

Approximation Algorithms and Schemes for Traveling Salesman, Vechicle Routing, and Related Problems

Michael Khachay ${ }^{1}$
${ }^{1}$ Krasovsky Institute of Mathematics and Mechanics
Ural Federal University

Summer School on Operations Research and Applications Nizhny Novgorod

May 11, 2017

Introduction

- A vast majority of combinatorial optimization problems (e.g., Set Cover, Hitting Set Problem, Maximal Clique Problem, etc.) are known to be intractable and hardly approximable in general settings
- Meanwhile, for many actual special cases of these problems there are known efficient exact or approximation algorithms
- For instance, many combinatorial optimization problems become much more approximable being formulated in geometrical setting
- In this tutorial we consider three geometric problems generalizing the well known Traveling Salesman Problem (TSP)

Introduction

- A vast majority of combinatorial optimization problems (e.g., Set Cover, Hitting Set Problem, Maximal Clique Problem, etc.) are known to be intractable and hardly approximable in general settings
- Meanwhile, for many actual special cases of these problems there are known efficient exact or approximation algorithms
- For instance, many combinatorial optimization problems become much more approximable being formulated in geometrical setting
- In this tutorial we consider three geometric problems generalizing the well known Traveling Salesman Problem (TSP)

Introduction

- A vast majority of combinatorial optimization problems (e.g., Set Cover, Hitting Set Problem, Maximal Clique Problem, etc.) are known to be intractable and hardly approximable in general settings
- Meanwhile, for many actual special cases of these problems there are known efficient exact or approximation algorithms
- For instance, many combinatorial optimization problems become much more approximable being formulated in geometrical setting
- In this tutorial we consider three geometric problems generalizing the well known Traveling Salesman Problem (TSP)

Traveling Salesman Problem(TSP)

Problem statement

Input: complete weighted graph $G=(V, E, w)$
Required: to find a Hamiltonian cycle of the minimum (or maximum) weight

- For the first time TSP is mentioned in books about mathematical puzzles (S.Loyd, 1914)
- The first mathematical statement was introduced by Karl Menger (1930) and later in (G.Danzig and J.Ramser, 1959)

Traveling Salesman Problem(TSP)

Problem statement

Input: complete weighted graph $G=(V, E, w)$
Required: to find a Hamiltonian cycle of the minimum (or maximum) weight

- For the first time TSP is mentioned in books about mathematical puzzles (S.Loyd, 1914)
- The first mathematical statement was introduced by Karl Menger (1930) and later in (G.Danzig and J.Ramser, 1959)

Complexity bounds

- exhaustive search $\Theta(n!)$
- dynamic programming $\Theta\left(n^{2} 2^{n}\right)$

Curse of dimensionality

- Benchmark: use dynamic programming to solve TSP to optimality
- Suppose, our supercomputer can solve TSP for $n=100$ in 1 sec
- Easy to see
- for $n=125$, we need more than year

Curse of dimensionality

- Benchmark: use dynamic programming to solve TSP to optimality
- Suppose, our supercomputer can solve TSP for $n=100$ in 1 sec
- Easy to see
- for $n=125$, we need more than year

Curse of dimensionality

- Benchmark: use dynamic programming to solve TSP to optimality
- Suppose, our supercomputer can solve TSP for $n=100$ in 1 sec
- Easy to see
- for $n=125$, we need more than year
- for $n=136$ - more then 2016 years!

Curse of dimensionality

- Benchmark: use dynamic programming to solve TSP to optimality
- Suppose, our supercomputer can solve TSP for $n=100$ in 1 sec
- Easy to see
- for $n=125$, we need more than year
- for $n=136$ - more then 2016 years!

Combinatorial optimization problems

- Combinatorial optimization problem \mathcal{I}

$$
I: O P T_{I}=\min \left\{\operatorname{COST}_{I}(x): x \in X_{I}\right\}
$$

$n:=L E N(I)$ is instance length $I \in \mathcal{I}$.

- Algorithm is an arbitrary function $A l g: I \mapsto A l g(I) \in X_{I}$, computable in time $T I M E_{\text {Alg }}(I)$

$$
T I M E_{A l g}(I)=O(\operatorname{poly}(\operatorname{LEN}(I))(I \in \mathcal{I})
$$

In this lecture we consider polynomial time algorithms only

- Algorithm Alg is called optimal, if

$$
A P P_{I}:=\operatorname{COST}_{I}(A \lg (I))=O P T_{I}
$$

- For the major pert of CO problems, optimal polynomial time algorithms are not investigated so far and are hardly be developed ever unles $P=N P$

Combinatorial optimization problems

- Combinatorial optimization problem \mathcal{I}

$$
I: O P T_{I}=\min \left\{\operatorname{COST}_{I}(x): x \in X_{I}\right\}
$$

$n:=\operatorname{LEN}(I)$ is instance length $I \in \mathcal{I}$.

- Algorithm is an arbitrary function $A l g: I \mapsto A l g(I) \in X_{I}$, computable in time $T I M E_{\text {Alg }}(I)$
- Algorithm Alg is called polynomial time, if

$$
T I M E_{A l g}(I)=O(\operatorname{poly}(\operatorname{LEN}(I))(I \in \mathcal{I})
$$

In this lecture we consider polynomial time algorithms only

- Algorithm Alg is called optimal, if

$$
A P P_{I}:=\operatorname{COST}_{I}(A l g(I))=O P T_{I}
$$

- For the major pert of CO problems, optimal polynomial time
algorithms are not investigated so far and are hardly be developed ever unles $P=N P$

Combinatorial optimization problems

- Combinatorial optimization problem \mathcal{I}

$$
I: O P T_{I}=\min \left\{\operatorname{COST}_{I}(x): x \in X_{I}\right\}
$$

$n:=\operatorname{LEN}(I)$ is instance length $I \in \mathcal{I}$.

- Algorithm is an arbitrary function $A l g: I \mapsto A l g(I) \in X_{I}$, computable in time $T I M E_{\text {Alg }}(I)$
- Algorithm Alg is called polynomial time, if

$$
T I M E_{A l g}(I)=O(\operatorname{poly}(\operatorname{LEN}(I))(I \in \mathcal{I})
$$

In this lecture we consider polynomial time algorithms only

- Algorithm Alg is called optimal, if

$$
A P P_{I}:=\operatorname{COST}_{I}(A l g(I))=O P T_{I}
$$

- For the major pert of CO problems, optimal polynomial time algorithms are not investigated so far and are hardly be developed ever unles $P=N P$

Approximation algorithms and Schemes

- Let, for some $r=r(I)$ the equation

$$
O P T_{I} \leq A P P_{I}=\operatorname{COST}_{I}(\operatorname{Alg}(I)) \leq r \cdot O P T_{I} \quad(i \in \mathcal{I})
$$

is valid.
Then Alg is called r-approximation algorithm for the problem \mathcal{I}
approximation schemes (PTAS) attract most interest

- The problem \mathcal{I} has PTAS, if for any $\varepsilon>0$ there exists
$(1+\varepsilon)$-approximation algorithm $A l g_{\varepsilon}$
- Time complexity bound TIME $_{\text {Alg }}(I)=O\left(\right.$ poly $\left.^{(L E N}(I)\right)$
depends on n polynomially but can have an arbitrarily
dependence on ε
For instance, TIME $_{\text {Alo }}(I)=L E N(I)^{\exp \left(1 / \varepsilon^{3}\right)}$
- Approximation scheme is called efficient (EPTAS), if
$T I M E_{A l g_{\varepsilon}}(I)=f(1 / \varepsilon) \cdot \operatorname{poly}(\operatorname{LEN}(I))$
- and fully polynomial, if

Approximation algorithms and Schemes

- Let, for some $r=r(I)$ the equation

$$
O P T_{I} \leq A P P_{I}=\operatorname{COST}_{I}(A l g(I)) \leq r \cdot O P T_{I} \quad(i \in \mathcal{I})
$$

is valid.
Then Alg is called r-approximation algorithm for the problem \mathcal{I}

- Algorithms with fixed accuracy bounds $r(I)=$ const and approximation schemes (PTAS) attract most interest
- The problem \mathcal{I} has PTAS, if for any $\varepsilon>0$ there exists $(1+\varepsilon)$-approximation algorithm $A l g_{\varepsilon}$
depends on n polynomially but can have an arbitrarily
dependence on ε
For instance, $T I M_{A l_{\text {al }}^{F}}(I)=L E N(I)^{\exp \left(1 / \varepsilon^{3}\right)}$
- Approximation scheme is called efficient (EPTAS), if

- and fully polynomial, if

Approximation algorithms and Schemes

- Let, for some $r=r(I)$ the equation

$$
O P T_{I} \leq A P P_{I}=\operatorname{COST}_{I}(\operatorname{Alg}(I)) \leq r \cdot O P T_{I} \quad(i \in \mathcal{I})
$$

is valid.
Then Alg is called r-approximation algorithm for the problem \mathcal{I}

- Algorithms with fixed accuracy bounds $r(I)=$ const and approximation schemes (PTAS) attract most interest
- The problem \mathcal{I} has PTAS, if for any $\varepsilon>0$ there exists $(1+\varepsilon)$-approximation algorithm $A l g_{\varepsilon}$
- Time complexity bound $T I M E_{\text {Alg }_{\varepsilon}}(I)=O($ poly $(L E N(I))$ depends on n polynomially but can have an arbitrarily dependence on ε
For instance, TIME $_{\text {Alg }_{\varepsilon}}(I)=\operatorname{LEN}(I)^{\exp \left(1 / \varepsilon^{3}\right)}$
- and fully polynomial, if

Approximation algorithms and Schemes

- Let, for some $r=r(I)$ the equation

$$
O P T_{I} \leq A P P_{I}=\operatorname{COST}_{I}(\operatorname{Alg}(I)) \leq r \cdot O P T_{I} \quad(i \in \mathcal{I})
$$

is valid.
Then Alg is called r-approximation algorithm for the problem \mathcal{I}

- Algorithms with fixed accuracy bounds $r(I)=$ const and approximation schemes (PTAS) attract most interest
- The problem \mathcal{I} has PTAS, if for any $\varepsilon>0$ there exists $(1+\varepsilon)$-approximation algorithm $A l g_{\varepsilon}$
- Time complexity bound $T I M E_{A l g_{\varepsilon}}(I)=O(p o l y(L E N(I))$ depends on n polynomially but can have an arbitrarily dependence on ε
For instance, $\operatorname{TIME}_{A l g_{\varepsilon}}(I)=\operatorname{LEN}(I)^{\exp \left(1 / \varepsilon^{3}\right)}$
- Approximation scheme is called efficient (EPTAS), if

$$
T I M E_{A l g_{\varepsilon}}(I)=f(1 / \varepsilon) \cdot \operatorname{poly}(\operatorname{LEN}(I))
$$

- and fully polynomial, if

$$
\operatorname{TIME}_{\text {Alg }_{\varepsilon}}(I)=\operatorname{poly}(\operatorname{LEN}(I), 1 / \varepsilon)
$$

TSP :: known complexity and approximation results

Complexity

- (Karp, 1972) TSP is strongly NP-hard
- (Sahni and Gonzales, 1976) TSP can not be approximated within $O\left(2^{n}\right)($ unless $P=N P)$
- (Papadimitriou, 1977) Euclidean TSP is NP-hard

TSP :: known complexity and approximation results

Complexity

- (Karp, 1972) TSP is strongly NP-hard
- (Sahni and Gonzales, 1976) TSP can not be approximated within $O\left(2^{n}\right)($ unless $P=N P)$
- (Papadimitriou, 1977) Euclidean TSP is NP-hard

Approximation

- (Christofides, 1976) Metric TSP belongs to Apx
- (Arora, 1996; Mitchell, 1996) First Polynomial Time Approximation Schemes (PTAS) for TSP on the plane
- (Arora, 1998) Euclidean TSP in \mathbb{R}^{d} for any fixed $d>1$ has EPTAS (but has no FPTAS unless $P=N P$)
- (Serdyukov, 1987; Gimadi, 2001) Euclidean max-TSP has asymptotically correct algorithms

Generalizations of TSP

(1) Min- k-SCCP - the Multiple Traveling Salesmen Problem

- Problem statement
- Complexity and Approximability
- Metric Min- k-SCCP
- PTAS for Euclidean Min-2-SCCP on the plane
(2) Generalized Traveling Salesman Problem
- Problem statement
- Dynamic programming
- Precedence constraints
- Practical application
- Euclidean GTSP in Grid Clusters
(3) Conslusion

Multiple TSP - overview

- For a given natural k, a problem of k collaborating salesmen sharing the same set of cities (nodes of graph) to serve is studied.
- We call it Minimum Weight k-Size Cycle Cover Problem (Min- k-SCCP).
- Related problems
- Min-1-SCCP is Traveling Salesman Problem (TSP)
- Vertex-Disjoint Cycle Cover Problem
- k-Peripatetic Salesmen Problem
- Min-L-CCP
- Min- k-SCCP can be considered as a special case of Vehicle Routing Problem (VRP)

Multiple TSP - overview

- For a given natural k, a problem of k collaborating salesmen sharing the same set of cities (nodes of graph) to serve is studied.
- We call it Minimum Weight k-Size Cycle Cover Problem (Min- k-SCCP).
- Related problems
- Min-1-SCCP is Traveling Salesman Problem (TSP)
- Vertex-Disjoint Cycle Cover Problem
- k-Peripatetic Salesmen Problem
- Min-L-CCP
- Min- k-SCCP can be considered as a special case of Vehicle Routing Problem (VRP)

Multiple TSP - overview

- For a given natural k, a problem of k collaborating salesmen sharing the same set of cities (nodes of graph) to serve is studied.
- We call it Minimum Weight k-Size Cycle Cover Problem (Min- k-SCCP).
- Related problems
- Min-1-SCCP is Traveling Salesman Problem (TSP)
- Vertex-Disjoint Cycle Cover Problem
- k-Peripatetic Salesmen Problem
- Min-L-CCP
- Min-k-SCCP can be considered as a special case of Vehicle Routing Problem (VRP)

Multiple TSP - overview

- For a given natural k, a problem of k collaborating salesmen sharing the same set of cities (nodes of graph) to serve is studied.
- We call it Minimum Weight k-Size Cycle Cover Problem (Min- k-SCCP).
- Related problems
- Min-1-SCCP is Traveling Salesman Problem (TSP)
- Vertex-Disjoint Cycle Cover Problem
- k-Peripatetic Salesmen Problem
- Min-L-CCP
- Min- k-SCCP can be considered as a special case of Vehicle Routing Problem (VRP)

Multiple TSP :: motivation

- Nuclear Power Plant dismantling problem

Multiple TSP :: motivation

- Nuclear Power Plant dismantling problem

- high-precision metal shape cutting problem

Multiple TSP :: recent results

(1) Min- k-SCCP is strongly NP-hard and hardly approximable in the general case
(2) Metric and Euclidean cases are intractable as well
(3 2-approximation algorithm for Metric Min- k-SCCP is proposed
(1) For any fixed $d>1$, Polynomial-time approximation scheme (PTAS) for Min- k-SCCP in \mathbb{R}^{d} is constructed

Definitions and Notation

Standard notation is used

- \mathbb{R} - field of real numbers
- \mathbb{Q} - field of rational numbers
- \mathbb{N}_{m} - integer segment $\{1, \ldots, m\}$,
- \mathbb{N}_{m}^{0} - segment $\{0, \ldots, m\}$.
- $G=(V, E, w)$ is a simple complete weighted (di)graph with loops, edge-weight function $w: E \rightarrow \mathbb{R}$

Minimum Weight k-Size Cycle Cover Problem (Min- k-SCCP)

Input: graph $G=(V, E, w)$.
Find: a minimum-cost collection $\mathcal{C}=C_{1}, \ldots, C_{k}$ of vertex-disjoint cycles such that $\bigcup_{i \in \mathbb{N}_{k}} V\left(C_{i}\right)=V$.

Minimum Weight k-Size Cycle Cover Problem (Min-k-SCCP)

Input: graph $G=(V, E, w)$.
Find: a minimum-cost collection $\mathcal{C}=C_{1}, \ldots, C_{k}$ of vertex-disjoint cycles such that $\bigcup_{i \in \mathbb{N}_{k}} V\left(C_{i}\right)=V$.
$\min \quad \sum_{i=1}^{k} W\left(C_{i}\right) \equiv \sum_{i=1}^{k} \sum_{e \in E\left(C_{i}\right)} w(e)$
s.t.
C_{1}, \ldots, C_{k} are cycles in G

$$
\begin{aligned}
& C_{i} \cap C_{j}=\varnothing \\
& V\left(C_{1}\right) \cup \ldots \cup V\left(C_{k}\right)=V
\end{aligned}
$$

Metric and Euclidean Min-k-SCCP

Metric Min-k-SCCP

- $w_{i j} \geqslant 0$
- $w_{i i}=0$
- $w_{i j}=w_{j i}$
- $w_{i j}+w_{j k} \geqslant w_{i k}(\{i, j, k\})$

Euclidean Min- k-SCCP

- For some $d>1, V=\left\{v_{1}, \ldots, v_{n}\right\} \subset \mathbb{R}^{d}$
- $w_{i j}=\left\|v_{i}-v_{j}\right\|_{2}$

Instance of Euclidean Min-2-SCCP

Complexity
 Complexity

Theorem 1

For any $k \geqslant 1$, Min- k-SCCP is strongly NP-hard.

Complexity

Theorem 1

For any $k \geqslant 1$, Min- k-SCCP is strongly NP-hard.

Proof idea

- Reduce TSP to Min- k-SCCP by cloning the instance
- Spread them apart
- Show that any optimal solution of Min- k-SCCP consists of cheapest Hamiltonian cycles for the initial TSP

Complexity

Theorem 1

For any $k \geqslant 1$, Min- k-SCCP is strongly NP-hard.

Proof idea

- Reduce TSP to Min- k-SCCP by cloning the instance
- Spread them apart
- Show that any optimal solution of Min- k-SCCP consists of cheapest Hamiltonian cycles for the initial TSP

Corollary

- Min- k-SCCP also can not be approximated within $O\left(2^{n}\right)$ (unless $P=N P)$
- Metric Min- k-SCCP and Euclidean Min- k-SCCP are NP-hard as well

Metric Min- k-SCCP
 Minimum spanning forest

- k-forest is an acyclic graph with k connected components
- For any k-forest F, weight (cost)

$$
W(F)=\sum_{e \in E(F)} w(e)
$$

- k-Minimum Spanning Forest (k-MSF) Problem

Kruskal's algorithm for k-MSF

(1) Start from the empty n-forest F_{0}.
(2) For each $i \in \mathbb{N}_{n-k}$ add the edge

$$
e_{i}=\arg \min \left\{w(e): F_{i-1} \cup\{e\} \text { remains acyclic }\right\}
$$

to the forest F_{i-1}.
(0) Output k-forest F^{*}.

Kruskal's algorithm for k-MSF

(1) Start from the empty n-forest F_{0}.
(2) For each $i \in \mathbb{N}_{n-k}$ add the edge

$$
e_{i}=\arg \min \left\{w(e): F_{i-1} \cup\{e\} \text { remains acyclic }\right\}
$$

to the forest F_{i-1}.
(0) Output k-forest F^{*}.

Theorem 2

F^{*} is k-Minimum Spanning Forest.

2-approximation algorithm for Metric Min- k-SCCP

Following to the scheme of well-known 2-approx. algorithm for Metric TSP.
Wlog. assume $k<n$.
Algorithm:
(1) Build a k-MSF F
(2) Take edges of F twice
(3) For any non-trivial connected component, find a Eulerian cycle
(9) Transform them into Hamiltonian cycles
(3) Output collection of these cycles adorned by some number of isolated vertices

Correctness proof

Assertion

Approximation ratio:

$$
2(1-2 / n) \leqslant \frac{A P P}{O P T} \leqslant 2(1-1 / n)
$$

Running-time:

$$
O\left(n^{2} \log n\right) .
$$

Proof sketch

Consider optimal cycle cover \mathcal{C} (with weight OPT).
Removing the most heavy edge from any non-empty cycle transform it into some spanning forest $F(\mathcal{C})$ with cost SF .
Then

$$
M S F \leqslant S F \leqslant O P T(1-1 / n)
$$

where

$$
A P P \leqslant 2 \cdot M S F \leqslant 2(1-1 / n) O P T .
$$

Lower bound - instance

Lower bound - 2-forest

$2 p$

$2 p$

Lower bound - approximation

$2 p$

$2 p$

Lower bound - better approximation

Lower bound - discussion

- number of nodes $n=4 p+2$
- $A P P=8 p$
- $O P T \leq 4 p+2+2 \varepsilon(2 p-1)$
- for approximation ratio r we have

$$
r \geq \sup _{\varepsilon \in(0,1)} \frac{8 p}{4 p+2+2 \varepsilon(2 p-1)}=\frac{4 p}{2 p+1}=2(1-2 / n)
$$

PTAS for Euclidean Min-2-SCCP on the plane

Definition

For a combinatorial optimization problem, Polynomial-Time Approximation Scheme (PTAS) is a collection of algorithms such that for any fixed $c>1$ there is an algorithm finding a
$(1+1 / c)$-approximate solution in a polynomial time depending on c.

Instance preprocessing

For an arbitrary instance of Min-2-SCCP, there exists one of the following alternatives (each of them can be verified in polynomial time)
(1) The instance in question can be decomposed into 2 independent TSP instances;
(2) Inter-node distance can be overestimated using some function that depends on OPT linearly.

Jung's inequality

Consider a set S of diameter D in d-dimensional Euclidean space, let R be a radius of the smallest containing sphere.
Then

$$
\frac{1}{2} D \leqslant R \leqslant\left(\frac{d}{2 d+2}\right)^{\frac{1}{2}} D .
$$

In particular, in the plane:

$$
\begin{equation*}
\frac{1}{2} D \leqslant R \leqslant \frac{\sqrt{3}}{3} D . \tag{1}
\end{equation*}
$$

Instance preprocessing - ctd.

- Construct 2-MSF consisting of trees T_{1} and T_{2}.

- let D_{1}, D_{2} be diameters of T_{1} and T_{2}, and R_{1}, R_{2} be radia of the smallest circles $B\left(T_{1}\right)$ and $B\left(T_{2}\right)$ containing the trees T_{1} and T_{2}. Denote $D=\max \left\{D_{1}, D_{2}\right\}$ and $R=\max \left\{R_{1}, R_{2}\right\}$.

Instance preprocessing - ctd.

- Construct 2-MSF consisting of trees T_{1} and T_{2}.

- let D_{1}, D_{2} be diameters of T_{1} and T_{2}, and R_{1}, R_{2} be radia of the smallest circles $B\left(T_{1}\right)$ and $B\left(T_{2}\right)$ containing the trees T_{1} and T_{2}. Denote $D=\max \left\{D_{1}, D_{2}\right\}$ and $R=\max \left\{R_{1}, R_{2}\right\}$.

Instance preprocessing - ctd.

- Construct 2-MSF consisting of trees T_{1} and T_{2}.

- let D_{1}, D_{2} be diameters of T_{1} and T_{2}, and R_{1}, R_{2} be radia of the smallest circles $B\left(T_{1}\right)$ and $B\left(T_{2}\right)$ containing the trees T_{1} and T_{2}. Denote $D=\max \left\{D_{1}, D_{2}\right\}$ and $R=\max \left\{R_{1}, R_{2}\right\}$.

Problem decomposition

Define $\rho\left(T_{1}, T_{2}\right)$ as a distance between centers of circles $B\left(T_{1}\right)$ and $B\left(T_{2}\right)$.

Assertion

If $\rho\left(T_{1}, T_{2}\right)>5 R$ then the considered instance Min-2-SCCP can be decomposed into two TSP instances for $G\left(T_{1}\right)$ and $G\left(T_{2}\right)$.

Problem decomposition

Define $\rho\left(T_{1}, T_{2}\right)$ as a distance between centers of circles $B\left(T_{1}\right)$ and $B\left(T_{2}\right)$.

Assertion

If $\rho\left(T_{1}, T_{2}\right)>5 R$ then the considered instance Min-2-SCCP can be decomposed into two TSP instances for $G\left(T_{1}\right)$ and $G\left(T_{2}\right)$.

Proof sketch

Suppose, on the contrary, that there is an optimal 2-SCC $\mathcal{C}=\left\{C_{1}, C_{2}\right\}$ such that $C_{1} \cap T_{1} \neq \varnothing$ and $C_{1} \cap T_{2} \neq \varnothing$.

Problem decomposition

Define $\rho\left(T_{1}, T_{2}\right)$ as a distance between centers of circles $B\left(T_{1}\right)$ and $B\left(T_{2}\right)$.

Assertion

If $\rho\left(T_{1}, T_{2}\right)>5 R$ then the considered instance Min-2-SCCP can be decomposed into two TSP instances for $G\left(T_{1}\right)$ and $G\left(T_{2}\right)$.

Proof sketch

Suppose, on the contrary, that there is an optimal 2-SCC $\mathcal{C}=\left\{C_{1}, C_{2}\right\}$ such that $C_{1} \cap T_{1} \neq \varnothing$ and $C_{1} \cap T_{2} \neq \varnothing$.

Problem decomposition

Define $\rho\left(T_{1}, T_{2}\right)$ as a distance between centers of circles $B\left(T_{1}\right)$ and $B\left(T_{2}\right)$.

Assertion

If $\rho\left(T_{1}, T_{2}\right)>5 R$ then the considered instance Min-2-SCCP can be decomposed into two TSP instances for $G\left(T_{1}\right)$ and $G\left(T_{2}\right)$.

Proof sketch

Suppose, on the contrary, that there is an optimal 2-SCC $\mathcal{C}=\left\{C_{1}, C_{2}\right\}$ such that $C_{1} \cap T_{1} \neq \varnothing$ and $C_{1} \cap T_{2} \neq \varnothing$.

Then C_{1} contains at least two edges, spanning T_{1} and T_{2}

Problem decomposition

Proof (ctd.)

- By the condition, the weight of each of them is greater than $3 R$
- Remove them and close the cycles inside $B\left(T_{1}\right)$ and $B\left(T_{2}\right)$

- Obtain the lighter 2-SCC

Problem decomposition

Statement

If $\rho\left(T_{1}, T_{2}\right) \leqslant 5 R$ then the maximum inter-node distance $D(G)$ for the graph G is no more than $\frac{7 \sqrt{3}}{3} O P T$.

Problem decomposition

Statement

If $\rho\left(T_{1}, T_{2}\right) \leqslant 5 R$ then the maximum inter-node distance $D(G)$ for the graph G is no more than $\frac{7 \sqrt{3}}{3} O P T$.

Proof sketch

- In our case $D(G) \leqslant 7 R$
- Due to Young's inequality and $D \leqslant M S F \leqslant O P T$ we have

$$
R \leqslant \frac{\sqrt{3}}{3} D \leqslant \frac{\sqrt{3}}{3} \cdot O P T,
$$

- i.e. $D(G) \leqslant \frac{7 \sqrt{3}}{3} \cdot O P T$.

Problem decomposition

Statement

If $\rho\left(T_{1}, T_{2}\right) \leqslant 5 R$ then the maximum inter-node distance $D(G)$ for the graph G is no more than $\frac{7 \sqrt{3}}{3} O P T$.

Proof sketch

- In our case $D(G) \leqslant 7 R$
- Due to Young's inequality and $D \leqslant M S F \leqslant O P T$ we have

$$
R \leqslant \frac{\sqrt{3}}{3} D \leqslant \frac{\sqrt{3}}{3} \cdot O P T,
$$

- i.e. $D(G) \leqslant \frac{7 \sqrt{3}}{3} \cdot O P T$.

In this case Min-2-SCCP instance can be enclosed into some axis-aligned square \mathcal{S} of size $7 / \sqrt{3} \cdot O P T$

Rounding

Definition

Instance of Min-2-SCCP is called rounded if

- every vertex of the graph G has integral coordinates
$x_{i}, y_{i} \in \mathbb{N}_{O(n)}^{0}$
- for any edge $e, w(e) \geqslant 4$

Lemma 3

PTAS for rounded Min-2-SCCP implies PTAS for Min-2-SCCP (in the general case)

Rounding: proof sketch

- partition the surrounding square by axis-alined lines with step of $L /(2 n c)$
- move any node to nearest line-crossing point; inter-node distance change is bounded by $L /(n c)$; cycle cover weight change bound is L / c
- shift the origin to left-bottom corner of the square; by scaling coordinates by $8 n c / L$ obtain a 4 -step integer grid

Rounding: proof sketch

- partition the surrounding square by axis-alined lines with step of $L /(2 n c)$
- move any node to nearest line-crossing point; inter-node distance change is bounded by $L /(n c)$; cycle cover weight change bound is L/c
- shift the origin to left-bottom corner of the square; by scaling coordinates by $8 n c / L$ obtain a 4 -step integer grid

Rounding: proof sketch

- partition the surrounding square by axis-alined lines with step of $L /(2 n c)$
- move any node to nearest line-crossing point; inter-node distance change is bounded by $L /(n c)$; cycle cover weight change bound is L/c
- shift the origin to left-bottom corner of the square; by scaling coordinates by $8 n c / L$ obtain a 4 -step integer grid

Rounding: proof sketch - ctd.

- for weights W and W^{\prime} of any corresponding cycle covers in the initial and the rounded instances

$$
\frac{8 n c}{L}\left(W-\frac{L}{c}\right) \leqslant W^{\prime} \leqslant \frac{8 n c}{L}\left(W+\frac{L}{c}\right)
$$

- For optimum values $O P T$ and $O P T^{\prime}$ and weights W and W^{\prime} of the approximate solutions
$O P T^{\prime} \leqslant W^{\prime \prime} \leqslant\left(1+\frac{1}{c}\right) O P T^{\prime}$ and $\frac{8 n c}{L}\left(O P T-\frac{L}{c}\right) \leqslant O P T^{\prime} \leqslant \frac{8 n c}{L}\left(O P T+\frac{L}{c}\right)$
- Then,

- Therefore,

$$
W-\frac{L}{c} \leqslant\left(1+\frac{1}{c}\right)\left(O P T+\frac{L}{c}\right)
$$

- And

Rounding: proof sketch - ctd.

- for weights W and W^{\prime} of any corresponding cycle covers in the initial and the rounded instances

$$
\frac{8 n c}{L}\left(W-\frac{L}{c}\right) \leqslant W^{\prime} \leqslant \frac{8 n c}{L}\left(W+\frac{L}{c}\right)
$$

- For optimum values $O P T$ and $O P T^{\prime}$ and weights W and W^{\prime} of the approximate solutions

$$
O P T^{\prime} \leqslant W^{\prime} \leqslant\left(1+\frac{1}{c}\right) O P T^{\prime} \text { and } \frac{8 n c}{L}\left(O P T-\frac{L}{c}\right) \leqslant O P T^{\prime} \leqslant \frac{8 n c}{L}\left(O P T+\frac{L}{c}\right)
$$

- Then,

- Therefore,

- And

Rounding: proof sketch - ctd.

- for weights W and W^{\prime} of any corresponding cycle covers in the initial and the rounded instances

$$
\frac{8 n c}{L}\left(W-\frac{L}{c}\right) \leqslant W^{\prime} \leqslant \frac{8 n c}{L}\left(W+\frac{L}{c}\right)
$$

- For optimum values $O P T$ and $O P T^{\prime}$ and weights W and W^{\prime} of the approximate solutions

$$
O P T^{\prime} \leqslant W^{\prime} \leqslant\left(1+\frac{1}{c}\right) O P T^{\prime} \text { and } \frac{8 n c}{L}\left(O P T-\frac{L}{c}\right) \leqslant O P T^{\prime} \leqslant \frac{8 n c}{L}\left(O P T+\frac{L}{c}\right)
$$

- Then,

$$
\frac{8 n c}{L}\left(W-\frac{L}{c}\right) \leqslant W^{\prime} \leqslant\left(1+\frac{1}{c}\right) O P T^{\prime} \leqslant\left(1+\frac{1}{c}\right) \frac{8 n c}{L}\left(O P T+\frac{L}{c}\right)
$$

- Therefore,

- And

Rounding: proof sketch - ctd.

- for weights W and W^{\prime} of any corresponding cycle covers in the initial and the rounded instances

$$
\frac{8 n c}{L}\left(W-\frac{L}{c}\right) \leqslant W^{\prime} \leqslant \frac{8 n c}{L}\left(W+\frac{L}{c}\right)
$$

- For optimum values $O P T$ and $O P T^{\prime}$ and weights W and W^{\prime} of the approximate solutions

$$
O P T^{\prime} \leqslant W^{\prime} \leqslant\left(1+\frac{1}{c}\right) O P T^{\prime} \text { and } \frac{8 n c}{L}\left(O P T-\frac{L}{c}\right) \leqslant O P T^{\prime} \leqslant \frac{8 n c}{L}\left(O P T+\frac{L}{c}\right)
$$

- Then,

$$
\frac{8 n c}{L}\left(W-\frac{L}{c}\right) \leqslant W^{\prime} \leqslant\left(1+\frac{1}{c}\right) O P T^{\prime} \leqslant\left(1+\frac{1}{c}\right) \frac{8 n c}{L}\left(O P T+\frac{L}{c}\right)
$$

- Therefore,

$$
W-\frac{L}{c} \leqslant\left(1+\frac{1}{c}\right)\left(O P T+\frac{L}{c}\right)
$$

- And

Rounding: proof sketch - ctd.

- for weights W and W^{\prime} of any corresponding cycle covers in the initial and the rounded instances

$$
\frac{8 n c}{L}\left(W-\frac{L}{c}\right) \leqslant W^{\prime} \leqslant \frac{8 n c}{L}\left(W+\frac{L}{c}\right)
$$

- For optimum values $O P T$ and $O P T^{\prime}$ and weights W and W^{\prime} of the approximate solutions

$$
O P T^{\prime} \leqslant W^{\prime} \leqslant\left(1+\frac{1}{c}\right) O P T^{\prime} \text { and } \frac{8 n c}{L}\left(O P T-\frac{L}{c}\right) \leqslant O P T^{\prime} \leqslant \frac{8 n c}{L}\left(O P T+\frac{L}{c}\right)
$$

- Then,

$$
\frac{8 n c}{L}\left(W-\frac{L}{c}\right) \leqslant W^{\prime} \leqslant\left(1+\frac{1}{c}\right) O P T^{\prime} \leqslant\left(1+\frac{1}{c}\right) \frac{8 n c}{L}\left(O P T+\frac{L}{c}\right)
$$

- Therefore,

$$
W-\frac{L}{c} \leqslant\left(1+\frac{1}{c}\right)\left(O P T+\frac{L}{c}\right)
$$

- And

$$
O P T \leqslant W \leqslant\left(\frac{7 \sqrt{3}}{3 c^{2}}+\frac{17 \sqrt{3}}{3 c}+1\right) O P T
$$

Main idea: construct PTAS for rounded instances

Randomized partitioning of the square \mathcal{S} into smaller subsquares and subsequent search for minimum 2-SCC of special kind

1) every inter-node segment of its cycles is piece-wise linear and intersects all squares' borders at special points (portals) only;
2) portals number and locations together with maximum number of intersections (for each border) are defined in advance and depend on accuracy parameter c;

Quad-trees for rounded Min-2-SCCP

Set up a regular 1-step axis-aligned grid on the square \mathcal{S} with side-length of $L=O(n)$.

We are using the concept of quad-tree

Quad-trees for rounded Min-2-SCCP

Root is the square \mathcal{S}. For every square (including the root), make a partition of the square into 4 child subsquares. Repeat it until all child squares will contain no more than 1 node of the instance.

Shifted Quad-tree

Definition

Suppose, $a, b \in \mathbb{N}_{L}^{0}$, we call the Quad-tree $T(a, b)$ shifted Quad-tree, if coordinates of its center is

$$
((L / 2+a) \bmod L,(L / 2+b) \bmod L) .
$$

Child squares of $T(a, b)$, as its center, is considered modulo L

Definition

- Consider fixed values $m, r \in \mathbb{N}$.
- For any square S, assign regular partition of its border, including vertices of the square and consisting of $4(m+1)$ points.
- Such a partition is called m-regular partition, and all its elements - portals.

Definitions

m-regular portal set

Union of m-regular partitions for all borders of not-a-leaf nodes of Quadro-tree $T(a, b)$ is called m-regular portal set. Denote it $P(a, b, m)$.

(m, r)-approximation

Suppose, π is a simple cycle in the Min-2-SCCP instance graph G (on the plane), $V(\pi)$ is its node-set. Closed piece-wise linear route $l(\pi)$ is called (m, r)-approximation (of the cycle π) if

1) node-set of the route $l(\pi)$ is a some subset of $V(\pi) \cup P(a, b, m)$,
2) π and $l(\pi)$ visit the nodes from $V(\pi)$ in the same order,
3) for any square (being a node of $T(a, b)), l(\pi)$ intersects its arbitrary edge no more than r times, and exclusively in the points of $P(a, b, m)$.

Once more definition

(k, m, r)-cycle cover
k-scc consisting of (m, r)-approximations is called (k, m, r)-cycle cover
Obviously, an arbitrary ($1, m, r$)-cycle cover contains the only (m, r)-approximation which is a Hamiltonian cycle.
Let us consider ($2, m, r$)-cycle covers...

Structure Theorem for Euclidean Min-2-SCCP

Theorem 4

- Suppose $c>0$ is fixed,
- L is size of square \mathcal{S} for a given instance of rounded 2-MHC.
- Suppose discrete stochastic variables a, b are distributed uniformly on the set \mathbb{N}_{L}^{0}.
- Then for $m=O(c \log L)$ and $r=O(c)$ with probability at least $\frac{1}{2}$ there is $(2, m, r)$-cycle cover which weight is no more than $\left(1+\frac{1}{c}\right) O P T$.

Dynamic Programming

$(2, m, r, S)$-segment

Let some ($2, m, r$)-cycle cover C and some node S of the tree $T(a, b)$ be chosen. A family of partial routes $C \cap S$ is called $(2, m, r, S)$-segment (of the cover C).

Bellman equation

Task $\left(S, R_{1}, R_{2}, \kappa\right)$

Input.

- Node S of the tree $T(a, b)$.
- Cortege $R_{i}: \mathbb{N}_{q_{i}} \rightarrow(P(a, b, m) \cap \partial S)^{2}$ defines a sequence of the start-finish pairs of portals $\left(s_{j}^{i}, t_{j}^{i}\right)$ which are crossing-points of ∂S by (m, r)-approximation l_{i}.
- Number κ is equal to the number of cycles of the building ($2, m, r$)-cycle cover, intersecting the interior of S.

Output minimum-cost $(2, m, r, S)$-segment.
Denote by $W\left(S, R_{1}, R_{2}, \kappa\right)$ value of the task $\left(S, R_{1}, R_{2}, \kappa\right)$.

$$
W\left(S, R_{1}, R_{2}, \kappa\right)=\min _{\tau} \sum_{i=I}^{I V} W\left(S^{i}, R_{1}^{i}(\tau), R_{2}^{i}(\tau), \kappa^{i}(\tau)\right)
$$

Derandomization

Denote by $\operatorname{APP}(a, b)$ a weight of the approximate solution constructed by DP for the tree $T(a, b)$.

$$
P\left(A P P(a, b) \leqslant\left(1+\frac{1}{c}\right) O P T\right) \geqslant 1 / 2,
$$

Hence, there is a pair $\left(a^{*}, b^{*}\right) \in \mathbb{N}_{L}^{0}$, for which the equation

$$
O P T \leqslant A P P\left(a^{*}, b^{*}\right) \leqslant(1+1 / c) O P T
$$

is valid.

Min-k-SCCP :: results

Theorem 5

Euclidean Min-2-SCCP has a Polynomial-Time Approximation Scheme with complexity bound $O\left(n^{3}(\log n)^{O(c)}\right)$.

Theorem 6

For any $d>1$, the Euclidean Min-k-SCCP in \mathbb{R}^{d} has PTAS with time complexity $O\left(n^{d+1} 2^{k}(k \log n)^{O\left((\sqrt{d} / \varepsilon)^{d-1}\right.}\right)$.

Contents

(1) Min- k-SCCP - the Multiple Traveling Salesmen Problem

- Problem statement
- Complexity and Approximability
- Metric Min- k-SCCP
- PTAS for Euclidean Min-2-SCCP on the plane
(2) Generalized Traveling Salesman Problem
- Problem statement
- Dynamic programming
- Precedence constraints
- Practical application
- Euclidean GTSP in Grid Clusters
(3) Conslusion

Contents

(1) Min- k-SCCP - the Multiple Traveling Salesmen Problem

- Problem statement
- Complexity and Approximability
- Metric Min- k-SCCP
- PTAS for Euclidean Min-2-SCCP on the plane
(2) Generalized Traveling Salesman Problem
- Problem statement
- Dynamic programming
- Precedence constraints
- Practical application
- Euclidean GTSP in Grid Clusters

3 Conslusion

We consider the combinatorial optimization problem of visiting clusters of a fixed number of nodes (cities) under the special type of precedence constraints.

- This problem is a kind of the Generalized Traveling Salesman Problem (GTSP).
- To find an optimal solution of the problem, we propose a dynamic programming based on algorithm extending the well known Held and Karp technique.
- In terms of special type of precedence constraints, we describe subclasses of the problem, with polynomial (or even linear) in n upper bounds of time complexity.

We consider the combinatorial optimization problem of visiting clusters of a fixed number of nodes (cities) under the special type of precedence constraints.

- This problem is a kind of the Generalized Traveling Salesman Problem (GTSP).
- To find an optimal solution of the problem, we propose a dynamic programming based on algorithm extending the well known Held and Karp technique.
- In terms of special type of precedence constraints, we describe subclasses of the problem, with polynomial (or even linear) in n upper bounds of time complexity

We consider the combinatorial optimization problem of visiting clusters of a fixed number of nodes (cities) under the special type of precedence constraints.

- This problem is a kind of the Generalized Traveling Salesman Problem (GTSP).
- To find an optimal solution of the problem, we propose a dynamic programming based on algorithm extending the well known Held and Karp technique.
- In terms of special type of precedence constraints, we describe subclasses of the problem, with polynomial (or even linear) in n upper bounds of time complexity.

Motivation revisited

- high-precision metal shape cutting problem

Motivation: precedence constraints

Motivation: precedence constraints

Motivation: precedence constraints

Problem statement

Inputs:

- disjunctive clusters M_{1}, \ldots, M_{n},

$$
M_{j}=\left\{g_{j 1}, \ldots, g_{j p}\right\}
$$

- start point $x_{0} \notin \cup M_{i}$;
- transportation costs:
$\hat{c}\left(x_{0}, g_{j \tau}\right)$ and $\check{c}\left(g_{j \tau}, x_{0}\right)$
$c\left(g_{l \sigma}, g_{j \tau}\right)$ for any $j, l \in \mathbb{N}_{n}=\{1, \ldots, n\}$, $j \neq l$ and $\sigma, \tau \in \mathbb{N}_{p}$;
- visiting (service) costs: $c^{\prime}\left(g_{j \tau}\right)$

Output:

the cheapest tour that starts and finishes at x_{0}.

Problem statement

Inputs:

- disjunctive clusters M_{1}, \ldots, M_{n},

$$
M_{j}=\left\{g_{j 1}, \ldots, g_{j p}\right\}
$$

- start point $x_{0} \notin \cup M_{i}$;
- transportation costs:
$\hat{c}\left(x_{0}, g_{j \tau}\right)$ and $\check{c}\left(g_{j \tau}, x_{0}\right)$
$c\left(g_{l \sigma}, g_{j \tau}\right)$ for any $j, l \in \mathbb{N}_{n}=\{1, \ldots, n\}$, $j \neq l$ and $\sigma, \tau \in \mathbb{N}_{p}$;
- visiting (service) costs: $c^{\prime}\left(g_{j \tau}\right)$

Output:

the cheapest tour that starts and finishes at x_{0}.

Problem statement

Inputs:

- disjunctive clusters M_{1}, \ldots, M_{n},

$$
M_{j}=\left\{g_{j 1}, \ldots, g_{j p}\right\}
$$

- start point $x_{0} \notin \cup M_{i}$;
- transportation costs:
$\hat{c}\left(x_{0}, g_{j \tau}\right)$ and $\check{c}\left(g_{j \tau}, x_{0}\right)$
$c\left(g_{l \sigma}, g_{j \tau}\right)$ for any $j, l \in \mathbb{N}_{n}=\{1, \ldots, n\}$, $j \neq l$ and $\sigma, \tau \in \mathbb{N}_{p}$;
- visiting (service) costs: $c^{\prime}\left(g_{j \tau}\right)$

Output:

the cheapest tour that starts and finishes at x_{0}.

Problem statement

Inputs:

- disjunctive clusters M_{1}, \ldots, M_{n}, $M_{j}=\left\{g_{j 1}, \ldots, g_{j p}\right\}$;
- start point $x_{0} \notin \cup M_{i}$;
- transportation costs:
$\hat{c}\left(x_{0}, g_{j \tau}\right)$ and $\check{c}\left(g_{j \tau}, x_{0}\right)$
$c\left(g_{l \sigma}, g_{j \tau}\right)$ for any $j, l \in \mathbb{N}_{n}=\{1, \ldots, n\}$, $j \neq l$ and $\sigma, \tau \in \mathbb{N}_{p}$;
- visiting (service) costs: $c^{\prime}\left(g_{j \tau}\right)$

Output:

the cheapest tour that starts and finishes at x_{0}.

Problem statement

Inputs:

- disjunctive clusters M_{1}, \ldots, M_{n}, $M_{j}=\left\{g_{j 1}, \ldots, g_{j p}\right\}$;
- start point $x_{0} \notin \cup M_{i}$;
- transportation costs:
$\hat{c}\left(x_{0}, g_{j \tau}\right)$ and $\check{c}\left(g_{j \tau}, x_{0}\right)$
$c\left(g_{l \sigma}, g_{j \tau}\right)$ for any $j, l \in \mathbb{N}_{n}=\{1, \ldots, n\}$, $j \neq l$ and $\sigma, \tau \in \mathbb{N}_{p}$;
- visiting (service) costs: $c^{\prime}\left(g_{j \tau}\right)$

Output:

the cheapest tour that starts and finishes at x_{0}.

Problem statement

Inputs:

- disjunctive clusters M_{1}, \ldots, M_{n}, $M_{j}=\left\{g_{j 1}, \ldots, g_{j p}\right\} ;$
- start point $x_{0} \notin \cup M_{i}$;
- transportation costs:

$$
\hat{c}\left(x_{0}, g_{j \tau}\right) \text { and } \check{c}\left(g_{j \tau}, x_{0}\right)
$$

$$
c\left(g_{l \sigma}, g_{j \tau}\right) \text { for any } j, l \in \mathbb{N}_{n}=\{1, \ldots, n\}
$$ $j \neq l$ and $\sigma, \tau \in \mathbb{N}_{p}$;

- visiting (service) costs:
$c^{\prime}\left(g_{j \tau}\right)$
Optimization stmt:

$$
\begin{array}{r}
\hat{c}\left(x_{0}, g_{\pi(1) \tau(1)}\right)+\sum_{i=1}^{n-1}\left(c^{\prime}\left(g_{\pi(i) \tau(i)}\right)+c\left(g_{\pi(i) \tau(i)}, g_{\pi(i+1) \tau(i+1)}\right)\right) \\
+\check{c}\left(g_{\pi(n) \tau(n)}, x_{0}\right) \rightarrow \mathrm{min} \tag{2}
\end{array}
$$

Additional features

(i) transportation $\operatorname{costs} c\left(g_{l \sigma}, g_{j \tau}\right)$ and cluster visiting $\operatorname{cost} c^{\prime}\left(g_{j \tau}\right)$ depend on the chosen sub-tour connecting x_{0} and the node $g_{l \sigma}$;
(ii) Balas precedence constraints are defined on clusters:

Type I. For a natural number $k \leq n$, any feasible permutation π satisfies the equation

$$
\begin{equation*}
\forall i, j \in \mathbb{N}_{n} \quad(j \geq i+k) \Rightarrow(\pi(i)<\pi(j)) . \tag{3}
\end{equation*}
$$

Type II. For some natural values $1 \leq k(1), \ldots, k(n) \leq n$ and any feasible permutation π,

$$
\begin{equation*}
\forall i, j \in \mathbb{N}_{n}(j \geq i+k(i)) \Rightarrow(\pi(i)<\pi(j)) . \tag{4}
\end{equation*}
$$

Bellman equation

- Suppose, the optimal g-tour sourcing from x_{0} and visiting for the first $i-1$ turns the clusters with indexes from $J \subset \mathbb{N}_{n}$, in the i-th turn, visits the cluster M_{j} at the node $g_{j \tau(i)} \in M_{j}$.
- Denote the cost of this g -subtour by $C\left(J, i, j, g_{j \tau(i)}\right)$.
- The following recursive equations hold

$$
\begin{gather*}
C\left(\varnothing, 1, j, g_{j \tau(1)}\right)=\hat{c}\left(x_{0}, g_{j \tau(1)}\right) \tag{5}\\
C\left(J, i, j, g_{j \tau(i)}\right)=\min _{l \in J} \min _{g_{l \tau(i-1)} \in M_{l}}\left\{C\left(J \backslash\{l\}, i-1, l, g_{l \tau(i-1)}\right)\right. \\
+ \tag{6}
\end{gather*}
$$

- The optimum of the given instance of AGTSP can be found by the formula

$$
\begin{equation*}
C^{*}=\min _{j \in \mathbb{N}_{n}}\left(C\left(\mathbb{N}_{n} \backslash\{j\}, n, j, g_{j \tau(n)}\right)+\check{c}\left(g_{j \tau(n)}, x_{0}\right)\right) . \tag{7}
\end{equation*}
$$

Graphical representation: vertices

- Assign to the instance of the problem in question the following instance of the cheapest s-t-path problem in the appropriate $(n+2)$-layered edge-weighted digraph $G^{*}[p]=\left(V^{*}[p], A^{*}[p], w^{*}[p]\right)$, whose vertices are states considered by dynamic programming procedure.
- Denote by $V_{i}^{*}[p]$ the vertex-set of the i-th layer such that

$$
V_{0}^{*}[p]=\{s\}, V_{n+1}^{*}[p]=\{t\},
$$

- Assign vertices s and t both to the starting point x_{0}.
- Any other vertex (state) (J, i, j, τ) corresponds to i-turn subtour of the g-tour visiting clusters with indexes $J \cup\{j\}$, wherein the last visited cluster is M_{j} (at the node $g_{j \tau}$)

Graphical representation: vertices

- Assign to the instance of the problem in question the following instance of the cheapest s-t-path problem in the appropriate $(n+2)$-layered edge-weighted digraph $G^{*}[p]=\left(V^{*}[p], A^{*}[p], w^{*}[p]\right)$, whose vertices are states considered by dynamic programming procedure.
- Denote by $V_{i}^{*}[p]$ the vertex-set of the i-th layer such that

$$
\begin{gathered}
V_{0}^{*}[p]=\{s\}, V_{n+1}^{*}[p]=\{t\} \\
V_{i}^{*}[p]=\left\{(J, i, j, \tau): j \in \mathbb{N}_{n} \backslash J, g_{j \tau} \in M_{j}, J \subset \mathbb{N}_{n},|J|=i-1\right\} \quad\left(i \in \mathbb{N}_{n}\right) .
\end{gathered}
$$

- Assign vertices s and t both to the starting point x_{0}.
- Any other vertex (state) (J, i, j, τ) corresponds to i-turn subtour of the g-tour visiting clusters with indexes $J \cup\{j\}$, wherein the last visited cluster is M_{j} (at the node $g_{j \tau}$)

Graphical representation: vertices

- Assign to the instance of the problem in question the following instance of the cheapest s-t-path problem in the appropriate $(n+2)$-layered edge-weighted digraph $G^{*}[p]=\left(V^{*}[p], A^{*}[p], w^{*}[p]\right)$, whose vertices are states considered by dynamic programming procedure.
- Denote by $V_{i}^{*}[p]$ the vertex-set of the i-th layer such that

$$
\begin{gathered}
V_{0}^{*}[p]=\{s\}, V_{n+1}^{*}[p]=\{t\} \\
V_{i}^{*}[p]=\left\{(J, i, j, \tau): j \in \mathbb{N}_{n} \backslash J, g_{j \tau} \in M_{j}, J \subset \mathbb{N}_{n},|J|=i-1\right\} \quad\left(i \in \mathbb{N}_{n}\right) .
\end{gathered}
$$

- Assign vertices s and t both to the starting point x_{0}.
- Any other vertex (state) (J, i, j, τ) corresponds to i-turn subtour of the g-tour visiting clusters with indexes $J \cup\{j\}$, wherein the last visited cluster is M_{j} (at the node $g_{j \tau}$)

Graphical representation: vertices

- Assign to the instance of the problem in question the following instance of the cheapest s-t-path problem in the appropriate $(n+2)$-layered edge-weighted digraph $G^{*}[p]=\left(V^{*}[p], A^{*}[p], w^{*}[p]\right)$, whose vertices are states considered by dynamic programming procedure.
- Denote by $V_{i}^{*}[p]$ the vertex-set of the i-th layer such that

$$
\begin{gathered}
V_{0}^{*}[p]=\{s\}, V_{n+1}^{*}[p]=\{t\} \\
V_{i}^{*}[p]=\left\{(J, i, j, \tau): j \in \mathbb{N}_{n} \backslash J, g_{j \tau} \in M_{j}, J \subset \mathbb{N}_{n},|J|=i-1\right\} \quad\left(i \in \mathbb{N}_{n}\right) .
\end{gathered}
$$

- Assign vertices s and t both to the starting point x_{0}.
- Any other vertex (state) (J, i, j, τ) corresponds to i-turn subtour of the g-tour visiting clusters with indexes $J \cup\{j\}$, wherein the last visited cluster is M_{j} (at the node $g_{j \tau}$).

Graphical representation: arcs

- Only vertexes of subsequent layers $V_{i}^{*}[p]$ and $V_{i+1}^{*}[p]$ can be adjacent.
- s is adjacent to any vertex from $V_{1}^{*}[p]$;
- any vertex from $V_{n}^{*}[p]$ is adjacent to t.
- Any other states (J, i, l, σ) and $\left(J^{\prime}, i+1, j, \tau\right)$ are adjacent if

$$
\begin{equation*}
|J|=i-1, J^{\prime}=J \cup\{l\}, j \notin J^{\prime}, \sigma, \tau \in \mathbb{N}_{p} \tag{8}
\end{equation*}
$$

- We denote the set of arcs connecting $V_{i}^{*}[p]$ with $V_{i+1}^{*}[p]$ by $A_{i, i+1}^{*}[p]$.
- Arc weights are defined by the following equations $w^{*}[p](s,(\varnothing, 1, j, \tau))=\hat{c}\left(x_{0}, g_{j \tau}\right), w^{*}[p]\left(\left(\mathbb{N}_{n} \backslash\{j\}, n, j, \tau\right), t\right)=\check{c}\left(g_{j \tau}, x_{0}\right)$,

Graphical representation: arcs

- Only vertexes of subsequent layers $V_{i}^{*}[p]$ and $V_{i+1}^{*}[p]$ can be adjacent.
- s is adjacent to any vertex from $V_{1}^{*}[p]$;
- any vertex from $V_{n}^{*}[p]$ is adjacent to t.
- Any other states (J, i, l, σ) and $\left(J^{\prime}, i+1, j, \tau\right)$ are adjacent if

$$
\begin{equation*}
|J|=i-1, J^{\prime}=J \cup\{l\}, j \notin J^{\prime}, \sigma, \tau \in \mathbb{N}_{p} \tag{8}
\end{equation*}
$$

- We denote the set of arcs connecting $V_{i}^{*}[p]$ with $V_{i+1}^{*}[p]$ by $A_{i, i+1}^{*}[p]$.
- Arc weights are defined by the following equations

$$
\begin{gathered}
w^{*}[p](s,(\varnothing, 1, j, \tau))=\hat{c}\left(x_{0}, g_{j \tau}\right), w^{*}[p]\left(\left(\mathbb{N}_{n} \backslash\{j\}, n, j, \tau\right), t\right)=\check{c}\left(g_{j \tau}, x_{0}\right), \\
w^{*}[p]\left((J, i, l, \sigma),\left(J^{\prime}, i+1, j, \tau\right)\right)=c\left(g_{l \sigma}, g_{j \tau}\right)+c^{\prime}\left(g_{j \tau}\right) .
\end{gathered}
$$

Graphical representation: equivalence

Theorem 7

The set of feasible g-tours in AGTSP is isomorphic to the set of s-t-paths in the graph $G^{*}[p]$. Moreover, any corresponding g-tour and s-t-path have the same costs.

Corollary 8

The cheapest g-tour can be found in $O\left(\left|A^{*}[p]\right|\right)$ by the well known modification of the Ford-Bellman algorithm for circuit-free weighted digraph

Graphical representation: equivalence

Theorem 7

The set of feasible g-tours in AGTSP is isomorphic to the set of s-t-paths in the graph $G^{*}[p]$. Moreover, any corresponding g-tour and s-t-path have the same costs.

Corollary 8

The cheapest g-tour can be found in $O\left(\left|A^{*}[p]\right|\right)$ by the well known modification of the Ford-Bellman algorithm for circuit-free weighted digraph

- Unfortunately, for the general case of AGTSP, the number of arcs in the graph $G^{*}[p]$ grows exponentially as $n \rightarrow \infty$, i.e. time complexity of the proposed scheme of dynamic programming is exponential as well.
- Indeed, $\left|A^{*}[p]\right|=\Omega\left(n p^{2} 2^{n}\right)$ for any $n \geq 2$.

Type I

Theorem 9

Suppose, for some $k \in \mathbb{N}$ and for any feasible permutation π,

$$
\begin{equation*}
\forall i, j \in \mathbb{N}_{n} \quad(j \geq i+k) \Rightarrow(\pi(i)<\pi(j)) \tag{9}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left|A^{*}[p]\right|=O\left(n \cdot p^{2} k^{2} 2^{k-2}\right) \tag{10}
\end{equation*}
$$

Corollary 10

- If $k=o(\log n)$ and $p=O($ poly $(n))$, then AGTSP can be solved optimally by dynamic programming in time $O($ poly $(n))$.
- Moreover, for any fixed k and p, dynamic programming has time complexity $O(n)$.

Type I

Theorem 9

Suppose, for some $k \in \mathbb{N}$ and for any feasible permutation π,

$$
\begin{equation*}
\forall i, j \in \mathbb{N}_{n} \quad(j \geq i+k) \Rightarrow(\pi(i)<\pi(j)) \tag{9}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left|A^{*}[p]\right|=O\left(n \cdot p^{2} k^{2} 2^{k-2}\right) \tag{10}
\end{equation*}
$$

Corollary 10

- If $k=o(\log n)$ and $p=O(\operatorname{poly}(n))$, then AGTSP can be solved optimally by dynamic programming in time $O(\operatorname{poly}(n))$.
- Moreover, for any fixed k and p, dynamic programming has time complexity $O(n)$.

Type II

Theorem 11

If, for some natural values $1 \leq k(1), \ldots, k(n) \leq n$ and any feasible permutation π,

$$
\begin{equation*}
\forall i, j \in \mathbb{N}_{n}(j \geq i+k(i)) \Rightarrow(\pi(i)<\pi(j)) \tag{11}
\end{equation*}
$$

then

$$
\left|A^{*}[p]\right|=O\left(p^{2} \sum_{i=1}^{n} k^{*}(i)\left(k^{*}(i)+1\right) 2^{k^{*}(i)-2}\right)
$$

where $k^{*}(i)=\max \{k(j): i-k(j)+1 \leq j \leq i\}$.

Fire rescue plan

- Suppose, we need to construct the least expensive rescue plan visiting rooms located on three floors of some building.
- Rescue unit can start its job from any floor, to which it can be delivered for the vanishing cost.
- After the completion of the job, it can be escaped also from any floor.
- The main restriction is that moving from one floor to another can be done only through dedicated elevators and any such a transportation costs much more, than any moves around the floor.

Fire rescue plan

- Suppose, we need to construct the least expensive rescue plan visiting rooms located on three floors of some building.
- Rescue unit can start its job from any floor, to which it can be delivered for the vanishing cost.
- After the completion of the job, it can be escaped also from any floor.
- Equivalent representation

$$
k(i)=\left\{\begin{aligned}
5-i, & \text { if } 1 \leq i \leq 4 \\
7-i, & \text { if } 5 \leq i \leq 6 \\
10-i, & \text { otherwise }
\end{aligned}\right.
$$

Euclidean Generalized Traveling Salesman Problem (GTSP)

- We consider the Euclidian Generalized Traveling Salesman Problem in k Grid Clusters EGTSP-GC).

Figure: An EGTSP-GC instance for $k=6$

Known results and related problems

- GTSP is strongly NP-hard even in Euclidean plane
- GTSP can be treated as a discrete version of Traveling Salesman Problem with Neighborhoods (TSPN) for which many solid approximation results are known (see, e.g. (Dumitrescu-Mitchell 2001), (Mitchell 2007), (Mitchell 2011))
- Good news: unlike TSPN, GTSP is polynomially solvable for any fixed k (Toth, 1995)
- The EGTSP-GC was introduced in (Bhattacharya et al. 2015). They showed that the problem is strongly NP-hard and proposed polynomial time $(1.5+8 \sqrt{2}+\epsilon)$-approximation algorithm
- We present three approximation schemes for the EGTSP-GC. The first two are PTAS in the case, when $k=O(\log n)$, while the last one is a PTAS for $k=n-O(\log n)$

Known results and related problems

- GTSP is strongly NP-hard even in Euclidean plane
- GTSP can be treated as a discrete version of Traveling Salesman Problem with Neighborhoods (TSPN) for which many solid approximation results are known (see, e.g. (Dumitrescu-Mitchell 2001), (Mitchell 2007), (Mitchell 2011))
- Good news: unlike TSPN, GTSP is polynomially solvable for any fixed k (Toth, 1995)
- The EGTSP-GC was introduced in (Bhattacharya et al. 2015) They showed that the problem is strongly NP-hard and proposed polynomial time $(1.5+8 \sqrt{2}+\epsilon)$-approximation algorithm
- We present three approximation schemes for the EGTSP-GC The first two are PTAS in the case, when $k=O(\log n)$, while the last one is a PTAS for $k=n-O(\log n)$

Known results and related problems

- GTSP is strongly NP-hard even in Euclidean plane
- GTSP can be treated as a discrete version of Traveling Salesman Problem with Neighborhoods (TSPN) for which many solid approximation results are known (see, e.g. (Dumitrescu-Mitchell 2001), (Mitchell 2007), (Mitchell 2011))
- Good news: unlike TSPN, GTSP is polynomially solvable for any fixed k (Toth, 1995)
\square polynomial time $(1.5+8 \sqrt{2}+\epsilon)$-approximation algorithm

Known results and related problems

- GTSP is strongly NP-hard even in Euclidean plane
- GTSP can be treated as a discrete version of Traveling Salesman Problem with Neighborhoods (TSPN) for which many solid approximation results are known (see, e.g. (Dumitrescu-Mitchell 2001), (Mitchell 2007), (Mitchell 2011))
- Good news: unlike TSPN, GTSP is polynomially solvable for any fixed k (Toth, 1995)
- The EGTSP-GC was introduced in (Bhattacharya et al. 2015). They showed that the problem is strongly NP-hard and proposed polynomial time $(1.5+8 \sqrt{2}+\epsilon)$-approximation algorithm

\qquad

Known results and related problems

- GTSP is strongly NP-hard even in Euclidean plane
- GTSP can be treated as a discrete version of Traveling Salesman Problem with Neighborhoods (TSPN) for which many solid approximation results are known (see, e.g. (Dumitrescu-Mitchell 2001), (Mitchell 2007), (Mitchell 2011))
- Good news: unlike TSPN, GTSP is polynomially solvable for any fixed k (Toth, 1995)
- The EGTSP-GC was introduced in (Bhattacharya et al. 2015). They showed that the problem is strongly NP-hard and proposed polynomial time $(1.5+8 \sqrt{2}+\epsilon)$-approximation algorithm
- We present three approximation schemes for the EGTSP-GC. The first two are PTAS in the case, when $k=O(\log n)$, while the last one is a PTAS for $k=n-O(\log n)$

Outline

(1) Min- k-SCCP - the Multiple Traveling Salesmen Problem

- Problem statement
- Complexity and Approximability
- Metric Min- k-SCCP
- PTAS for Euclidean Min-2-SCCP on the plane
(2) Generalized Traveling Salesman Problem
- Problem statement
- Dynamic programming
- Precedence constraints
- Practical application
- Euclidean GTSP in Grid Clusters
(3) Conslusion

Approximation scheme based on dynamic programming

Algorithm 1 Scheme based on DP

Input: a given instance of the Euclidean GTSP on k grid clusters and a required accuracy level ε.
Output: $\mathrm{a}(1+\varepsilon)$-approximate solution.
1: partition all k nonempty cells of the given grid into t^{2} smaller subcells; the value t will be specified later;
2: to each j-th cell assign a finite set C_{j} consisting of centers of nonempty subcells;
3: for all $\left(c_{1}, \ldots, c_{k}\right) \in C_{1} \times \ldots \times C_{k}$ do
4: using dynamic programming find an exact solution $S\left(c_{1}, \ldots, c_{k}\right)$ of the corresponding TSP instance;
5: end for
6: output the cheapest solution $S\left(c_{1}, \ldots, c_{k}\right)$.

Correctness proof

- Consider an arbitrary optimal solution of the initial GTSP-GC instance with k clusters
- The accumulated error caused by substitution of the initial nodes by the nearest centers does not exceed $k \sqrt{2} / t$
- To estimate k in terms of optimum of the initial GTSP, we use a recent approximation result for another combinatorial optimization problem defined on clusters, Generalized Minimum Spanning Tree Problem (GMSTP)

Lower bound for an optimum value

Theorem 12 (Bhattacharya, 2015)

Let $O P T_{G M S T P}$ be an optimum value of an instance of the Euclidean $G M S T P$ on k grid clusters, then $k \leq 4 O P T_{G M S T P}+4$.

Since any Hamiltonian cycle can be reduced to the corresponding spanning tree by excluding an arbitrary edge, therefore $O P T_{G T S P} \geq O P T_{G M S T P}$. Therefore, for the Euclidean GTSP, the same assertion is valid.

Corollary 13

Let $O P T_{G T S P-G C}$ be the optimum value of an instance of the Euclidean GTSP on k grid clusters, then $k \leq 4 O P T_{G T S P-G C}+4$.

Approximation scheme based on dynamic programming

So, for any $k>4$ and $\varepsilon>0$, taking a value of t such that

$$
\frac{k \sqrt{2}}{t} \leq \frac{k-4}{4} \varepsilon \leq \varepsilon O P T_{\mathrm{GTSP}-\mathrm{GC}}
$$

i.e.

$$
t \geq \frac{4 \sqrt{2} k}{(k-4) \varepsilon}=\frac{4 \sqrt{2}}{\varepsilon}\left(1+\frac{4}{k-4}\right) \geq \frac{20 \sqrt{2}}{\varepsilon}
$$

we guarantee that our accumulated error does not exceed $\varepsilon O P T_{\text {GTSP-GC }}$. It should be noticed that asymptotically we can obtain the same result even for $t \geq 4 \sqrt{2} k /((k-4) \varepsilon)$ as $k \rightarrow \infty$.

Approximation scheme based on dynamic programming

Theorem 14

For any $\varepsilon>0$, Algorithm 1 finds an $(1+\varepsilon)$-approximate solution of the GTSP on k grid clusters in time of $O\left(k^{2}(O(1 / \varepsilon))^{2 k}\right)+O(n)$.

Corollary 15

1. For any fixed number $k>4$ and any $\varepsilon>0$, Algorithm 1 finds an $(1+\varepsilon)$-approximate solution of the Euclidean GTSP on k clusters in a linear time with delay depending on ε.
2. For the Euclidean GTSP on $k=O(\log n)$ clusters Algorithm 1 is a PTAS with time complexity of $O\left((\log n)^{2} n^{O(\log (1 / \varepsilon))}\right)$.

Outline

(1) Min- k-SCCP - the Multiple Traveling Salesmen Problem

- Problem statement
- Complexity and Approximability
- Metric Min- k-SCCP
- PTAS for Euclidean Min-2-SCCP on the plane
(2) Generalized Traveling Salesman Problem
- Problem statement
- Dynamic programming
- Precedence constraints
- Practical application
- Euclidean GTSP in Grid Clusters
(3) Conslusion

Extended Arora's scheme

Similarly to Arora's PTAS, the main idea of the proposed approximation scheme is based on randomized recursive partitioning of the axis-aligned bounding box of the given instance into smaller squares and successive searching for the minimum weight closed tour subject to the following constraints:
(i) any cluster V_{i} is visited at once;
(ii) between-node segments of the route are continuous piece-wise linear curves crossing the borders of all squares only in predefined points called portals;
(iii) locations of the portals and the maximum count of crossings for each border-line of the squares depend on the given accuracy ε.

Well-rounded instance of the EGTSP-GC

We call an instance of the EGTSP-GC well-rounded if
(i) where exists $L^{\prime}=O(k)$ such that, for any node $v_{i}=\left[x_{i}, y_{i}\right]$ of the input graph G, its coordinates $x_{i}, y_{i} \in\left\{0, \ldots, L^{\prime}\right\}$;
(ii) for any $u \neq v \in V, w(\{u, v\}) \geq 4$.

Lemma 16

Any PTAS for the well-rounded EGTSP-GC induces the appropriate PTAS for the EGTSP-GC with the same (up to the order) complexity bound.

Extended Arora's scheme

Let \mathcal{S} be the smallest axis-aligned square containing the instance of the EGTSP-GC. W.l.o.g. let the side-length L^{\prime} of \mathcal{S} be some power of two.
Following the Arora's approach, we construct a dissection of \mathcal{S} into smaller squares using vertical and horizontal lines. These lines are crossing the coordinate axes in integer-coordinate points with a step of length 1. By construction, every smallest-size square contains at most one node of the given instance.

Quadtree

The root of the tree is the bounding box \mathcal{S}. Each non-leaf square in the tree is partitioned into four equal child squares. This recursive partitioning stops on a square containing at most one node. By construction, the quadtree contains $O\left(k^{2}\right)$ leaves, $O\left(\log L^{\prime}\right)=O(\log k)$ levels and thus $O\left(k^{2} \log k\right)$ squares in all.

Shifted quadtree $T(a, b)$

The center point of the quadtree is the point of crossing of the inner edges of the squares with the side-length $L^{\prime} / 2$. We consider a shifted quadtree $T(a, b)$ with the center point $\left(\left(L^{\prime} / 2+a\right) \bmod L^{\prime},\left(L^{\prime} / 2+b\right)\right.$ $\bmod L^{\prime}$), where $a, b \in \mathbb{N}_{L^{\prime}}^{0}$, are constants.
To some parameter values $m, r \in \mathbb{N}$, and any node in the quadtree $T(a, b)$ [square S], we assign a regular partition of the border S consisting of $4(m+1)$ points including all the corners of S.

Shifted quadtree $T(a, b)$

Figure: Shifted quadtree $T(a, b)$

Definition 17

Let C be an arbitrary simple cycle in the graph G in the plane. The closed continuous piecewise linear route $l(C)$ is called an (m, r)-approximation of the cycle C if
(i) $l(C)$ bends only at nodes of given graph and portals;
(ii) the nodes of G are visited by $l(C)$ in the same order as by C;
(iii) for any side of any node of $T(a, b)$, the route $l(C)$ crosses this side at portals and at most r times.

Structure Theorem

Theorem 18

Let an instance of the well-rounded TSP in the plane be given by the graph G, let L be the side-length of the bounding box \mathcal{S}, and let constants $c>1$ and $\eta \in(0,1)$ be fixed. If the stochastic variables a and b are distributed uniformly in \mathbb{N}_{L} and the parameters m and r are defined by the formulas

$$
m=\lceil 2 s \log L\rceil, r=s+4, \quad \text { and } s=\lceil 36 c / \eta\rceil
$$

Then, for an arbitrary simple cycle C of weight $W(C)$, with probability at least $1-\eta$, there exists an (m, r)-approximation $l(C)$ of weight $W(l(C)) \leqslant(1+1 / c) W(C)$.

The algorithm

Algorithm 2 Extended Arora's scheme

Input: a given instance of the Euclidean GTSP on k grid clusters and a required accuracy ε.
Output: a $(1+\varepsilon)$-approximate solution.
1: assign to the given instance the appropriate well-round instance enclosed in bouding box of size L^{\prime};
2: for all $a, b \in \mathbb{N}_{L^{\prime}}^{0}$ do
3: \quad construct the shifted guadtree $T(a, b)$ and find $C(a, b)$ by dynamic procedure using approach proposed in (S.Arora, 1998) except that, for any internal node of the $T(a, b)$, the corresponding task along with conventional parameters depend on clusters $V_{i_{1}}, \ldots, V_{i_{t}}$ assigned to this node. Therefore, any child subtask of the Arora's DP produces up to 4^{t} copies according to all possible assignments of these clusters to this child;
: end for
5: output the cheapest (m, r)-approximation $C(a, b)$.

Extended Arora's scheme

Figure: Arrangement example of clusters and shifted quadtree

Extended Arora's scheme

Theorem 19

For any fixed $\varepsilon \in(0,1)$ Algorithm 2 finds a $(1+\varepsilon)$-approximate solution for the EGTSP-GC in time of

$$
2^{O(k)} k^{4}(\log k)^{O(1 / \varepsilon)}+O(n) .
$$

Corollary 20

1. For any fixed $k>4$, Algorithm 2 is a LTAS for the EGTSP-GC.
2. For $k=O(\log n)$, Algorithm 2 is PTAS for this problem with time complexity of $O\left(n(\log n)^{4}(\log \log n)^{O(1 / \varepsilon)}\right)$.

Outline

(1) Min- k-SCCP - the Multiple Traveling Salesmen Problem

- Problem statement
- Complexity and Approximability
- Metric Min- k-SCCP
- PTAS for Euclidean Min-2-SCCP on the plane
(2) Generalized Traveling Salesman Problem
- Problem statement
- Dynamic programming
- Precedence constraints
- Practical application
- Euclidean GTSP in Grid Clusters
(3) Conslusion

The case of fast growing k

Algorithm 3 Scheme based on the classic Arora's PTAS
Input: a given instance of the Euclidean GTSP on k grid clusters and a required accuracy ε.
Output: a $(1+\varepsilon)$-approximate solution.
1: consider a partition V_{1}, \ldots, V_{k} of the node set V of the given instance produced by the grid;
2: for all $\left(v_{1}, \ldots, v_{k}\right) \in V_{1} \times \ldots \times V_{k}$ do
3: find an $(1+\varepsilon)$-approximate solution $S\left(v_{1}, \ldots, v_{k}\right)$ of the corresponding TSP instance using Arora's PTAS;
4: end for
5: output the cheapest solution $S\left(c_{1}, \ldots, c_{k}\right)$.

The case of fast growing k

To prove the correctness of Algorithm 3, denote by t_{i} the number of nodes belonging to the i-th cluster. The number of ways to specify a TSP instance taking one node from each cluster is $t_{1} \times \ldots \times t_{k}$. Maximizing this number subject to $\sum_{i=1}^{k} t_{i}=n$ we conclude that it does not exceed the value $(n / k)^{k}$ attained at point $t_{i}=n / k$.

The case of fast growing k

Since, for any $\varepsilon>0$, time complexity of the Arora's PTAS for k-node instance of the Euclidean TSP is $O\left(k^{3}(\log k)^{O(\log (1 / \varepsilon))}\right)$, the time complexity of Algorithm 3 is

$$
\begin{equation*}
\left(\frac{n}{k}\right)^{k} k^{3}(\log k)^{O(1 / \varepsilon)} \tag{12}
\end{equation*}
$$

Evidently, for any fixed k, equation (1) depends on n polynomially and Algorithm 3 is a PTAS for the Euclidean GTSP on k grid clusters.

The case of fast growing k

To prove the same claim for k depending on n, we need to restrict $k=k(n)$ such that

$$
\begin{equation*}
\left(\frac{n}{k}\right)^{k} \leq n^{D} \tag{13}
\end{equation*}
$$

for some constant value $D>0$. Suppose that $\frac{n-k(n)}{k(n)} \rightarrow 0$ as $n \rightarrow \infty$. Since, in this case,

$$
\left(\frac{n}{k(n)}\right)^{k(n)}=\left(1+\frac{n-k(n)}{k(n)}\right)^{k(n)} \leq e^{n-k(n)},
$$

the inequality $k(n) \geq n-D \log n$ implies equation (2).

The case of fast growing k

Theorem 21

1. For any $\varepsilon>0$, Algorithm 3 finds a $(1+\varepsilon)$-approximate solution of the Euclidean GTSP on k grid clusters in time of $n^{k}(\log k)^{O(1 / \varepsilon)}$. 2. If $k=n-D \log n$, then time complexity of Algorithm 3 is $n^{D+3}(\log n)^{O(1 / \varepsilon)}$.

References I

圈
M．Khachay and K．Neznakhina，Approximation of Euclidean k－size cycle cover problem，Croation Operational Research Review 5 （2014），no．1，177－188．
國 M．Khachai and K．Neznakhina，Approximability of the problem about a minimum－weight cycle cover of a graph，Doklady Mathematics 91 （2015），no．2，240－245．

目 M．Khachai and K．Neznakhina，A polynomial－time approximation scheme for the Euclidean problem on a cycle cover of a graph，Proceedings of the Steklov Institute of Mathematics 289 （2015），no．1，111－125．

國 M．Khachay and K．Neznakhina，Approximability of the minimum－weight k－size cycle cover problem，Journal of Global Optimization 66 （2016），no．1，65－82．

References II

目
K．Neznakhina，A PTAS for the Min－k－SCCP in a Euclidean space of arbitrary fixed dimension，Proceedings of the Steklov Institute of Mathematics 295 （2016），suppl． 1.

圊 M．Khachay and H．Zaytseva，Polynomial Time Approximation Scheme for Single－Depot Euclidean Capacitated Vehicle Routing Problem，Combinatorial optimization and applications：9th international conference，COCOA 2015，Houston，TX，USA， December 18－20，2015，LNCS 9486，178－190．
國 A．Chentsov，M．Khachay，and D．Khachay，An Exact Algorithm with Linear Complexity for a Problem of Visiting Megalopolises， Proceedings of the Steklov Institute of Mathematics 295 （2016）， suppl． 1.
目
A．Chentsov，M．Khachay，and D．Khachay，Linear time algorithm for Precedence Constrained Asymmetric Generalized Traveling Salesman Problem，IFAC－PapersOnline，49， 12 （2016），651－655．

References III

目
Michael Khachay and Roman Dubinin. PTAS for the Euclidean Capacitated Vehicle Routing Problem in R^{d}. Discrete Optimization and Operations Research, DOOR 2016, Vladivostok, September 19-23, 2016, LNCS 9869, 193-205.

Thank you for your attention!

