, i.e. different stages may be processed at different production lines.
$a_{i j}$ - processing time at workplace $S_{i j}$
$t_{i j}$ - transfer time from workplace $S_{i j}$ at production line i to $(j+1)$ th workplace at the other production line; $j \in\{1, \ldots, n-1\}$. Transfer times between adjacent workplaces on the same production line are equal to 0 .
Schedule π (each stage of the job is assigned to a workplace at the corresponding production line)

Problem of two production lines

$C_{j}(\pi)$ - completion time of stage j according to schedule π

Problem of two production lines

$C_{j}(\pi)$ - completion time of stage j according to schedule π Objective function: minimum total processing duration (makespan):

$$
\min _{\pi}\left\{C_{n}(\pi)\right\}
$$

Problem of two production lines

$C_{j}(\pi)$ - completion time of stage j according to schedule π Objective function: minimum total processing duration (makespan):

$$
\min _{\pi}\left\{C_{n}(\pi)\right\}
$$

Solution. Dynamic programming.

Let us suppose that the job is now at the stage j at production line 1, i.e. the product is at workplace $S_{1 j}$. Let us also suppose that the current schedule π is optimal.
In order to proceed to stage j, the job must have first gone through stage $j-1$, which means that the product came to workplace $S_{1 j}$ either from workplace $S_{1(j-1)}$ or $S_{2(j-1)}$. Suppose it came from workplace $S_{1(j-1)}$. According to our supposition that current schedule is optimal (which means that product got to workplace $S_{1 j}$ in the fastest possible way), the product must have gotten to workplace $S_{1(j-1)}$ in the fastest possible way, too. This means that the optimal solution of the problem for the first j workplaces includes optimal solution of the problem for the first $j-1$ workplaces. This property of the solution is called optimal substructure.

Solution. Dynamic programming.

Recursive algorithm: According to the optimal substructure of the problem, let us calculate consequently C_{j}^{i} - the least moments of time in which the product could have gone through stage j, being at the moment of completion of this stage at production line i.

$$
\begin{aligned}
& C_{1}^{1}:=a_{11} \\
& C_{1}^{2}:=a_{21} \\
& \text { for } j:=2 \text { to } n \text { do } \\
& \text { begin } \\
& C_{j}^{1}:=\min \left\{C_{j-1}^{1}, C_{j-1}^{2}+t_{2(j-1)}\right\}+a_{1 j} \\
& C_{j}^{2}:=\min \left\{C_{j-1}^{2}, C_{j-1}^{1}+t_{1(j-1)}\right\}+a_{2 j} \\
& \text { end }
\end{aligned}
$$

These equations are the simplest case of Bellmann equations.

Solution. Dynamic programming.

Total processing duration is $C_{n}:=\min \left\{C_{n}^{1}, C_{n}^{2}\right\}$ i.e. it doesn't matter at which production line the product finished processing. Recovering the schedule itself is a fairly easy task: we just have to "remember"from which workplace the product came to the current workplace.
Total computational complexity of this algorithm is $O(n)$ operations.

Elements of computational comlexity theory. Classes P and NP.

S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of 3rd Annual ACM Symposium on Theory of Computing, pg. 151-158. ACM-Press 1971.

Computational complexity

Suppose we are examining some instance of a recognition problem.

Computational complexity

Suppose we are examining some instance of a recognition problem.
Let us denote as n a numerical characteristic of input data that affects computational complexity of this problem in the most significant way (usually it is either the amount of input data itself, or dimensionality of the problem - the number of variables, equations and inequalities that define an instance of the problem).

Computational complexity

Suppose we are examining some instance of a recognition problem.
Let us denote as n a numerical characteristic of input data that affects computational complexity of this problem in the most significant way (usually it is either the amount of input data itself, or dimensionality of the problem - the number of variables, equations and inequalities that define an instance of the problem).
Suppose we also know some sort of algorithm that can be used to solve this problem within a finite time period.

Computational complexity

- If computational complexity of the algorithm that solves the problem is $O\left(n^{k}\right)$ operations, where k is some constant number independent from n, then this problem is called solvable in polynomial time. Algorithms to the 4 problems mentioned before (Jackson's, Smith's, Johnson's problems and the problem of two production lines) are polynomial.

Computational complexity

- If computational complexity of the algorithm that solves the problem is $O\left(n^{k}\right)$ operations, where k is some constant number independent from n, then this problem is called solvable in polynomial time. Algorithms to the 4 problems mentioned before (Jackson's, Smith's, Johnson's problems and the problem of two production lines) are polynomial.
- All problems that are solvable within polynomial time formulate a class of problems denoted as P. Algorithms with corresponding computational complexity are called polynomial.

Computational complexity

- If computational complexity of the algorithm that solves the problem is $O\left(n^{k}\right)$ operations, where k is some constant number independent from n, then this problem is called solvable in polynomial time. Algorithms to the 4 problems mentioned before (Jackson's, Smith's, Johnson's problems and the problem of two production lines) are polynomial.
- All problems that are solvable within polynomial time formulate a class of problems denoted as P. Algorithms with corresponding computational complexity are called polynomial.
- If complexity of the algorithm depends on the values of numerical parameters of an example, for example, $O(n A)$, then this algorithm is called pseudo-polynomial.

Computational complexity

- If computational complexity of the algorithm that solves the problem is $O\left(n^{k}\right)$ operations, where k is some constant number independent from n, then this problem is called solvable in polynomial time. Algorithms to the 4 problems mentioned before (Jackson's, Smith's, Johnson's problems and the problem of two production lines) are polynomial.
- All problems that are solvable within polynomial time formulate a class of problems denoted as P. Algorithms with corresponding computational complexity are called polynomial.
- If complexity of the algorithm depends on the values of numerical parameters of an example, for example, $O(n A)$, then this algorithm is called pseudo-polynomial.
- If complexity of the algorithm has the form of $O\left(n^{x} y^{n}\right)$, where x and y are some constants, then this algorithm is called exponential.

Class NP

Suppose that we have a computer that includes a special "guessing"component (oracle). The oracle, given correct input data (the solution exists), provides some (possibly correct) output data. The output data provided by oracle needs to be verified, i. e. we should construct an algorithm that checks if the output data contains a correct solution that is in accordance with provided input data.

Class NP

Class NP includes all the problems that, for each instance that has a solution, may be guessed by an oracle, and the answer provided by oracle is such that:

Class NP

Class NP includes all the problems that, for each instance that has a solution, may be guessed by an oracle, and the answer provided by oracle is such that:

- the amount of data in solution provided by oracle is limited polynomially

Class NP

Class NP includes all the problems that, for each instance that has a solution, may be guessed by an oracle, and the answer provided by oracle is such that:

- the amount of data in solution provided by oracle is limited polynomially
- the solution provided by oracle could be verified in polynomial time.

Reduction of one problem to another

It is said that problem A can be reduced to problem B in polynomial time $(A \propto B)$, if a modification algorithm exists, such that this algorithm follows two next conditions:

Reduction of one problem to another

It is said that problem A can be reduced to problem B in polynomial time $(A \propto B)$, if a modification algorithm exists, such that this algorithm follows two next conditions:

- The algorithm transforms any given instance I_{A} of problem A into a corresponding instance I_{B} of problem B in polynomial time

Reduction of one problem to another

It is said that problem A can be reduced to problem B in polynomial time $(A \propto B)$, if a modification algorithm exists, such that this algorithm follows two next conditions:

- The algorithm transforms any given instance I_{A} of problem A into a corresponding instance I_{B} of problem B in polynomial time
- The answer to received instance I_{B} of problem B is 'YES"' if and only if the answer to the corresponding instance I_{A} of problem A is "YES", too. (or, less strictly, the solutions of corresponding instances I_{A}, I_{B} of problems A, B always match)

Problem classification in scheduling theory

Problem classification in scheduling theory

In scheduling theory, problems are classified according to:

- Type of solution
- Type of objective function
- Way input data is provided
- Subfields of Scheduling Theory

Problem classification in scheduling theory

Problem classification according to the type of solution:

- Arrangement problems
- Matching problems
- Distribution problems

Problem classification in scheduling theory

Problem classification according to the type of objective function:

- Problems with summary optimization criteria
- Problems with min-max optimization criteria
- Multicriterial optimization problems
- Problem on constructing a feasible schedule

Problem classification in scheduling theory

Problem classification according to the way input data is provided:

- Deterministic problems (offline)
- Dynamic problems (online)

Problem classification in scheduling theory

Problem classification according to subfields of Scheduling Theory:

- Project scheduling (PS)
- Machine scheduling (MS)
- Timetabling
- Shop-floor scheduling
- Transport scheduling and vehicle routing
- Sports scheduling

Denotations in Scheduling Theory

In Scheduling Theory, tasks are referred to as requests or jobs. Parameters of requests:

- r_{j} - release time
- p_{j} - processing time
- d_{j} - due date (may be violated, but a penalty is issued)
- D_{j} - deadline (should never be violated)
- w_{j} - job weight

Denotations in Scheduling Theory

Additional denotations:

- pmtn - preemptive scheduling is allowed
- prec - precedence relations between the jobs are defined (also: tree, out - tree, in - tree, chain)
- batch - the batching problem is considered (jobs are grouped into batches)

Denotations in Scheduling Theory

Objective functions:

- C_{j} - completion time
- $L_{j}=C_{j}-d_{j}$ - lateness
- $T_{j}=\max \left\{0, C_{j}-d_{j}\right\}-$ tardiness
- $E_{j}=\max \left\{0, d_{j}-C_{j}\right\}-$ earliness
- U_{j} - equals 1 if job j is late $\left(C_{j}>d_{j}\right)$ and 0 in the opposite case

If request weights w_{j} are provided, all of the previous objective functions are called weighed, and are multiplied by the value of request weight (ex., weighed tardiness $w_{j} T_{j}$ is calculated as $\left.w_{j} \max \left\{0, C_{j}-d_{j}\right\}\right)$

Denotations in Scheduling Theory

Optimization criteria:

1. min-max criteria

- $C_{\text {max }} \rightarrow$ min - minimizing maximum completion time (makespan), $C_{\max }=\max _{j \in N} C_{j}$. These problems are also called performance problems.
- $L_{\text {max }} \rightarrow$ min - minimizing maximum lateness $L_{\text {max }}=\max _{j \in N} L_{j}$

2. summary criteria

- $\sum_{j \in N} C_{j} \rightarrow \min$ - minimizing total completion time
- $\sum_{j \in N} T_{j} \rightarrow$ min - minimizing total tardiness
- $\sum_{j \in N} U_{j} \rightarrow$ min - minimizing total number of late jobs

Also, problems of maximizing these objective functions are considered (ex., $\left.\sum_{j \in N} T_{j} \rightarrow \max \right)$.

Project scheduling

Resource-Constrained Project Scheduling Problem (RCPSP)

- Set of n requests $N=\{1, \ldots, n\}$
- k renewable resources $K=1, \ldots, Q_{k}$
- p_{i} - processing time of request $i, \forall i \in N$.
- During processing of request i amount $q_{i k} \leq Q_{k}$ of resource k is used, $k=1, \ldots, n$.
- Some requests are bound by precedence relations: $i \rightarrow j$ means request j cannot start processing before request i has finished processing, $i, j \in N$.

Resource-Constrained Project Scheduling Problem (RCPSP)

The goal is to find processing start times S_{i} for all requests $i \in N$ so that minimum makespan $C_{\text {max }}$ is achieved:

$$
C_{\max }=\max _{i \in N}\left\{C_{i}\right\}, \quad C_{i}=S_{i}+p_{i}, \quad C_{\max } \rightarrow \min
$$

Obtained schedule should comply to the following conditions:

- Resource constraints are not violated:
$\forall t \in\left[0, C_{\max }\right), \forall k=1, \ldots, K \sum_{i=1}^{n} q_{i k} \varphi_{i}(t) \leq Q_{k}$
- Precedence relations are not violated:
$\forall i, j \in N:$ if $i \rightarrow j$, then $S_{i}+p_{i} \leq S_{j}$
It is necessary to notice that RCPSP is not the only problem in project scheduling, though it is the main one. For example, some resources can be non-renewable, such as money, fuel, oils and so on.

Machine scheduling

Machine scheduling

In Project Scheduling, processing of each request requires participation of several processors (renewable resources could be viewed as equipment). In Machine scheduling, usually each request is processed by only one processor at a time.
Processors can also be referred to as machines or devices. If not specified otherwise, machines are considered equivalent.

Machine scheduling

- Single-machine problems: only one request can be processed at a time.
- Parallel machines' problems: each request can be processed by any of the machines. Machines can be non-equivalent (processing time can vary). Precedence relations can be specified.
- Shop scheduling: m, machines M_{1}, \ldots, M_{m}. Each request $j \in N$ includes a number of stages ('operations') $O_{1}, \ldots, O_{n_{j} j}$. Precedence relations between operations can be specified. Each operation $O_{i j}$ is assigned to a machine $\mu_{i j}$ that it should be processed on. For each request, only one operation can be processed at a time. Each machine can only process one operation at a time.
- Job-shop: Precedence relations between operations are $O_{1 j} \rightarrow O_{2 j} \rightarrow \cdots \rightarrow O_{n_{j} j}$. No precedence relations between requests. Number of operations may vary between requests.

Machine scheduling

- Flow-shop ("Conveyor problem"): Each request contains the same number of operations: $\forall j \in N n_{j}=m$. Same operations are assigned to the same machine: $\mu_{i j}=M_{i}, i=1, \ldots, m, j=1, \ldots, n$.
- Open-shop: same as Flow-shop, but no precedence relations between operations.
- Other problems: batching problems, multiprocessor problems, ...

Classification of problems in Machine scheduling

Classification of problems in Machine scheduling

Each problem is denoted as $\alpha|\beta| \gamma$, where

- α describes characteristics of the problem that are related to machines
- β describes constraints and conditions of processing of requests.
- γ describes objective function.

Classification of problems in Machine scheduling

α describes characteristics of the problem related to machines. Possible values of α :

- 1 - single machine
- Pm - parallel machines
- Qm - parallel machines (non-equivalent)
- Fm - Flow-shop problem
- Om - Open-shop problem
- Jm - Job-shop problem
- Other values: na, nd, ...

Classification of problems in Machine scheduling

β describes constraints and conditions of processing of requests. Possible contents of field β :

- r_{j} - release dates are specified
- d_{j} - due dates are specified
- D_{j} - deadlines are specified
- prec - precedence relations are specified
- pmnt - preemption is allowe
- batch - batching problem: groups of requests (batches) can be processed simultaneously.
- Other values: $p_{j}=p, \ldots$
γ describes objective function (ex., $C_{\max }$).

Classification of problems in Machine scheduling

Thus, record $F 2\left|r_{j}\right| C_{\text {max }}$ denotes problem of minimizing makespan in Flow-shop system with two machines in case of non-simultaneous admission of requests. Other examples: $1\left|p_{j}=p, r_{j}\right| \sum w_{j} T_{j}$, Pm|r $r_{j}, p m t n \mid \sum C_{j}, \ldots$

Classification of problems in Machine scheduling

Thus, record $F 2\left|r_{j}\right| C_{\text {max }}$ denotes problem of minimizing makespan in Flow-shop system with two machines in case of non-simultaneous admission of requests. Other examples: $1\left|p_{j}=p, r_{j}\right| \sum w_{j} T_{j}$, Pm|r $r_{j}, p m t n \mid \sum C_{j}, \ldots$

Let's review some of previously considered problems in terms of machine scheduling:

- $1\left|r_{j}\right| L_{\max }$ (Jackson's problem with non-zero release times) is NP-hard in the strong sense
- $1\left|r_{j}\right| \sum C_{j}$ (Smith's problem with non-zero release times) is NP-hard
- $F 3 \| C_{\text {max }}$ (Johnson's problem with more than 2 machines) is NP-hard in the strong sense

Minimizing maximum lateness

$1\left|r_{j}\right| L_{\text {max }}$
Single machine, n jobs
r_{j} - release time;
$p_{j}>0$ - processing time;
$d_{j}-$ due date.
$j \in N=\{1,2, \ldots, n\}$

Minimizing maximum lateness

$1\left|r_{j}\right| L_{\text {max }}$
Single machine, n jobs
r_{j} - release time;
$p_{j}>0$ - processing time;
$d_{j}-$ due date.
$j \in N=\{1,2, \ldots, n\}$

Preemptions of a job are not allowed. The machine can process at most one job at any time.

Minimizing maximum lateness

$1\left|r_{j}\right| L_{\text {max }}$

Single machine, n jobs
r_{j} - release time;
$p_{j}>0$ - processing time;
$d_{j}-$ due date.
$j \in N=\{1,2, \ldots, n\}$

Preemptions of a job are not allowed. The machine can process at most one job at any time.

Graham R.L., Lawler E.L., Lenstra J.K., Rinnooy Kan A.H.G. 1979

$$
F(\pi)=\max _{j \in N}\left\{C_{j}-d_{j}\right\} \rightarrow \min _{\pi}
$$

NP-hard in strong sense
Lenstra J.K., Rinnooy Kan A.H.G., Brucker, P. 1977
$1\left|r_{j}\right| L_{\text {max }}$

$1\left|r_{j}\right| L_{\text {max }}$

$1\left|r_{j}\right| L_{\text {max }}$

$1\left|r_{j}\right| L_{\text {max }}$

$1\left|r_{j}\right| L_{\text {max }}$

Solvable cases:

Solvable cases:

1) $r_{j}=0, \forall j \in N$.

Jackson J.R. 1955
1') $d_{j}=$ const, $\forall j \in N$.
$O(n \log n)$
1') $p_{j}=$ const, $\forall j \in N$.
Simons B. 1983.
$O(n \log n)$
$O(n \log n)$

Solvable cases:

1) $r_{j}=0, \forall j \in N$.
$O(n \log n)$
Jackson J.R. 1955
1') $d_{j}=$ const,$\forall j \in N$.
$O(n \log n)$
1') $p_{j}=$ const,$\forall j \in N$.
Simons B. 1983.
$O(n \log n)$
2)

$O\left(n^{3} \log n\right)$

$$
\left\{\begin{array}{l}
d_{1} \leq d_{2} \leq \cdots \leq d_{n} \tag{1}\\
d_{1}-r_{1}-p_{1} \geq d_{2}-r_{2}-p_{2} \geq \cdots \geq d_{n}-r_{n}-p_{n}
\end{array}\right.
$$

2') $d_{j}=r_{j}+p_{j}+$ const, $\forall j \in N$.
$O\left(n^{3} \log n\right)$
$\{1, P, Q, R\}\left|r_{j}\right|\left\{L_{\max }, C_{\max }\right\}$
$O\left(n^{3} \log n\right)$
Lazarev A.A., Sadykov R.R., Sevastyanov S.V. 1988-2007

Solvable cases:

Solvable cases:

$$
\text { 3) } \max _{k \in N}\left\{d_{k}-r_{k}-p_{k}\right\} \leq d_{j}-r_{j}, \forall j \in N \text {. }
$$

$$
O\left(n^{2} \log n\right)
$$

Hoogeveen J. A. 1996

Solvable cases:

3) $\max _{k \in \mathcal{N}}\left\{d_{k}-r_{k}-p_{k}\right\} \leq d_{j}-r_{j}, \forall j \in N$.
$O\left(n^{2} \log n\right)$ Hoogeveen J. A. 1996
4) NP-hard in ordinary sense

$$
O\left(n^{2} P+n p_{\max } P\right)
$$

$$
\left\{\begin{array}{l}
d_{1} \leq d_{2} \leq \cdots \leq d_{n} ; \tag{2}\\
r_{1} \geq r_{2} \geq \cdots \geq r_{n} ; \\
r_{j}, p_{j}, d_{j} \in \mathbb{Z}^{+}, \forall j \in N .
\end{array}\right.
$$

Lazarev A.A., Schulgina O.N. 1998
$P=r_{\text {max }}+\sum_{j=1}^{n} p_{j}-r_{\text {min }}, r_{\text {max }}=\max _{j \in N} r_{j}, r_{\text {min }}=\min _{j \in N} r_{j}, p_{\max }=\max _{j \in N} p_{j}$

Solvable cases:

Solvable cases:

5)

$$
\left\{\begin{array}{l}
d_{1} \leq d_{2} \leq \cdots \leq d_{n} \tag{3}\\
d_{1}-\alpha r_{1}-\beta p_{1} \geq d_{2}-\alpha r_{2}-\beta p_{2} \geq \cdots \geq d_{n}-\alpha r_{n}-\beta p_{n} \\
\alpha \in[1, \infty), \beta \in[0,1]
\end{array}\right.
$$

Solvable cases:

5)

$$
\left\{\begin{array}{l}
d_{1} \leq d_{2} \leq \cdots \leq d_{n} \tag{3}\\
d_{1}-\alpha r_{1}-\beta p_{1} \geq d_{2}-\alpha r_{2}-\beta p_{2} \geq \cdots \geq d_{n}-\alpha r_{n}-\beta p_{n} \\
\alpha \in[1, \infty), \beta \in[0,1]
\end{array}\right.
$$

5')
$d_{j}=\alpha r_{j}+\beta p_{j}+$ const, $\forall j \in N, \alpha \in[1, \infty), \beta \in[0,1]$.

Solvable cases:

5)

$$
\left\{\begin{array}{l}
d_{1} \leq d_{2} \leq \cdots \leq d_{n} \tag{3}\\
d_{1}-\alpha r_{1}-\beta p_{1} \geq d_{2}-\alpha r_{2}-\beta p_{2} \geq \cdots \geq d_{n}-\alpha r_{n}-\beta p_{n} \\
\alpha \in[1, \infty), \beta \in[0,1]
\end{array}\right.
$$

5')
$d_{j}=\alpha r_{j}+\beta p_{j}+$ const, $\forall j \in N, \alpha \in[1, \infty), \beta \in[0,1]$.
2009
$O\left(n^{3} \log n\right)$

Algorithm 1.
Step 0) $\omega=\oslash$; $t=-\infty$;
Step 1) $f:=f(N, t)$ and $s:=s(N, t)$;

$$
\begin{gathered}
f(N, t)=\arg \min _{j \in N}\left\{d_{j} \mid r_{j}(t)=r(N, t)\right\}, \\
s(N, t)=\arg \min _{j \in N \backslash\{f\}}\left\{d_{j} \mid r_{j}(t)=r(N \backslash\{f\}, t)\right\}, \\
r_{j}(t)=\max \left\{r_{j}, t\right\}, r(N, t)=\min _{j \in N}\left\{r_{j}(t)\right\} .
\end{gathered}
$$

Step 2) if $d_{f} \leq d_{s}$ then begin
$\omega:=(\omega, f) ; N:=N \backslash\{f\}, t:=r_{f}(t)+p_{f}$ and goto Step 1)
end
else RETURN.

Algorithm 2. $\alpha \in[1, \infty), \beta \in[0,1]$
$\overline{1 \mid d_{i} \leq d_{j}, d_{i}}-\alpha r_{i}-\beta p_{i} \geq d_{j}-\alpha r_{j}-\beta p_{j} ; L_{\max } \leq y \mid C_{\max }$
Step 0) $\theta:=\omega(N, t)$; if $L_{\max }(\theta, t)>y$ then $\theta:=\oslash$ and RETURN.
Step 1) $N:=N \backslash\{\theta\} ; t:=C_{\max }(\theta)$;
$\omega^{1}=\left(f, \omega\left(N \backslash\{f\}, r_{f}(t)+p_{f}\right) ; \omega^{2}=\left(s, \omega\left(N \backslash\{s\}, r_{s}(t)+p_{s}\right) ;\right.\right.$
if $L_{\max }\left(\omega^{1}, t\right) \leq y$ then $\theta:=\left(\theta, \omega^{1}\right)$ and goto Step 1$)$;
Step 2) if $L_{\max }\left(\omega^{1}, t\right)>y$ and $L_{\max }\left(\omega^{2}, t\right) \leq y$ then $\theta:=\left(\theta, \omega^{2}\right)$ and goto Step 1);

Step 3) if $L_{\max }\left(\omega^{1}, t\right)>y$ and $L_{\max }\left(\omega^{2}, t\right)>y$ then $\theta:=\oslash$ and RETURN.

Algorithm 3. $\alpha \in[1, \infty), \beta \in[0,1]$
$1\left|d_{i} \leq d_{j}, d_{i}-\alpha r_{i}-\beta p_{i} \geq d_{j}-\alpha r_{j}-\beta p_{j}\right| L_{\max }$
Step 0) $y:=+\infty ; \pi^{*}:=\omega(N, t) ; \Phi:=\oslash ; m:=0 ; N^{\prime}:=N \backslash\left\{\pi^{*}\right\}$;
$t^{\prime}:=C_{\max }\left(\pi^{*}\right)$; if $N^{\prime}=\oslash$ then $\Phi:=\Phi \cup\left(\pi^{*}\right) ; m:=1$ and RETURN.
Step 1) if $L_{\max }\left(\omega^{1}, t^{\prime}\right) \leq L_{\max }\left(\pi^{*}\right)$ then $\pi^{*}:=\left(\pi^{*}, \omega^{1}\right) ; N^{\prime}:=N \backslash\left\{\pi^{*}\right\}$; $t^{\prime}:=C_{\max }\left(\pi^{*}\right)$; goto Step 1$)$;
Step 2) if $\left(L_{\max }\left(\omega^{1}, t^{\prime}\right)>L_{\text {max }}\left(\pi^{*}\right)\right) \&\left(L_{\max }\left(\omega^{1}, t^{\prime}\right)<y\right)$ then $\theta:=\theta\left(N^{\prime}, t^{\prime}, y^{\prime}\right), y^{\prime}:=L_{\max }\left(\omega^{1}, t^{\prime}\right)$;
if $\theta=\oslash$ then $\pi^{*}:=\left(\pi^{*}, \omega^{1}\right)$; goto Step 1) else $\pi^{\prime}:=\left(\pi^{*}, \theta\right)$;
if $C_{\max }\left(\pi_{m}\right)<C_{\max }\left(\pi^{\prime}\right)$ then $m:=m+1 ; \pi_{m}:=\pi^{\prime} ; \Phi:=\Phi \cup\left(\pi_{m}\right)$; $y=L_{\text {max }}\left(\pi_{m}\right)$ else $\pi_{m}=\pi^{\prime}$; goto Step 1$)$;
Step 3) if $\left(L_{\max }\left(\omega^{1}, t^{\prime}\right) \geq y\right) \&\left(L_{\max }\left(\omega^{2}, t^{\prime}\right)<y\right)$ then $\pi^{*}=\left(\pi^{*}, \omega^{2}\right)$; goto Step 1) else $\pi^{*}=\pi_{m}^{\prime}$ and RETURN.

Pareto optimal schedules for

$$
1 \mid d_{i} \leq d_{j}, d_{i}-\alpha r_{i}-\beta p_{i} \geq d_{j}-\alpha r_{j}-\beta p_{j}
$$

$$
\left\{\begin{array}{l}
d_{1} \leq d_{2} \leq \cdots \leq d_{n} ; \tag{4}\\
d_{1}-\alpha r_{1}-\beta p_{1} \geq d_{2}-\alpha r_{2}-\beta p_{2} \geq \cdots \geq d_{n}-\alpha r_{n}-\beta p_{n} ; \\
\alpha \in[1, \infty), \beta \in[0,1] .
\end{array}\right.
$$

$1\left|d_{i} \leq d_{j}, d_{i}-\alpha r_{i}-\beta p_{i} \geq d_{j}-\alpha r_{j}-\beta p_{j}\right| L_{\max }, C_{\max }$

$$
1 \leq\|\Phi(N, t)\| \leq n
$$

$O\left(n^{3} \log n\right)$

Pareto optimal schedules for

$$
1 \mid d_{i} \leq d_{j}, d_{i}-\alpha r_{i}-\beta p_{i} \geq d_{j}-\alpha r_{j}-\beta p_{j}
$$

Any instance is point in $m=3 n$-dimension space.

A - "hard" instance

Any instance is point in $m=3 n$-dimension space.
polynomially (pseudo-polynomially) solvable cone

A - "hard" instance

Any instance is point in $m=3 n$-dimension space.
polynomially (pseudo-polynomially) solvable cone

A - "hard" instance

Any instance is point in $m=3 n$-dimension space.
polynomially (pseudo-polynomially) solvable cone

Metric

$1\left|r_{j}\right| L_{\text {max }}$

$$
\begin{aligned}
0 \leq \rho(A, B)=F^{A}\left(\pi^{B}\right)- & F^{A}\left(\pi^{A}\right) \leq \\
& \left(\max \left\{r_{j}^{A}-r_{j}^{B}\right\}-\min \left\{r_{j}^{A}-r_{j}^{B}\right\}\right)+ \\
& \left(\sum\left|p_{j}^{A}-p_{j}^{B}\right|\right)+ \\
& \left(\max \left\{d_{j}^{A}-d_{j}^{B}\right\}-\min \left\{d_{j}^{A}-d_{j}^{B}\right\}\right)
\end{aligned}
$$

Metric

$1\left|r_{j}\right| L_{\text {max }}$

$$
\begin{aligned}
0 \leq \rho(A, B)=F^{A}\left(\pi^{B}\right)- & F^{A}\left(\pi^{A}\right) \leq \\
& \left(\max \left\{r_{j}^{A}-r_{j}^{B}\right\}-\min \left\{r_{j}^{A}-r_{j}^{B}\right\}\right)+ \\
& \left(\sum\left|p_{j}^{A}-p_{j}^{B}\right|\right)+ \\
& \left(\max \left\{d_{j}^{A}-d_{j}^{B}\right\}-\min \left\{d_{j}^{A}-d_{j}^{B}\right\}\right)
\end{aligned}
$$

Property of metric

$$
\varphi(A)=\max _{j \in N}\left(r_{j}^{A}\right)-\min _{j \in N}\left(r_{j}^{A}\right)+\max _{j \in N}\left(d_{j}^{A}\right)-\min _{j \in N}\left(d_{j}^{A}\right)+\sum_{j \in N}\left|p_{j}^{A}\right| \geq 0
$$

$$
\left\{\begin{array}{l}
\varphi(A)=0 \Longleftrightarrow A \equiv 0 \tag{5}\\
\varphi(\alpha A)=\alpha \varphi(A) \\
\text { Scheduling Theory and Applications }
\end{array}\right.
$$

Metric + Application

$$
\|A\|=\varphi(A)
$$

$$
\rho(A, B)=\|A-B\|
$$

Metric + Application

$$
\|A\|=\varphi(A)
$$

$$
\rho(A, B)=\|A-B\|
$$

Polynomially (pseudo-polynomially) solvable case

$$
\mathcal{A} R+\mathcal{B} P+\mathcal{C} D \leq \mathcal{H}
$$

$\mathcal{A}, \mathcal{B}, \mathcal{C}$ - matrixes, R, P, D, \mathcal{H} - vectors.

Absolute error approximate solution of the problem $1\left|r_{j}\right| L_{\text {max }}$

Polynomially (pseudo-polynomially) solvable case

$$
\mathcal{A R}+\mathcal{B} P+\mathcal{C} D \leq \mathcal{H}
$$

$\mathcal{A}, \mathcal{B}, \mathcal{C}$ - matrixes, R, P, D, \mathcal{H} - vectors.

Absolute error approximate solution of the problem $1\left|r_{j}\right| L_{\max }$

Polynomially (pseudo-polynomially) solvable case

$$
\mathcal{A} R+\mathcal{B} P+\mathcal{C} D \leq \mathcal{H}
$$

$\mathcal{A}, \mathcal{B}, \mathcal{C}$ - matrixes, R, P, D, \mathcal{H} - vectors.
Projection of an instance A to a polynomially (pseudo-polynomially) solvable case
The minimum absolute error among all instances from solvable area,instance B.
$O(n \log n)$

$$
\left\{\begin{array}{l}
\rho(A, B)=\left(x_{r}-y_{r}\right)+\sum\left(x_{p}-y_{p}\right)+\left(x_{d}-y_{d}\right) \rightarrow \min \\
y_{r} \leq r_{j}^{A}-r_{j}^{B} \leq x_{r}, \forall j ; \\
-x_{p}^{j} \leq p_{j}^{A}-p_{j}^{B} \leq x_{p}^{j}, \forall j, x_{p}^{j} \geq 0 ; \\
y_{d} \leq d_{j}^{A}-d_{j}^{B} \leq x_{d}, \forall j ;
\end{array}\right.
$$

Linear programming problem

$$
\left\{\begin{array}{l}
\rho(A, B)=\left(x_{r}-y_{r}\right)+\sum_{j}\left(x_{p}^{j}-y_{p}^{j}\right)+\left(x_{d}-y_{d}\right) \rightarrow \min _{\substack{x_{r}, y_{r}, j_{p}^{j}, x_{d}, y_{d}, r_{j}^{B}, p_{j}^{B}, d_{j}^{B}, \forall j}} \\
y_{r} \leq r_{j}^{A}-r_{j}^{B} \leq x_{r}, \forall j ; \\
-x_{p}^{j} \leq p_{j}^{A}-p_{j}^{B} \leq x_{p}^{j}, \forall j, x_{p}^{j} \geq 0 ; \\
y_{d} \leq d_{j}^{A}-d_{j}^{B} \leq x_{d}, \forall j ; \\
d_{1}^{B} \leq d_{2}^{B} \leq \cdots \leq d_{n}^{B} ; \\
d_{1}^{B}-\alpha r_{1}^{B}-\beta p_{1}^{B} \geq d_{2}^{B}-\alpha r_{2}^{B}-\beta p_{2}^{B} \geq \cdots \geq d_{n}^{B}-\alpha r_{n}^{B}-\beta p_{n}^{B} ; \\
\alpha \in[1, \infty), \beta \in[0,1] .
\end{array}\right.
$$

$4+4 n$ variables, $8 n-2$ inequalities
$O(n \log n)$

Any penalties

Any penalties

Initial problem

$$
\begin{equation*}
\mu^{*}=\min _{\pi \in \Pi(N)} \max _{k=1, n} \varphi_{j_{k}}\left(C_{j_{k}}(\pi)\right), \tag{6}
\end{equation*}
$$

Not decreasing functions $\varphi_{j}\left(C_{j}(\pi)\right)$

Any penalties

Initial problem

$$
\begin{equation*}
\mu^{*}=\min _{\pi \in \Pi(N)} \max _{k=1, n} \varphi_{j_{k}}\left(C_{j_{k}}(\pi)\right) \tag{6}
\end{equation*}
$$

Not decreasing functions $\varphi_{j}\left(C_{j}(\pi)\right)$

Dual problem

$$
\begin{equation*}
\nu^{*}=\max _{k=\overline{1, n}} \min _{\pi \in \Pi(N)} \varphi_{j_{k}}\left(C_{j_{k}}(\pi)\right) \tag{7}
\end{equation*}
$$

$r_{j}=0, \forall j \in N$
Conway R.W., Maxwell W.L., Miller L.W. Theory of Scheduling // Addison-Wesley, Reading, MA. 1967.

Dual problem

$$
\nu^{*}=\max _{k=\overline{1, n}} \min _{\pi \in \Pi(N)} \varphi_{j_{k}}\left(C_{j_{k}}(\pi)\right)
$$

Dual problem

$$
\nu^{*}=\max _{k=1, n} \min _{\pi \in \Pi(N)} \varphi_{j_{k}}\left(C_{j_{k}}(\pi)\right)
$$

$$
\begin{equation*}
\nu_{k}=\min _{\pi \in \Pi(N)} \varphi_{j_{k}}\left(C_{j_{k}}(\pi)\right), k=1,2, \ldots, n \tag{8}
\end{equation*}
$$

Dual problem

$$
\nu^{*}=\max _{k=\overline{1, n}} \min _{\pi \in \Pi(N)} \varphi_{j_{k}}\left(C_{j_{k}}(\pi)\right)
$$

$$
\begin{equation*}
\nu_{k}=\min _{\pi \in \Pi(N)} \varphi_{j_{k}}\left(C_{j_{k}}(\pi)\right), k=1,2, \ldots, n \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\nu^{*}=\max _{k=\overline{1, n}} \nu_{k} \tag{9}
\end{equation*}
$$

Lemma

$$
\begin{aligned}
& \varphi_{j}(t), j=1,2, \ldots, n, \text { any not decreasing functions } 1\left|r_{j}\right| \varphi_{\max }, \\
& \forall k=1,2, \ldots, n, \quad \nu_{n} \geq \nu_{k}, \quad \nu^{*}=\nu_{n} .
\end{aligned}
$$

Lemma

$\varphi_{j}(t), j=1,2, \ldots, n$, any not decreasing functions $1\left|r_{j}\right| \varphi_{\max }$, $\forall k=1,2, \ldots, n, \quad \nu_{n} \geq \nu_{k}, \quad \nu^{*}=\nu_{n}$.

Algorithm

$$
\begin{aligned}
& \pi^{r}=\left(i_{1}, i_{2}, \ldots, i_{n}\right), \quad r_{i_{1}} \leq r_{i_{2}} \leq \cdots \leq r_{i_{n}} ; \\
& \pi_{k}=\left(\pi^{r} \backslash i_{k}, i_{k}\right), k=1,2, \ldots, n, \quad \varphi_{i_{k}}\left(C_{i_{k}}\left(\pi_{k}\right)\right) ; \\
& \nu^{*}=\max _{k=1, n} \varphi_{i_{k}}\left(C_{i_{k}}\left(\pi_{k}\right)\right) .
\end{aligned}
$$

Lemma

$\varphi_{j}(t), j=1,2, \ldots, n$, any not decreasing functions $1\left|r_{j}\right| \varphi_{\max }$, $\forall k=1,2, \ldots, n, \quad \nu_{n} \geq \nu_{k}, \quad \nu^{*}=\nu_{n}$.

Algorithm

$$
\begin{aligned}
& \pi^{r}=\left(i_{1}, i_{2}, \ldots, i_{n}\right), \quad r_{i_{1}} \leq r_{i_{2}} \leq \cdots \leq r_{i_{n}} ; \\
& \pi_{k}=\left(\pi^{r} \backslash i_{k}, i_{k}\right), k=1,2, \ldots, n, \quad \varphi_{i_{k}}\left(C_{i_{k}}\left(\pi_{k}\right)\right) ; \\
& \nu^{*}=\max _{k=1, n} \varphi_{i_{k}}\left(C_{i_{k}}\left(\pi_{k}\right)\right) .
\end{aligned}
$$

$$
O\left(n^{2}\right)
$$

Initial problem

$$
\begin{equation*}
\mu^{*}=\min _{\pi \in \Pi(N)} \max _{k=1, n} \varphi_{j_{k}}\left(C_{j_{k}}(\pi)\right) \tag{10}
\end{equation*}
$$

Not decreasing function $\varphi_{j}\left(C_{j}(\pi)\right)$

Initial problem

$$
\begin{equation*}
\mu^{*}=\min _{\pi \in \Pi(N)} \max _{k=\overline{1, n}} \varphi_{j_{k}}\left(C_{j_{k}}(\pi)\right) \tag{10}
\end{equation*}
$$

Not decreasing function $\varphi_{j}\left(C_{j}(\pi)\right)$

Dual problem

$$
\begin{equation*}
\nu^{*}=\max _{k=\overline{1, n}} \min _{\pi \in \Pi(N)} \varphi_{j_{k}}\left(C_{j_{k}}(\pi)\right) \tag{11}
\end{equation*}
$$

Initial problem

$$
\begin{equation*}
\mu^{*}=\min _{\pi \in \Pi(N)} \max _{k=\overline{1, n}} \varphi_{j_{k}}\left(C_{j_{k}}(\pi)\right) \tag{10}
\end{equation*}
$$

Not decreasing function $\varphi_{j}\left(C_{j}(\pi)\right)$

Dual problem

$$
\begin{equation*}
\nu^{*}=\max _{k=\overline{1, n}} \min _{\pi \in \Pi(N)} \varphi_{j_{k}}\left(C_{j_{k}}(\pi)\right) \tag{11}
\end{equation*}
$$

Theorem

$\varphi_{j}(t), j=1,2, \ldots, n$, any not decreasing functions $1\left|r_{j}\right| \varphi_{\max }$, $\forall k=1,2, \ldots, n$,

$$
\mu^{*} \geq \nu^{*}
$$

Initial problem

$$
\begin{equation*}
\mu^{*}=\min _{\pi \in \Pi(N)} \max _{k=\overline{1, n}} \varphi_{j_{k}}\left(C_{j_{k}}(\pi)\right) \tag{10}
\end{equation*}
$$

Not decreasing function $\varphi_{j}\left(C_{j}(\pi)\right)$

Dual problem

$$
\begin{equation*}
\nu^{*}=\max _{k=\overline{1, n}} \min _{\pi \in \Pi(N)} \varphi_{j_{k}}\left(C_{j_{k}}(\pi)\right) \tag{11}
\end{equation*}
$$

Theorem

$\varphi_{j}(t), j=1,2, \ldots, n$, any not decreasing functions $1\left|r_{j}\right| \varphi_{\max }$, $\forall k=1,2, \ldots, n$,

$$
\mu^{*} \geq \nu^{*}
$$

Branch and bounds

Preceding, Dual problem

$G \quad$ single machine $O\left(n^{2}\right)$ many machines NP-hard

Not decreasing penalty functions $\varphi_{j}\left(C_{j}(\pi)\right)$

Cosmonauts Training Scheduling Problem

Problem statement

- Set of on-board systems.
- Sets of cosmonauts and crews.
- Set of resources (equipment, teachers, etc.).
- Dates of starts.

It is necessary to prepare appropriate crews to dates of their starts.

Our goals

- to develop mathematical model
- to find approaches to solve it
- to implement Planner system
- to reduce labor costs
- to form new and reschedule available timetable

Cosmonauts Training Scheduling Problem

Mathematical formulation - RCPSP (Resource-Constrained Project Scheduling Problem).

- Resource constraints.
- Precedence constraints.
- More than 4000 publications are devoted to this problem at scholar.google.ru.
- NP-hard in strong sense, there are no pseudo-polynomial algorithms.

Methods for solving RCPSP

- Dynamic programming.
- Methods of Integer Linear Programming.
- Methods of Constraint Programming.
- Heuristic algorithms.

Volume planning problem

Problem statement

- set of on-board systems (near 140);
- required number of cosmonauts of different skills for each on-board system.

Goal: to distribute training qualifications between cosmonauts, minimizing the difference between the maximum and minimum total time of training of cosmonauts.

Results

- heuristic greedy algorithm;
- branch and bound method (CPLEX).

Initial data

for volume planning problem

	требсмое коминество квалификаций						часы на подготовку					
	Кораб̆ль КI			Корабпь K2			пеопитныий			опитииый		
	C	0	\square	C	0	\square	C	0	II	C	0	II
Срочное покиданне в аварнйных ситуаииях	0	3	0	0	3	0	23	23	22	23	23	22
Система инвенгарного учета	0	0	3	0	1	2	0	17	2	0	9	0
Ииформационно-управтяюшая система	2	0	0	1	0	0	12	12	1	4	4	1
Борговая вычислительнах система	1	0	2	1	0	2	15	11	5,5	2	2	2
Система упровтения бортовым комппексом/ бортовой аппаратурой	1	0	2	1	0	2	28	22	9,5	2	2	2
Система бортовых измерсний	1	0	2	1	0	2	15	13	2	4	4	0
Средства радиосвззи	1	1	1	1	0	2	35	28	11,25	4	4	2
Телевизионная система	1	0	2	1	0	2	11	11	2	4	4	0
Система обеспечения жвнедеятельности	1	1.	1	1	0	2	70	57,25	26	12	12	5
Система знсргоснабжения	1	0	2	1	0	2	20	18	2	8	6	0
Система удравления движением и навигацией	1	1	1	1	1	1	38	17.5	2	8	8	1
Двигатетьныс установки	1	0	0	1	0	0	4	0	0	2	0	0
Оптико-виуалные системы	1	0	0	1	0	0	0	4	0	0	2	0
Kypc	1	0	0	1	0	0	7	7	0	2	2	0
Система стыковки	1	0	2	1	0	2	16	13	4	4	4	2
Конструкциия и компоновка	0	2	1	0	2	1						
Система обеспетения тепиового режима	1.	1	1	1	0	2	43	24	6,5	8	8	2
Фoroamaparypa	0	1	2	0	1	2	0	19	0	0	8	0
Видеоатпаратура, аудиоаппаратура	0	1	2	0	1	2	0	28	0	0	12	0
IPC	1	0	0	1	0	0	22	14	5	11	8	5
Оборудование ддя ВКД (скафандр Орлан, штозовой отсек, инструменты для ВКД)	0	2	0	0	1	0	0	60	8	0	32	8

The experimental results for volume planning problem

№	Опыт	Жадный алгоритм			CPLEX		
		max	min	δ	max	min	δ
1	3 неоп.	889.5	887.0	2.5	888.05	887.75	0.3
	3 оп.	570.5	569	1.5	570	569.5	0.5
	1 оп., 2 неоп.	721.7	694.5	27.2	697.25	695.25	2
	2 оп., 1 неоп.	669.7	598.0	71.7	616.5	612.75	3.75
2	3 неоп.	266.25	265	1.25	265.75	265.2	0.55
	3 оп.	234.2	233	1.2	233.75	233.25	0.5
	1 оп., 2 неоп.	245.5	244.0	1.5	244.45	244	0.45
	2 оп., 1 неоп.	235.0	233.25	1.75	233.75	233.25	0.5
3	3 неоп.	660.2	659.5	0.7	659.85	659.75	0.1
	3 оп.	353.5	353.05	0.45	353.5	353	0.5
	1 оп.,2 неоп.	497.95	493.5	4.45	484.05	481.75	2.3
	2 оп., 1 неоп.	398.05	394.0	4.05	393.5	392.5	1
4	3 неоп.	925.75	924.2	1.55	925	924.8	0.2
	3 оп.	587	586.5	0.5	587	586.5	0.5
	1 оп., 2 неоп.	774.5	694.5	80.0	731.5	730.75	0.75
	2 неоп., 1 оп.	649.2	648.5	0.7	628.75	628	0.75

Measure of unsolvability

Timetabling problem

- Planing horizon is about 3 years.
- Each cosmonaut has an individual learning plan.
- 10 crews are studying simultaneously.
- There are main and backup crews.

80	81	${ }^{\text {ar }}$	8	iv	${ }^{\text {w }}$	8x	${ }^{\text {E8 }}$	ca	[8]	cr	ct	ck		CH	a	a	
W:100:		w-110.1	W:11-2 2	Wiloa	w:110:4	wates		W:120.1	W020 2	W:120:2	W-130 ${ }^{\text {a }}$	w:120:s		W-180.1	w:110:2	W-12009	
tmicuccishz			tracyecisur	тписусл 	TnKcreciskiz		Trik cictiz чиитеп сй			mhicrcrat ent	mxacki26a7	тпи судселп 	тпи суд сал nwоррцџм кина		тикСХДсклл PRECPDC ENAR	тписудсвля A $\angle P C$ ENEL	
						ERHio			tracreaskr		onasa	тасодсклл 			Auram		
06en		06en	-sea	060,	cooan	oseal		-ceas		060\%	O6en	osesa	обен		0602	Cosen	06sad
			THE ccen It wovorre bacasD				тінccentis PRSCCHI EKDIO -		nernea	Triccencermio		mik coson shrio	tamesa		тни сигеА 	tracirr n3 mean vexion	
																miacarca bexio	
anasa	-	sennas	Anm, 31	amap	®n2-09			Aurn.es	DPCon Exatio	ancm					surpa	(tikcworis	

mecectisk		Tricyeciekt		тnececaskr	ТКК СУСЛ PAEAEHOCENA7			mecycki gen	TXCOCN26077	тыходскin OPGEXEKKI	тпксудсбла корРLММ БК:		
	tmikcesan 	taxcoers HA			EKHEO				surpo				
ooea	ooea	- Sea	obes	coes	-sea	- eea	oreas	© chen $^{\text {a }}$	osen	oben	Ooen	oses	06024
	Tricyen	maxcesn wampp batio	arnes		$\text { тк ссог } n \text { ншс }$		Arnes	tra ccencormo	Tracreener		- mitcran abta		Trickra ns pein Eatio
ansm	нerss	ansps		150p		antum	Thiccen กa 	ons.00	ТПН СуДСЕИЛ OC 5KA8			anspo	
													Th大CMOM3

	2encs			TПK KLVく 03 APCOM 6N\%1		тахсудакл OCAK 6K*5	тпк судакпз HEN2 bкa5						Gumiz
	THKKNSMO3H 6.42 EMT				TПК ССС A QPVAHPC8 5 HF 13	 	avoso	tricrers 6 ma 3		TिKCYCA ACASHOEHMT			
о6en	06en	Oten	O6en	C6en	aben	Obea	06es	обеп	obea	о6en	06en	Obes	06en
		Anm, ${ }^{\text {a }}$					твсуданп Н6n2 6×4	А4enes			sernes	таксудселл oncmi bxes	тнисудскля ду542600
			тпккихз знй										
	 			ans-08		antr,m			suro			ans	
		ткппнкинг											

Review of other space agencies systems

NASA - TAMS, FOCAS, STAR

KAREN AU, SAMUEL SANTIAGO, RICHARD PAPASIN, MAY WINDERM, TRISTAN LE. Streamlining Space
Training Mission Operations with Web Technologies. An Approach to Developing Integral Business Applications for Large Organizations // IEEE 4th International Conference on. Space Mission Challenges for Information Technology (SMC-IT), 2011, pp.159-166.

EKA

SPAGNULO, M., FLEETER, R., BALDUCCINI, M., NASINI, F. Space Program Management : Methods and Tools // Spagnulo, M., Fleeter, R., Balduccini, M., Nasini, F., Springer-Verlag New York - 2013. - 352 c.

Problem statement

K - a number of cosmonauts;
J_{k} - each cosmonaut k has his own set of training tasks;
p_{j} - execution time of task $j \in J$;
R - set of resources.

The goal is

to form a training schedule for each cosmonaut

Time intervals

W - set of planning weeks, where $|W|=156$ weeks (3 years);
$D_{w}=\{1,2,3,4,5\}-$ set of work days per week, $w \in W$;
$H_{w d}=\{1, \ldots, 18\}$ - set of half-hour intervals of day $d \in D_{w}$ of week $w \in W$.

$$
Y=\left\{(w, d, h) \mid w \in W, d \in D_{w}, h \in H_{w d}\right\}, \quad|Y| \approx 14040
$$

$t(w, d, h)$ - considering time moment.

Variables

$x_{j w d h}= \begin{cases}1, & \text { iff task } j \text { is started } \\ & \text { from interval } h \text { of day } d \text { of week } w ; \\ 0, & \text { else. }\end{cases}$

Constraints

Precedence relations between the tasks (academic plan)

$$
\begin{gather*}
\sum_{(w, d, h) \in Y} t(w, d, h)\left(x_{j_{2} w d h}-x_{j_{1} w d h}\right) \geq p_{j_{1}}, \tag{12}\\
\forall\left(j_{1}, j_{2}\right) \in \Gamma_{k} .
\end{gather*}
$$

The resource limits (teachers, simulators, trainers)

$$
\begin{equation*}
\sum_{j \in J} r c_{j r} \sum_{h^{\prime}>0} x_{j w d h^{\prime}} \leq r a_{r w d h} \tag{13}
\end{equation*}
$$

$$
\forall r \in R, \forall(w, d, h) \in Y . \quad|Y| \approx 14040,|R| \approx 100
$$

Constraints

No more than ... (frequency of classes)

$$
\begin{equation*}
\sum_{j \in J^{F}} \sum_{d \in D_{w}} \sum_{h \in H_{w d}} x_{j w d h} \leq 2, \quad \forall w \in W \tag{14}
\end{equation*}
$$

Each cosmonaut may have no more than 2 physical trainings per week.

Excluding some time intervals

$$
\begin{gather*}
\sum_{j \in J_{\left[h_{1} ; h_{2}\right]}} \sum_{h_{1}-p_{j}+1 \leq h \leq h_{2}} x_{j w d h}=0, \tag{15}\\
\forall w \in W, \quad \forall d \in D_{w}
\end{gather*}
$$

[$h_{1} ; h_{2}$] - time period when performing task j is forbidden.
It is forbidden to practice in the hyperbaric chamber after lunch.

Comparison of two approaches to solving

 the scheduling problem for 1 crew| N | CPLEX MIP | | | | CPLEX CP | | | |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| | Time, c | Var. | Constr. | Iter. | Time, c | Var. | Constr. | Branch. |
| 1 | 09.06 | 26820 | 37620 | 21922 | 0.250 | 291 | 2170 | 1272 |
| 2 | 30.75 | 52680 | 60066 | 54234 | 0.329 | 363 | 2788 | 1512 |
| 3 | 559.84 | 73500 | 87846 | 5019412 | 0.438 | 492 | 3548 | 2008 |
| 4 | 375.834 | 108720 | 121578 | 2032790 | 0.703 | 606 | 4263 | 2784 |
| 5 | 374.63 | 115200 | 125466 | 2022320 | 0.610 | 642 | 4348 | 2912 |
| 7 | 346.30 | 144480 | 157920 | 820534 | 0.640 | 654 | 4374 | 2648 |
| 10 | 6657.98 | 204000 | 210646 | 16917014 | 1.317 | 852 | 5738 | 3448 |

N is a number of on-board systems.

Conclusion

Our results

Schedule for 1 crew for 1 year 3 moths

Our plans

Schedule for 2 crew for 2 year

Railway scheduling pioneers

Frank, O., Two-Way Traffic on a Single Line of Railway, Oper. Res., 1966, vol. 14, no. 5, pp. 801-811.

Szpigel, B., Optimal Train Scheduling on a Single Line Railway, Oper. Res., 1973, pp. 344-351.

Relation between railway planning problems and classical scheduling problems

- track segments $=$ «machines»
- trains $=$ «jobs»

Existing approaches and solution methods

1. Considering in terms of job-shop.

Szpigel B. Optimal train scheduling on a single line railway. Oper Res, 344-351, 1973.

Sotskov Y. Shifting bottleneck algorithm for train scheduling in a single-track railway. Proccedings of the 14th IFAC Symposium on Information Control Problems. Part 1. Bucharest/Romania. 87-92. 2012.

Gafarov E.R., Dolgui A., Lazarev A.A. Two-Station Single-Track Railway Scheduling Problem With Trains of Equal Speed. Computers and Industrial Engineering. 85:260-267. 2015.

Harbering J., Ranade A., Schmidt M. Single Track Train Scheduling. Institute of Numerical and Applied Mathematics. preprint. 18. 2015.

Existing approaches and solution methods

2. Integer linear programming

Brannlund U., Lindberg P.O, Nou A. and Nilsson J.E.
Railway Timetabling Using Lagrangian Relaxation.
Transportation Science 32(4):358-369. 1998.

Lazarev, A.A. and Musatova, E.G.
Integer Formulations of the Problem of Railway Train Formation and Timetabling, Upravlen. Bol'shimi Sist., 2012, no. 38, pp. 161-169.

Exicting approaches and solution methods

3. Heuristics

Sotskov Y.
Shifting bottleneck algorithm for train scheduling in a single-track railway. Proccedings of the 14th IFAC Symposium on Information Control Problems. Part 1. Bucharest/Romania. 87-92. 2012.

Mu S., Maged D.
Scheduling freight trains traveling on complex networks.
Transportation Research Part B: Methodological. 45(7):1103-1123. 2011.

Carey M., and Lockwood D.
A model, algorithms and strategy for train pathing.
The Journal of Operational Research Society. 8(46):988-1005. 1995.

Exicting approaches and solution methods

Allocation of polynomially solvable cases of railway scheduling problems
Gafarov E.R., Dolgui A., Lazarev A.A.
Two-Station Single-Track Railway Scheduling Problem With Trains of Equal Speed.
Computers and Industrial Engineering. 85:260-267. 2015.

Harbering J., Ranade A., Schmidt M.
Single Track Train Scheduling.
Institute of Numerical and Applied Mathematics. preprint. 18. 2015.

Disser Y., Klimm M., Lubbecke E.
Scheduling Bidirectional Traffic on a Path.
In Proceedings of the 42nd International Colloquium on Automata, Languages, and Programming (ICALP). 406-418. 2015.

Laboratory projects in railway scheduling

Small-scale problems

- Scheduling problem on single railway tracks.
- Goal - the development of exact polynomially solvable algorithms with small computational complexity.
- Solution approach - dynamical programming.

Large-scale problems

- The freight car routing problem.
- Goal - the construction of operational plan with feasible solution time.
- Solution approach - integer linear programming, LP-relaxation, column generation.

Single track railway scheduling problem

$$
\text { St. } 1
$$

p
St. 2

Initial data

- $\left|N_{1}\right|=n,\left|N_{2}\right|=n^{\prime}, N=N_{1} \cup N_{2},|N|=n+n^{\prime}$.
- All trains have equal speed, track traversing time - p.
- Minimal time between the departure of two trains from one station - β.
- The transportation starts at time $t=0$.

Denote the problem as STR2 (Single Track Railway Scheduling Problem).

Problem formulation

Schedule

In schedule σ, for each train $i \in N$
$S_{i}(\sigma)$ - it's departure time;
$C_{i}(\sigma)$ - arrival time, $C_{i}(\sigma)=S_{i}(\sigma)+p$.

Objective function

Family of objective functions.
The approach will be demonstrated on the maximum lateness objective function $L_{\max }(\sigma)$,

$$
L_{\max }(\sigma)=\max _{i \in N} L_{i}=\max _{i \in N}\left\{C_{i}(\sigma)-d_{i}\right\}
$$

Dynamic programming approach

Assumption

We will consider schedule schedule σ which possess the following property: for any point in time t such that $0 \leq t \leq C_{\max }(\sigma)$ there exists at least one train $i \in N$ satisfying the condition $S_{i}(\sigma) \leq t \leq C_{i}(\sigma)$.

Dynamic programming approach

Assumption

Train departure order is specified.

Maximum lateness $L_{\text {max }}$

For objective function $L_{\max }(\sigma)=\max _{i \in N}\left\{C_{i}(\sigma)-d_{i}\right\}$ there exists an optimal schedule σ in which trains depart from each station in a nondecreasing order of due dates d_{i}.

Numbering of trains

On each station trains are numbered in the decreasing order of their departure times, $i>j$ implies that, in any schedule $\sigma, S_{i}(\sigma)<S_{j}(\sigma)$.

Dynamic programming approach

Subproblem $\mathbf{P}\left(\boldsymbol{k}_{\mathbf{1}}, \boldsymbol{k}_{\mathbf{2}}\right.$, ,' $\left.{ }^{\boldsymbol{s}}\right) ;$

set of unsent trains
on station 1 ,
$k_{1} \in\{0,1,2, \ldots, n\} \in N_{1}$

Solution algorithm

Station 2
Siding
$f\left(k_{1}, k_{2}^{\prime}, 2\right)$

Station 1

Solution algorithm

Station 1

Dynamic programming approach

$$
f\left(k_{1}, k_{2}^{\prime}+1,2\right)=\max \left\{\begin{array}{l}
p-d_{k_{2}^{\prime}+1} ; \\
\min \left\{\begin{array}{l}
f\left(k_{1}, k_{2}^{\prime}, 1\right)+p ; \\
f\left(k_{1}, k_{2}^{\prime}, 2\right)+\beta ;
\end{array}\right.
\end{array}\right.
$$

for each $k_{2}^{\prime} \in\left\{1^{\prime}, \ldots, n^{\prime}-1^{\prime}\right\}, k_{1} \neq 0$.

Dynamic programming approach

Setting

$$
\begin{aligned}
& f\left(1,0^{\prime}, 1\right)=p-d_{1} \\
& f\left(0,1^{\prime}, 2\right)=p-d_{1^{\prime}}
\end{aligned}
$$

Bellman equation

$$
\begin{aligned}
& f\left(k_{1}+1, k_{2}^{\prime}, 1\right)=\max \left\{\begin{array}{l}
p-d_{k_{1}+1} ; \\
\min \left\{\begin{array}{l}
f\left(k_{1}, k_{2}^{\prime}, 1\right)+\beta ; \\
f\left(k_{1}, k_{2}^{\prime}, 2\right)+p .
\end{array}\right. \\
f\left(k_{1}, k_{2}^{\prime}+1,2\right)=\max \left\{\begin{array}{l}
p-d_{k_{2}^{\prime}+1} ; \\
\min \left\{\begin{array}{l}
f\left(k_{1}, k_{2}^{\prime}, 1\right)+p ; \\
f\left(k_{1}, k_{2}^{\prime}, 2\right)+\beta .
\end{array}\right.
\end{array} k_{2}^{\prime} \in\left\{1^{\prime}, \ldots, n^{\prime}-1^{\prime}\right\}, k_{1} \neq 0\right.
\end{array}\right.
\end{aligned}
$$

Dynamic programming approach

Optimal objective function value of the original problem

$$
\min \left\{f\left(n, n^{\prime}, 1\right), f\left(n, n^{\prime}, 2\right)\right\}
$$

Computational complexity

$$
O\left(\left(n+n^{\prime}\right)^{2}\right)
$$

Value of $f\left(k_{1}, k_{2}^{\prime}, s\right)$ is computed for: each pair of $k_{1}, k_{1} \in\{1, \ldots, n\}$), and $k_{2}^{\prime}, k_{2} \in\left\{1, \ldots, n^{\prime}\right\}$.

Dynamic programming approach

Other objective functions

This solution procedure can applied to a set of objective functions, for example for

$$
\sum w_{i} C_{i}(\sigma)=\sum_{i \in N} w_{i} C_{i}(\sigma)
$$

Condition

"Shifted" schedule σ_{t} of schedule $\sigma, C_{i}(\sigma)-C_{i}\left(\sigma_{t}\right)=t$ for all $i \in N$.
There exists $G\left(k_{1}, k_{2}^{\prime}, s\right)$ so that $F\left(\sigma_{t}\right)=F(\sigma)+G\left(k_{1}, k_{2}^{\prime}, t\right)$.

$$
\begin{aligned}
& \text { for } L_{\max }: G\left(k_{1}, k_{2}^{\prime}, t\right)=t \\
& \text { for } \sum w_{i} C_{i}(\sigma): G\left(k_{1}, k_{2}^{\prime}, t\right)=\sum_{i=1}^{k_{1}} w_{i} t+\sum_{j=1^{\prime}}^{k_{2}^{\prime}} w_{j} t .
\end{aligned}
$$

Dynamic programming approach

General form of objective functions

$$
\bigodot_{i \in N} \varphi_{i}\left(C_{i}(\sigma)\right),
$$

where
$\varphi_{i}(\cdot)$ - nondecreasing function, defined for each train $i \in N$,
\odot - some commutative and associative operation such, for any numbers $a_{1}, a_{2}, b_{1}, b_{2}, \odot$ satisfy $a_{1} \leq a_{2}$ and $b_{1} \leq b_{2}$,

$$
a_{1} \odot b_{1} \leq a_{2} \odot b_{2} .
$$

Dynamic programming approach

Solution procedure

$$
\operatorname{STR} 2 \| \bigodot_{i \in N} \varphi_{i}\left(C_{i}(\sigma)\right)
$$

Specified train departure order on each station.
Polynomial set of possible departure times $T,|T|=O\left(\left(n+n^{\prime}\right)^{2}\right)$.
Subproblem: $P\left(k_{1}, k_{2}^{\prime}, s, t\right), f\left(k_{1}, k_{2}^{\prime}, s, t\right)$ is calculated for each pair of $k_{1}, k_{1} \in\{1, \ldots, n\}$; each pair of $k_{2}^{\prime}, k_{2} \in\left\{1, \ldots, n^{\prime}\right\}$; all $t \in T$.
Computational complexity $-O\left(\left(n+n^{\prime}\right)^{4}\right)$.

Dynamic programming approach

Minimization of maximum cost functions

$$
F_{\max }(\sigma)=\max _{i \in N} \varphi_{i}\left(C_{i}(\sigma)\right)
$$

No specified order of train departure on each station.

Iterative optimization procedure

dynamic programming algorithm for STR2 $\left|\mid L_{\text {max }}\right.$ general optimisation scheme, presented by Zinder and Shkurba ${ }^{1}$
${ }^{1}$ Zinder, Y. and Shkurba, V. Effective iterative algorithms in scheduling theory. Cybernetics, 21(1), 86-90. 1985.

Dynamic programming approach

Iterative optimisation procedure

```
Algorithm 1 Solution method for the train scheduling
problem \(S T R 2 \| F_{\text {max }}\)
    1: \(V:=\max _{i \in N} \varphi_{i}(p)\) (lower bound)
```

```
                                    Due date setting
```

 Due date setting
 if \(\varphi_{i}\left(\tau_{r}\right) \leq V\) then
 if \(\varphi_{i}\left(\tau_{r}\right) \leq V\) then
 \(d_{i}:=\tau_{r}\)
 \(d_{i}:=\tau_{r}\)
 else
 else
 choose \(\tau_{k}\) so that \(\varphi_{i}\left(\tau_{k}\right) \leq V<\varphi_{i}\left(\tau_{k+1}\right)\)
 choose \(\tau_{k}\) so that \(\varphi_{i}\left(\tau_{k}\right) \leq V<\varphi_{i}\left(\tau_{k+1}\right)\)
 \(d_{i}:=\tau_{k}\)
 \(d_{i}:=\tau_{k}\)
 end if
 end if
 end for
 end for
 10: construct schedule σ by solving $S T R 2 \| L_{\max }$
11: $L:=L_{\max }(\sigma)$
12: if $L>0$ then Lower bound checking
13: $\quad V:=\min _{i \in\left\{j: j \in N,\left(d_{j}+L\right) \in T^{\prime}\right\}} \varphi_{i}\left(d_{i}+L\right)$ (lower bound)
14: go to 2
15: else
16: return σ is an optimal value
17: end if

```

Computational complexity

\section*{Conclusion}

\section*{Dynamic programming procedure for a set of objective functions}
\[
F(\sigma)=\bigodot_{i \in N} \varphi_{i}\left(C_{i}(\sigma)\right)
\]

Computational complexity is \(O\left(\left(n+n^{\prime}\right)^{4}\right)\), can be reduced for a subset of objective functions - \(O\left(\left(n+n^{\prime}\right)^{2}\right)\).

\section*{Iterative optimisation procedure for maximum cost functions}
\[
F_{\max }(\sigma)=\max _{i \in N} \varphi_{i}\left(C_{i}(\sigma)\right)
\]

Computational complexity is \(O\left(\left(n+n^{\prime}\right)^{5} \log \left(n+n^{\prime}\right)\right)\).

\section*{Single track railway scheduling problem}

\section*{Solution algorithm complexity}
\begin{tabular}{|c|c|}
\hline Problem & Complexity \\
\hline \(\operatorname{STR} 2\left|\mid L_{\max }\right.\) & \(O\left(n^{2}\right)\) \\
\(\operatorname{STR} 2\left|\mid \sum_{j} w_{j} C_{j}\right.\) & \(O\left(n^{2}\right)\) \\
\(\operatorname{STR2}\left|\mid \max _{j \in N} \varphi_{j}\left(C_{j}(\sigma)\right)\right.\) & \(O\left(n^{5} \log n\right)\) \\
\(\operatorname{STR} 2|p(j), \lambda| L_{\max }\) & \(O\left(n^{\lambda}\right)\) \\
\(\operatorname{STR2}|p(j), \lambda| \sum_{j} w_{j} C_{j}\) & \(O\left(n^{\lambda}\right)\) \\
\(\operatorname{STR} 2|p(j), \lambda| \sum_{j} U_{j}(\sigma)\) & \(O\left(n^{2 \lambda}\right)\) \\
\(\operatorname{STR} 2|p(j), \lambda| \bigodot_{j} \varphi\left(C_{j}\right)\) & \(O\left(n^{\alpha^{2}+\alpha} n^{\lambda}\right)\) \\
\(\operatorname{STR2|p(j),\lambda ,V|\operatorname {max}_{j\in N}\varphi _{j}(C_{j}(\sigma ))}\) & \(O\left(q^{2} \log q n^{2 \alpha^{2}+2 \alpha+1} n^{\lambda} \log n\right)\) \\
\hline
\end{tabular}
\(\lambda\) - the number of subsets with possible fixed departure order \(p(j)\) - different train traversing times \(V\) - feasible intervals of movement

\section*{Single track railway scheduling problem with a siding}

What is the siding?


Main track


Additional track

\section*{Single track railway scheduling problem with a siding}

St. 1
\(p_{1}\)
\(p_{2}\)
St. 2


\section*{Initial data}

One siding, capacity is one train.
\(\left|N_{1}\right|=n_{1},\left|N_{2}\right|=n_{2}\), all trains have equal speed.
Traversing times: \(p_{1}, p_{2}, p_{1} \geq p_{2}\).
For each train \(i\) from station \(s, i \in N_{s}, s \in\{1,2\}\), due date \(d_{s}^{i}\) and cost coefficient \(w_{s}^{i}\) are given;
Release times: \(r_{s}^{i}=0, i \in N_{s}, s \in\{1,2\}\).

Denote the problem as STRSP2 (Single Track Railway Scheduling Problem).

\section*{Single track railway scheduling problem with a siding}

\section*{Schedule}

We need to construct optimal schedule \(\sigma\), i.e. to set for each train number \(i\) moving from station \(s, i \in N_{s}, s \in\{1,2\}\), it's departure time \(S_{s}^{i}(\sigma)\), stop time in the siding \(\tau_{s}^{i}(\sigma)\) and arrival time \(C_{s}^{i}(\sigma)\).

\section*{Objective function}

Minimizing maximum lateness
\[
L_{\max }=\max _{i \in N_{s}, s \in\{1,2\}}\left\{L_{s}^{i}\right\},
\]
where
\[
L_{s}^{i}=C_{s}^{i}-d_{s}^{i},
\]
and weighted sum of arrival moments
\[
\sum w_{j} C_{j}=\sum_{i \in N_{s}, s \in\{1,2\}} w_{s}^{i} C_{s}^{i} .
\]

\section*{Schedule properties for presented model}

\section*{Express}

Express is the train \(i\) moving from station \(s, i \in N_{s}, s \in\{1,2\}\), if it doesn't stop in the siding, i.e. \(\tau_{s}^{i}=0\).


\section*{Schedule properties for presented model}
Station 2
Siding
Station 1

\section*{Station 2 \\ Siding}


\section*{Schedule properties for presented model}
Station 2
Siding
Station 1

Station
Siding

Station 1


\section*{States}

1) Batch moving from station 1 with empty siding.

\section*{States}

2) Batch moving from station 2 with empty siding.

\section*{States}

3) Batch moving from station 1 with occupied siding.

\section*{States}

4) Batch moving from station 2 with occupied siding.

\section*{States}

\section*{Express state \((\boldsymbol{s}, \boldsymbol{b})\)}
express departure station,
\[
s \in\{1,2\}
\]

\section*{States}

Express state \((\boldsymbol{s}, \boldsymbol{b})\)


\section*{States}

Express state \((\boldsymbol{s}, \boldsymbol{b})\)


\section*{States}


\section*{States}


\section*{Regular schedule and expresses states sequences}

\section*{Theorem 1.}

For each regular schedule there exists one and only one sequence of expresses states.

\[
(2,1)(2,1)(2,2)(1,1)(1,1)(1,1)(1,2)(2,0)
\]

\section*{States}


\section*{States}

\((2,2)(1,0)(2,0)\)

\section*{Solution algorithm}

\section*{}
number of unsent trains on station \(1, k_{1} \in\left\{0,1,2, \ldots, n_{1}\right\}\)
additional condition: state of the first express, \(s \in\{1,2\}, b \in\{0,1,2\}\)
number of unsent trains on
station \(2, k_{2} \in\left\{0,1,2, \ldots, n_{2}\right\}\)
Number of different subproblems - \(O\left(n^{2}\right)\)

\section*{Solution algorithm}


\section*{Solution algorithm}

\section*{Initial values}
\[
\begin{gathered}
F(1,0,1,0))=p_{1}+p_{2}-d_{1}^{1} ; \\
F(0,1,2,0))=p_{1}+p_{2}-d_{2}^{1} ; \\
F(1,1,1,2)=\max \left\{\begin{array}{l}
2 p_{1}-d_{2}^{1} ; \\
p_{2}+p_{1}-d_{1}^{1} ;
\end{array}\right. \\
F(1,1,2,2)=\max \left\{\begin{array}{l}
2 p_{2}-d_{1}^{1} ; \\
p_{2}+p_{1}-d_{2}^{1} .
\end{array}\right.
\end{gathered}
\]

Exclusion of impossible subtasks
\[
\begin{aligned}
& F\left(0, k_{2}, 1,0\right)=\infty \\
& F\left(k_{1}, 0,2,0\right)=\infty ; \\
& F\left(k_{1}, k_{2}, s, b\right)=\infty \text { if } k_{1}=0 \text { or } k_{2}=0, \text { where }(s, b) \notin\{(1,0),(2,0)\}
\end{aligned}
\]

\section*{Solution algorithm}

\section*{Bellman equation}

Optimal objective function value in the subproblem \(P\left(k_{1}, k_{2}, s, b\right)\)
\(F\left(k_{1}, k_{2}, s, b\right)=\min _{\left(k_{1}^{\prime}, k_{2}^{\prime}, s^{\prime}, b^{\prime}\right) \in T\left(k_{1}, k_{2}, s, b\right)} \max \left\{\begin{array}{l}H\left(k_{1}, k_{2}, s, b\right) ; \\ F\left(k_{1}^{\prime}, k_{2}^{\prime}, s^{\prime}, b^{\prime}\right)+g\left((s, b),\left(s^{\prime}, b^{\prime}\right)\right.\end{array}\right.\)
Objective function value of express in state \((s, b)\) and skipping train
\[
H\left(k_{1}, k_{2}, s, b\right)= \begin{cases}\max \left\{p_{1}+p_{2}-d_{s}^{k_{s}} ; 2 p_{s}-d_{s}^{k_{s}}\right\}, & \text { if } b=2 \\ p_{1}+p_{2}-d_{s}^{k_{s}} & \text { otherwise }\end{cases}
\]

\section*{Solution algorithm}

\section*{Algorithm for \(\sum w_{j} C_{j}\)}

For objective function \(\sum w_{j} C_{j}\) algorithm is the same, some operations and variables changes.

\section*{Single track railway scheduling problem with a siding}

\section*{Results}

Exact solution algorithm based on the dynamical programming method was proposed for the described problem.
Presented algorithm allows to construct set of optimal schedules in \(O\left(n^{2}\right)\) operations.

\section*{The freight car routing problem: overview}

initial car distribution
transportation demands

\section*{Specificity of freight rail transportation in Russia}

The state company
Freight car blocking
Freight train scheduling
Locomotives management Personnel management

Distances are large, and average freight train speed is low ( \(\approx 300 \mathrm{~km} /\) day \()\) : discretization in periods of 1 day is reasonable

\section*{The freight car routing problem: input and output}

\section*{Input}

Railroad network (stations)
Initial locations of cars (sources)
Transportation demands and associated profits
Costs: transfer costs and standing (waiting) daily rates;

\section*{Output: operational plan}

A set of accepted demands and their execution dates
Empty and loaded cars movements to meet the demands (car routing)

\section*{Objective}

\section*{Maximize the total net profit}

\section*{Similar works in the literature}

\section*{[Fukasawa, Poggi, Porto, Uchoa, ATMOS02]}

Train schedule is known
Cars should be assigned to trains to be transported
Discretization by the moments of arrival and departure of trains.
Smaller time horizon (7 days)

\section*{Other works}
[Holmberg, Joborn, Lundren, TS98]
[Löbel, MS98]
[Campetella, Lulli, Pietropaoli, Ricciardi, ATMOS06]
[Caprara, Malaguti, Toth, TS11]

\section*{Data: overview}
\(T\) - planning horizon (set of time periods);
\(I\) - set of stations;
C - set of car types;
\(K\) - set of product types;
\(Q\) - set of demands;
\(S\) - set of sources (initial car locations);
\(M\) - empty transfer cost function;
\(D\) - empty transfer duration function;

\section*{Demands data}

\section*{For each order \(q \in Q\)}
origin and destination stations; product type
set of car types, which can be used for this demand \(-C_{q} \subseteq C\) maximum (minimum) number of cars, needed to fulfill (partially) the demand \(-n_{q}^{\text {max }}\left(n_{q}^{\min }\right)\)
time window for starting the transportation profit vector (for delivery of one car with the product), depends on the period on which the transportation is started
transportation time of the demand
daily standing rates charged for one car waiting before loading (after unloading) the product at origin (destination) station

\section*{Sources and car types data}

\section*{For each source \(s \in S\)}
station where cars are located
type of cars
period, starting from which cars can be used
daily standing rate charged for cars
type of the latest delivered product
number of cars in the source \(-\vec{n}_{s} \in \mathbb{N}\)
For each car type \(c \in C\)
\(Q_{c}\) - set of demands, which a car of type \(c\) can fulfill
\(S_{c}\) - set of sources for car type \(c\)

\section*{Commodity graph}

Commodity \(c \in C\) represents the flow (movements) of cars of type \(c\).

\section*{Graph \(G_{c}=\left(V_{c}, A_{c}\right)\) for commodity \(c \in C\) :}

\section*{station 3}
station 2
station 1


Each vertex \(v \in V_{c}\) represent location of cars of type \(c\) on a certain station at a certain time standing at a certain rate
\(g_{a}-\) cost of arc \(a \in A_{c}\)

\section*{Multi-commodity flow formulation}

\section*{Variables}
\(x_{a} \in \mathbb{Z}_{+}\)- flow size along arc \(a \in A_{c}, c \in C\)
\(y_{q} \in\{0,1\}\) - demand \(q \in Q\) is accepted or not
\[
\begin{aligned}
& \min \sum_{c \in C} \sum_{a \in A_{c}} g_{a} x_{a} \\
& \sum_{c \in C_{q}} \sum_{a \in A_{c q}} x_{a} \leq n_{q}^{\max } y_{q} \quad \forall q \in Q \\
& \sum_{c \in C_{q}} \sum_{a \in A_{c q}} x_{a} \geq n_{q}^{\min } y_{q} \quad \forall q \in Q \\
& \sum_{a \in \delta^{-}(v)} x_{a}-\sum_{a \in \delta^{+}(v)} x_{a}=\vec{n}_{v} \quad \forall c \in C, v \in V_{c} \\
& x_{a} \in \mathbb{Z}_{+} \quad \forall c \in C, a \in V_{c} \\
& y_{q} \in\{0,1\} \quad \forall q \in Q
\end{aligned}
\]

We concentrate on solving its LP-relaxation

\section*{Multi-commodity flow formulation}

\section*{Variables}
\(x_{a} \in \mathbb{Z}_{+}\)- flow size along arc \(a \in A_{c}, c \in C\)
\(y_{q} \in\{0,1\}\) - demand \(q \in Q\) is accepted or not
\[
\begin{aligned}
& \min \sum_{c \in C} \sum_{a \in A_{c}} g_{a} x_{a} \\
& \sum_{c \in C_{q}} \sum_{a \in A_{c q}} x_{a} \leq n_{q}^{\max } y_{q} \quad \forall q \in Q \\
& \sum_{c \in C_{q}} \sum_{a \in A_{c q}} x_{a} \geq n_{q}^{\min } y_{q} \quad \forall q \in Q \\
& \sum_{a \in \delta^{-}(v)} x_{a}-\sum_{a \in \delta^{+}(v)} x_{a}=\vec{n}_{v} \quad \forall c \in C, v \in V_{c} \\
& x_{a} \in \mathbb{Z}_{+} \quad \forall c \in C, a \in V_{c} \\
& y_{q} \in\{0,1\} \quad \forall q \in Q
\end{aligned}
\]

We concentrate on solving its LP-relaxation

\section*{Multi-commodity flow formulation}

\section*{Variables}
\(x_{a} \in \mathbb{Z}_{+}\)- flow size along arc \(a \in A_{c}, c \in C\)
\(y_{q} \in\{0,1\}\) - demand \(q \in Q\) is accepted or not
\[
\begin{array}{cl}
\min \sum_{c \in C} \sum_{a \in A_{c}} g_{a} x_{a} & \\
\sum_{c \in C_{q}} \sum_{a \in A_{c q}} x_{a} \leq n_{q}^{\max } y_{q} & \forall q \in Q \\
\sum_{c \in C_{q}} \sum_{a \in A_{c q}} x_{a} \geq n_{q}^{\min } y_{q} & \forall q \in Q \\
\sum_{a \in \delta^{-}(v)} x_{a}-\sum_{a \in \delta^{+}(v)} x_{a}=\vec{n}_{v} & \forall c \in C, v \in V_{c} \\
0 \leq x_{a} & \forall c \in C, a \in V_{c} \\
0 \leq y_{q} \leq 1 & \forall q \in Q
\end{array}
\]

We concentrate on solving its LP-relaxation

\section*{Path reformulation}
\(P_{s}-\) set of paths (car routes) from source \(s \in S\)

\section*{Variables}
\(\lambda_{s} \in \mathbb{Z}_{+}\)- flow size along path \(p \in P_{s}, s \in S\)
\[
\begin{aligned}
& \min \sum_{c \in C} \sum_{s \in S_{c}} \sum_{p \in P_{s}} g_{p}^{p a t h} \lambda_{p} \\
& \sum_{c \in C_{q}} \sum_{s \in S_{c}} \sum_{p \in P_{s}:} \lambda_{a} \leq n_{q}^{\text {max }} y_{q} \quad \forall q \in Q
\end{aligned}
\]
\[
\sum_{c \in C_{q}} \sum_{s \in S_{c}} \sum_{p \in P_{s}:} \lambda_{a} \geq n_{q}^{\min } y_{q} \quad \forall q \in Q
\]
\[
\sum_{p \in P_{s}} \lambda_{p}=\vec{n}_{s} \quad \forall c \in C, s \in S_{c}
\]
\[
\begin{array}{ll}
\lambda_{p} \in \mathbb{Z}_{+} & \forall c \in C, s \in S_{c}, p \in P_{s} \\
y_{q} \in\{0,1\} & \forall q \in Q
\end{array}
\]

\section*{Column generation for path reformulation}

Pricing problem decomposes to shortest path problems, one for each source
slow: number of sources are thousands

\section*{Column generation for path reformulation}

Pricing problem decomposes to shortest path problems, one for each source
slow: number of sources are thousands
To accelerate, for each commodity \(c \in C\), we search for a shortest path in-tree to the terminal vertex from all sources in \(S_{c}\) drawback: some demands are severely "overcovered", bad convergence

\section*{Column generation for path reformulation}

Pricing problem decomposes to shortest path problems, one for each source
slow: number of sources are thousands
To accelerate, for each commodity \(c \in C\), we search for a shortest path in-tree to the terminal vertex from all sources in \(S_{c}\)
drawback: some demands are severely "overcovered", bad convergence
We developed iterative procedure which removes covered demands and cars assigned to them, and the repeats search for a shortest path in-tree

\section*{Flow enumeration reformulation}
\(F_{c}\) - set of fixed flows for commodity \(c \in C\)

\section*{Variables}
\(\omega_{f} \in\{0,1\}\) - commodity \(c\) is routed accordity to flow \(f \in F_{c}\) or not
\[
\begin{aligned}
\min \sum_{c \in C} \sum_{f \in F_{s}} g_{f}^{f l o w} \omega_{f} & \\
\sum_{c \in C_{q}} \sum_{f \in F_{c}} \sum_{a \in A_{c q}} f_{a} \omega_{f} \leq n_{q}^{\max } y_{q} & \forall q \in Q \\
\sum_{c \in C_{q}} \sum_{f \in F_{c}} \sum_{a \in A_{c q}} f_{a} \omega_{f} \geq n_{q}^{\min } y_{q} & \forall q \in Q \\
\sum_{f \in F_{c}} \omega_{f}=1 & \forall c \in C \\
\omega_{p} \in\{0,1\} & \forall c \in C, f \in F_{c} \\
y_{q} \in\{0,1\} & \forall q \in Q
\end{aligned}
\]

\section*{Approach CGEF}

Pricing problem decomposes to minimum cost flow problems, one for each commodity

\author{
slow: very bad convergence
}
\(<+->\) If an arc flow variable \(x\) has a negative reduced cost, there exists a negative reduced cost pricing problem solution in which \(x>0\). (consequence of the theorem in [S. and Vanderbeck, 13])

\section*{Approach CGEF}

Pricing problem decomposes to minimum cost flow problems, one for each commodity
slow: very bad convergence
"Column generation for extended formulations" (CGEF) approach: we disaggregate the pricing problem solution to arc flow variables, which are added to the master.
\(<+->\) If an arc flow variable \(x\) has a negative reduced cost, there exists a negative reduced cost pricing problem solution in which \(x>0\). (consequence of the theorem in [S. and Vanderbeck, 13])

\section*{Approach CGEF}

Pricing problem decomposes to minimum cost flow problems, one for each commodity
slow: very bad convergence
"Column generation for extended formulations" (CGEF) approach: we disaggregate the pricing problem solution to arc flow variables, which are added to the master.
The master then becomes the multi-commodity flow formulation with restricter number of arc flow variables, i.e. "improving" variables are generated dynamically
\(<+->\) If an arc flow variable \(x\) has a negative reduced cost, there exists a negative reduced cost pricing problem solution in which \(x>0\). (consequence of the theorem in [S. and Vanderbeck, 13])

\section*{Tested approaches}

Direct: solution of the multi-commodity flow formulation by the Clp
LP solver
Problem specific solver source code modifications Problem specific preprocessing is applied (not public) Tested inside the company

\section*{Tested approaches}

DIRECT: solution of the multi-commodity flow formulation by the Clp
LP solver
Problem specific solver source code modifications Problem specific preprocessing is applied (not public) Tested inside the company

COLGEN: solution of the path reformulation by column generation (BaPCod library and Cplex LP solver)

Initialization of the master by "doing nothing" routes
Stabilization by dual prices smoothing
Restricted master clean-up

\section*{Tested approaches}

Direct: solution of the multi-commodity flow formulation by the Clp
LP solver
Problem specific solver source code modifications
Problem specific preprocessing is applied (not public)
Tested inside the company

COLGEN: solution of the path reformulation by column generation (BaPCod library and Cplex LP solver)

Initialization of the master by "doing nothing" routes
Stabilization by dual prices smoothing
Restricted master clean-up

ColGenEF: "dynamic" solution of multi-commodity flow formulation by the CGEF approach (BaPCod library, Lemon min-cost flow solver and Cplex LP solver)

Initialization of the master by all waiting arcs
Only trivial preprocessing is applied
Scheduling Theory and Applications \(\quad \begin{aligned} & \text { Lazarev }\end{aligned}\)

\section*{First test set of real-life instances}
\begin{tabular}{lrrr} 
Instance name & x3 & x3double & 5 k 0711 q \\
\hline Number of stations & 371 & 371 & \(1^{\prime} 900\) \\
Number of demands & \(1^{\prime} 684\) & \(3^{\prime} 368\) & \(7^{\prime} 424\) \\
Number of car types & 17 & 17 & 1 \\
Number of cars & \(1^{\prime} 013\) & \(1^{\prime} 013\) & \(15^{\prime} 008\) \\
Number of sources & 791 & 791 & \(11^{\prime} 215\) \\
Time horizon, days & 37 & 74 & 35 \\
\hline Number of vertices, thousands & 62 & 152 & 22 \\
Number of arcs, thousands & 794 & \(22^{\prime} 846\) & \(1^{\prime} 843\) \\
\hline Solution time for DIRECT & 20 s & 1 h 34 m & 55 s \\
Solution time for COLGEN & 22 s & 7 m 53 s & 8 m 59 s \\
Solution time for COLGENEF & 3 m 55 s & \(>2 \mathrm{~h}\) & 43 s
\end{tabular}

\section*{Real-life instances with larger planning horizon}

1'025 stations, up to 6'800 demands, 11 car types, 12 ' 651 cars, and 8'232 sources.
Up to \(\approx 300\) thousands nodes and 10 millions arcs.

\begin{tabular}{rrr} 
Horizon & Direct & ColGenEF \\
\hline 80 & 5 m 24 s & 1 m 52 s \\
90 & 7 m 05 s & 1 m 47 s \\
100 & 9 m 42 s & 2 m 19 s \\
110 & 13 m 38 s & 3 m 11 s \\
120 & 17 m 19 s & 3 m 57 s \\
130 & 25 m 52 s & 5 m 03 s \\
140 & 35 m 08 s & 5 m 25 s \\
150 & 44 m 58 s & 7 m 02 s \\
160 & 57 m 11 s & 8 m 19 s \\
170 & 1 h 13 m 58 s & 10 m 53 s \\
180 & \(1 h 26 \mathrm{~m} 46 \mathrm{~s}\) & 12 m 16 s
\end{tabular}

Convergence of ColGenEF in less than 15 iterations.
About 3\% of arc flow variables at the last iteration.

\section*{Conclusions}

Three approaches tested for a freight car routing problem on real-life instances
Approach ColGen is the best for instances with small number of sources
Problem-specific preprocessing is important: good results for DIRECT Approach ColGenEF is the best for large instances
Combination of ColGenEF and problem-specific preprocessing would allow to increase discretization and improve solutions quality

\section*{Perspectives}

Some practical considerations are not taken into account:
Progressive standing daily rates
Special stations for long-time stay (with lower rates)
Compatibility between two consecutive types of loaded products.
Penalties for refused demands
Groups of cars are transferred faster and for lower unitary costs.

\section*{Resource Constrained Project Scheduling Problem (RCPSP)}

Considers resources of limited availability and activities of known durations and resource requests, linked by precedence relations. The problem consists of finding a schedule of minimal duration by assigning a start time to each activity such that the precedence relations and the resource availabilities are respected.

\section*{RCPSP}

\section*{Examples of RCPSP}

Plannig of production and maintenance processes on the enterprise.
Software development tasks distribution.
Planning of training processes.
Number of publications in last 5 years
\begin{tabular}{l|l|l} 
Keyword & GoogleScholar & Science Direct \\
\hline\(R C P S P\) & 1560 & 161 \\
project scheduling & 73300 & 63694
\end{tabular}

\section*{Classical RCPSP formulation}

Set of renewable resources \(R\)
\[
c_{i} \text { - capacity of resource } X_{i} \in R .
\]

Set of activities \(N=\left\{A_{1}, \ldots, A_{n}\right\}\)
\(|N|=n ;\)
\(G(N, E)\) - precedence relations graph;
\(r_{j}\) - release time of \(A_{j} \in N\);
\(p_{j}\) - processing time of \(A_{j} \in N\);
\(a_{j i}\) - amount of resource \(X_{i} \in R\) required to process \(A_{j} \in N\).
All variables belong to \(Z_{+}\).

\section*{Classical RCPSP formulation}

\section*{Schedule \(\pi\)}
\(S_{j}(\pi)\) - start time of activitiy \(A_{j} \in N\) under \(\pi\);
\(C_{j}(\pi)=S_{j}(\pi)+p_{j}\) - completion time of task \(A_{j} \in N\) under \(\pi\).

\section*{Feasible schedules \(\Pi(N, R)\)}
\(S_{j}(\pi) \geq r_{j}\) holds for any \(A_{j} \in N, \pi \in \Pi(N, R)\) - release times not violated;
\(C_{j}(\pi) \leq S_{k}(\pi)\) for any \(e_{j k} \in E\) - precedence relations satisfied;
\(\sum_{j \in N \cdot S_{j}(\pi) \leq t<C_{j}(\pi)} a_{j i} \leq c_{i}\) for any \(X_{i} \in R, t \geq 0\) - resource capacity not \(j \in N: S_{j}(\pi) \leq t<C_{j}(\pi)\) violated.

\section*{Classical RCPSP formulation}

\section*{Problem statement}

The RCPSP is the problem of finding a feasible schedule of minimal makespan subject to precedence constraints and resource constraints, i.e.
\[
\min _{\pi \in \Pi(N, R)} \max _{A_{j} \in N} C_{j}(\pi)
\]

\section*{Complexity}

Problem is NP-complete in a strong sense (Garey, Johnson 1975).

\section*{Example}

\section*{Problem data}

2 resources \(X_{1}\) and \(X_{2}\) with capacities \(c_{1}=7\) and \(c_{2}=4\); 10 activities.
\begin{tabular}{l|llllllllll}
\hline\(A_{j}\) & \(A_{1}\) & \(A_{2}\) & \(A_{3}\) & \(A_{4}\) & \(A_{5}\) & \(A_{6}\) & \(A_{7}\) & \(A_{8}\) & \(A_{9}\) & \(A_{10}\) \\
\hline\(p_{j}\) & 6 & 1 & 1 & 2 & 3 & 5 & 6 & 3 & 2 & 4 \\
\(a_{j 1}\) & 2 & 1 & 3 & 2 & 1 & 2 & 3 & 1 & 1 & 1 \\
\(a_{j 2}\) & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 2 & 2 & 1
\end{tabular}

\section*{Example}

\section*{Precedence relations}


\section*{Example}

\section*{Schedule with minimal makespan}


\section*{RCPSP}

\section*{Decision variant of RCPSP}

The decision variant of the RCPSP is the problem of determining whether a schedule \(\pi\) of makespan not greater than \(H\) subject to precedence and resource constraints exists or not.

\section*{NP-complete in a strong sense}

Garey and Johnson (1975) have shown that the decision variant of the RCPSP with a single resource and no precedence constraints, called the resource-constrained scheduling problem, is NP-complete in the strong sense by reduction from the 3-partition problem.

\section*{Exact solution methods for RCPSP}

There is a variety of methods to find the exact solutions. Most of them are based on the following ideas.

Branch-and-Bound approach;
Column Generation;
Constraint Programming.

\section*{Makespan lower bound}

\section*{Correct makespan lower bound}
\(L B\) - amount of time which is not higher than makespan value for any schedule \(\pi \in \Pi(N, R)\), i.e.
\[
L B \leq \max _{A_{j} \in N} C_{j}(\pi)
\]

\section*{Existed lower bound estimation methods}

\section*{Critical path}
\(P_{\text {max }}\) - length of the longest path in graph \(G(N, E)\).
Makespan is not lower than critical path length for any \(\pi \in \Pi(N, R)\).
\[
P_{\max }=L B_{P}
\]


\section*{Existed lower bound estimation methods}

\section*{Resource load}
\(R L_{i}=\sum_{A_{j} \in N} p_{j} a_{j i}-\) total amount of reource \(X_{i}\) required for the project.
Then, under any feasible schedule makespan value should be enough to use requred amount of any resource \(X_{i} \in R\) subject to its capacity, i.e.
\[
L B_{R}=\left\lceil\max _{i \in R} \frac{R L_{i}}{c_{i}}\right\rceil .
\]

In our example
\[
\begin{gathered}
\frac{R L_{1}}{c_{1}}=\frac{60}{7}=8 \frac{4}{7}, \frac{R L_{2}}{c_{2}}=\frac{29}{4}=7 \frac{1}{4} \\
L B_{R}=\left\lceil 8 \frac{4}{7}\right\rceil=9 .
\end{gathered}
\]

\section*{Existed lower bound estmiation methods}

\section*{Destructive lower bound techniques}

Deals with decision variant of RCPSP. The objective is to prove that for defined horizon \(H\) there are no feasible schedule with makespan not higher than \(H\) :
desjunctive lower bounds i.e. maximum clique computation; Linear Programming (LP) relaxations;
relaxations of decision variant of RCPSP to Cumulative Scheduling Problem (CuSP);
other constraint programming based approaches; exact methods of solving decision variant of RCPSP.

\section*{Existed lower bound estmiation methods}

\section*{Satisfiability tests (SAT)}
1. Find makespan lower bound \(L B\) and upper bound \(U B\) using algorithms with low computational complexity.
2. Consider time horizon \(H\) such as \(L B \leq H \leq U B\) and use some of destructive lower bound techniques to check the existance of feasible schedule with makespan not lower than \(H\).
3. Use logarithmic search to find the highest horizon \(H^{*}\) which not allows the existance of feasible schedule.
4. Set the lower bound equals to \(H^{*}+1\).


\section*{Existed lower bound estmiation methods}

\section*{Satisfiability tests (SAT)}
1. Find makespan lower bound \(L B\) and upper bound \(U B\) using algorithms with low computational complexity.
2. Consider time horizon \(H\) such as \(L B \leq H \leq U B\) and use some of destructive lower bound techniques to check the existance of feasible schedule with makespan not lower than \(H\).
3. Use logarithmic search to find the highest horizon \(H^{*}\) which not allows the existance of feasible schedule.
4. Set the lower bound equals to \(H^{*}+1\).


\section*{Existed lower bound estmiation methods}

\section*{Satisfiability tests (SAT)}
1. Find makespan lower bound \(L B\) and upper bound \(U B\) using algorithms with low computational complexity.
2. Consider time horizon \(H\) such as \(L B \leq H \leq U B\) and use some of destructive lower bound techniques to check the existance of feasible schedule with makespan not lower than \(H\).
3. Use logarithmic search to find the highest horizon \(H^{*}\) which not allows the existance of feasible schedule.
4. Set the lower bound equals to \(H^{*}+1\).


\section*{Existed lower bound estmiation methods}

\section*{Satisfiability tests (SAT)}
1. Find makespan lower bound \(L B\) and upper bound \(U B\) using algorithms with low computational complexity.
2. Consider time horizon \(H\) such as \(L B \leq H \leq U B\) and use some of destructive lower bound techniques to check the existance of feasible schedule with makespan not lower than \(H\).
3. Use logarithmic search to find the highest horizon \(H^{*}\) which not allows the existance of feasible schedule.
4. Set the lower bound equals to \(H^{*}+1\).


\section*{Existed lower bound estmiation methods}

\section*{Satisfiability tests (SAT)}
1. Find makespan lower bound \(L B\) and upper bound \(U B\) using algorithms with low computational complexity.
2. Consider time horizon \(H\) such as \(L B \leq H \leq U B\) and use some of destructive lower bound techniques to check the existance of feasible schedule with makespan not lower than \(H\).
3. Use logarithmic search to find the highest horizon \(H^{*}\) which not allows the existance of feasible schedule.
4. Set the lower bound equals to \(H^{*}+1\).


\section*{Existed lower bound estmiation methods}

\section*{Satisfiability tests (SAT)}
1. Find makespan lower bound \(L B\) and upper bound \(U B\) using algorithms with low computational complexity.
2. Consider time horizon \(H\) such as \(L B \leq H \leq U B\) and use some of destructive lower bound techniques to check the existance of feasible schedule with makespan not lower than \(H\).
3. Use logarithmic search to find the highest horizon \(H^{*}\) which not allows the existance of feasible schedule.
4. Set the lower bound equals to \(H^{*}+1\).


\section*{Existed lower bound estmiation methods}

\section*{Satisfiability tests (SAT)}
1. Find makespan lower bound \(L B\) and upper bound \(U B\) using algorithms with low computational complexity.
2. Consider time horizon \(H\) such as \(L B \leq H \leq U B\) and use some of destructive lower bound techniques to check the existance of feasible schedule with makespan not lower than \(H\).
3. Use logarithmic search to find the highest horizon \(H^{*}\) which not allows the existance of feasible schedule.
4. Set the lower bound equals to \(H^{*}+1\).


\section*{Existed lower bound estimation methods}

\section*{Constraint Propagation to tighten the problem}

These approaches makes an interval \(\left[r_{j}, D_{j}\right]\) of possible processing of activity \(A_{j} \in N\) tighter and improve the performances of algorithms. The most popular approaches are:
timetabling techniques are based on the computation of an aggregation of the resource demand at every time-point; edge finding and activity intervals techniques rely on the analysis of the resource demand over time intervals; conjunctive reasoning with temporal constraints are based on an analysis of the current temporal constraint network.

\section*{Existed lower bound estmiation methods}

\section*{Trivial algorithms}

Advantages: low calculation complexity, algorithms can be applied for large-scaled problems.
Disadvantages: low precision of obtained bound.

\section*{Advanced algorithms}

Advantages: high precision of obtained bound.
Disadvantages: exponential complexity decrease the efficiency of obtained bound and make algorithms not possible to be applied for some large-scaled problems.

\section*{Problem!}

There is a strong need in the method which can obtain suitable lower bound for large-scaled instances!

\section*{RCPSP}

\section*{Some generalizations of RCPSP}

RCPSP with time-dependent resource capacities.
RCPSP with minimal and maximal time lags (RCPSP/max) generalized precedence relations express relations of start-to-start, start-to-end, end-to-start, and end-to-end times between pairs of activities.
Multi-Mode RCPSP (MRCPSP) - activities can be processed in several modes each of which charachterized by processing time and required amounts of resources.
RCPSP with flexible resource profile (FRCPSP) - only total amounts of required resources are given for activies instead, processing times are not defined.

\section*{RCPSP}

\section*{PSPLIB benchmark}

The library of instances of problems RCPSP, RCPSP/max, MRCPSP, MRCPSP/max, FRCPSP and others.
Website: http://www.om-db.wi.tum.de/psplib/main.html

\section*{Kolisch, R. and A. Sprecher (1996)}

PSPLIB - A project scheduling library // European Journal of Operational Research, Vol. 96, pp. 205-216.

\section*{R. Kolisch, C. Schwindt und A.Sprecher (1999)}

Benchmark instances for project scheduling problems In: Kluwer; Weglarz, J. (Hrsg.): Handbook on recent advances in project scheduling, pp. 197-212.

\section*{Our publications}

Лазарев А.А., Бронников С.В., Герасимов А.Р., Мусатова Е.Г., Петров А.С., Пономарев К.В., Харламов М.М., Хуснуллин Н.Ф., Ядренцев Д.А. Математическое моделирование планирования подготовки космонавтов // Управление большими системами, 2016 (принято к печати)
Musatova E., Lazarev A., Ponomarev K., Yadrentsev D., Bronnikov S., Khusnullin N. A Mathematical Model for the Astronaut Training Scheduling Problem // IFAC-PapersOnLine, Volume 49, Issue 12, 2016, Pages 221-225.
Бронников С.В., Долгий А.Б., Лазарев А.А., Морозов Н.Ю., Петров А.С., Садыков Р.Р., Сологуб А.А., Вернер Ф., Ядренцев Д.А., Мусатова Е.Г., Хуснуллин Н.Ф. Approaches for planning the ISS cosmonaut training. Preprint Nr. 12. Magdeburg: Institut fur Mathematische Optimierung, 2015. - 33 c.
С.В.Бронников, А.Р.Герасимов, А.А.Лазарев, Е.Г.Мусатова, А.С.Петров, К.В.Пономарев, М.М.Харламов, Н.Ф.Хуснуллин, Д.А.Ядренцев. К решению задачи автоматизации планирования подготовки космонавтов для работы на МКС / Труды 7 -й Международной научной конференции «Теория расписаний и методы декомпозиции. Танаевские чтения» (Беларусь, Минск, 2016). Минск: ОИПИ НАН Беларуси, 2016. С. 23-27.

\section*{Our publications}

Бронников С.В., Лазарев А.А., Морозов Н.Ю., Харламов М.М., Ядренцев Д.А. Mathematical models and approaches in problem of volume planning of ISS cosmonauts trainings / Abstracts of the 28th Conference of the European Chapter on Combinatorial Optimization (Catania, 2015), 2015. C. 61.
Бронников С.В., Лазарев А.А., Петров А.С., Ядренцев Д.А. Models and Approaches for Planning the ISS Cosmonaut Training / Труды VI International Conference on Optimization Methods and Applications. (OPTIMA-2015, Petrovac). М.: ФГБУН ВЦ им. А.А.Дородницына РАН, 2015. С. 196-197 http://www.cima.uevora.pt/optima2015/Optima2015.pdf.
Лазарев А.А., Петров А.С., Сологуб А.А., Гущина В.П., Морозов Н.Ю. Модели и алгоритмы решения задач объёмно-календарного планирования подготовки экипажа МКС / Тезисы докладов Всероссийской молодёжной научно-практической конференции «Космодром «Восточный» и перспективы развития российской космонавтики» (Благовещенск, 2015). Благовещенск: СГАУ, 2015. C. 200-201.

Ядренцев Д.А., Бронников С.В., Лазарев А.А., Мусатова Е.Г., Хуснуллин Н.Ф. Календарное планирование подготовки космонавтов к выполнению космического полета / Материалы 11-й Международной научно-практической конференции "Пилотируемые полеты в космос"(Звездный городок, 2015). Звездный городок: ФБГУ ЦПК им. Ю.А. Гагарина», 2015. С. 95-96.

\section*{Open problems}

1 machine
2 jobs
\(r_{j}\) - release times
\(p_{j}\) - processing times
\(d_{j}\) - due dates
... and so on - we assume that all parameters of the jobs are known beforehand.
\(k\) known schedules \(\pi_{-k}, \pi_{-k+1}, \ldots, \pi_{-1}\) that are optimal according to an unknown objective function
The goal is to construct a new schedule \(\pi\) that would be optimal according to the same objective function, or at least would approximate the optimal. Perhaps the discrepancy between obtained solution and the optimal schedule would decrease with the number of known schedules?

\section*{Scheduling Theory and Applications}

\section*{Alexander Lazarev}

Lomonosov Moscow State University
National Research University Higher School of Economics
Moscow Institute of Physics and Technology (State University)
V.A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences (ICS RAS)
jobmath@mail.ru
www.orsot.ru

\section*{Thank you for your attention!}```

