
On Objective Function 

Representation Methods in 

Global Optimization 

Panos M. Pardalos 
 

Center for Applied Optimization, Department of Industrial  and Systems 

Engineering, University of Florida 

Gainesville, FL USA 

and 

LATNA, National Research University Higher School of Economics 

 

http://ww.ise.ufl.edu/pardalos 

http://ww.ise.ufl.edu/pardalos
http://ww.ise.ufl.edu/pardalos
http://ww.ise.ufl.edu/pardalos


This talk is dedicated to the memory of my 

friend and colleague Chris Floudas 



China, 2013 



University of Florida, 2015 



Decomposition Techniques 

Panos M. Pardalos 5 

General 

 Decomposition techniques for solving optimization problems have 

been used as early as in the 1960’s for linear mixed integer and 

convex optimization 

 

 

 Well known techniques include: 

• Dantzig-Wolfe 

• Benders 

 

 

 The choice of the decomposition (of objective function) influences 

the choice of the algorithm used to solve the corresponding 

optimization problem 
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Overview 

 Separable optimization: 

min
𝑥∈ℝ𝑛

𝐹0(𝑥) 

s.t. 𝐹𝑖 𝑥 ≤ 𝑏𝑖  , 𝑖 = 1, … , 𝑚 

𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖  , 𝑖 = 1, … , 𝑚 

where each 𝐹𝑖 𝑥 =  𝐹𝑖𝑗 𝑥𝑗 , 𝑖 = 0,1, … , 𝑚𝑛
𝑗=1  

 

 

 Factorable optimization: 

See book: 

Garth, McCormick, “Nonlinear Programming: Algorithms and 

Applications”, 1983 
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Overview 

 Almost Block Separable Optimization: 

min
𝑥∈ℝ𝑛

𝑓 𝑥 = 𝑓1 𝑢, 𝑦 + 𝑓2(𝑣, 𝑦) 

where 𝑥 = 𝑢, 𝑣, 𝑦 ∈ ℝ𝑛 

and 𝑢 ∈ ℝ𝑛1 , 𝑣 ∈ ℝ𝑛2 , 𝑦 ∈ ℝ𝑛3  , 𝑛1 + 𝑛2 + 𝑛3 = 𝑛 

𝑦 are called complicated variables [usually 𝑛1, 𝑛2 ≫ 𝑛3] 

 

 

 Let 𝜑1 𝑦 = min
𝑢

𝑓1(𝑢, 𝑦) , 𝜑2 𝑦 = min
𝑣

𝑓2(𝑣, 𝑦) 

Then the above problem is equivalent to: 

min
𝑦

𝜑1 𝑦 + 𝜑2(𝑦) 

Note that if 𝑓1, 𝑓2 are convex, then 𝜑1(𝑦) and φ2(𝑦) are convex 
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Overview 

 Many powerful techniques in global optimization are based on the 

fact that many objective functions can be expressed as the 

difference of two convex functions (so called d.c. functions) 

 If 𝐷(𝑥) is an objective function in ℝ𝑛, then the representation 

𝐷 𝑥 = 𝑝 𝑥 − 𝑞(𝑥), where 𝑝, 𝑞 are convex function is said to be a 

d.c. decomposition of 𝐷 

 The space of d.c. functions is closed under many operations 

frequently encountered in optimization (i.e., sum, product, max, 

min, etc) 

 Hartman 1959: Every locally d.c. function is d.c. 

 For simplicity of notation, consider the d.c. program: 

min 𝑓 𝑥 − 𝑔(𝑥) 

s.t. 𝑥 ∈ 𝐷 

where 𝐷 is a polytope in ℝ𝑛 with nonempty interior and 𝑓 and 𝑔 

are convex functions on ℝ𝑛 
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Overview 

 By introducing an additional variable 𝑡, the above problem can be 

converted into the equivalent problem of Global Concave 

Minimization: 

min 𝑡 − 𝑔(𝑥) 

s.t.  𝑥 ∈ 𝐷, 𝑓 𝑥 − 𝑡 ≤ 0 

 

with concave objective function 𝑡 − 𝑔(𝑥) and convex feasible set 

{ 𝑥, 𝑡 ∈ ℝ𝑛+1: 𝑥 ∈ 𝐷, 𝑓 𝑥 − 𝑡 ≤ 0}. 

 

 If (𝑥∗, 𝑡∗) is an optimal solution of the above program then 𝑥∗ is an 

optimal solution of the initial d.c. program and 𝑡∗ = 𝑓(𝑥∗) 

 

 Therefore, any D.C. program can be solved by an algorithm for 

minimizing a concave function over a convex set. 
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 DC function: 

A real-valued function 𝑓: ℝ𝑛 ⟶ ℝ ∪ +∞, −∞  s.t. 

𝑓 𝑥 = 𝑔 𝑥 − ℎ 𝑥 , ∀𝑥 ∈ ℝ𝑛 

where 𝑔: ℝ𝑛 ⟶ ℝ ∪ +∞  and ℎ: ℝ𝑛 ⟶ ℝ ∪ +∞  are convex 

functions 

 

 

 DC program: 

A program of the form: 

min 𝑓0(𝑥) 

s. t. 𝑓𝑖 𝑥 ≤ 0 , 𝑖 = 1,2, … , 𝑛 

where 𝑓𝑖(𝑥) are convex functions (𝑖 = 0,1,2, … , 𝑛) 

 

• It is equivalent to the unconstrained DC program: 

inf
𝑥∈ℝ𝑛

𝑓 𝑥 = 𝑔 𝑥 − ℎ(𝑥) 
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 Subgradients: 

A vector 𝑥∗ is a subgradient of a convex function ℎ at a point 𝑥 if: 

ℎ 𝑧 ≥ ℎ 𝑥 + 𝑥∗, 𝑧 − 𝑥  

• The subdifferential of ℎ(𝑥) is the set of all subgradients 

 

 

 Conjugate functions: 

A conjugate function ℎ∗: ℝ𝑛 ⟶ ℝ ∪ {+∞} of a convex function 

ℎ: ℝ𝑛 ⟶ ℝ ∪ {+∞} is : 

ℎ∗ 𝑝 ≔ sup
𝑦∈ℝ𝑛

{ 𝑦, 𝑥 − ℎ(𝑥)} 

• The conjugate function ℎ∗(𝑦) of a function ℎ(𝑥) is convex 

• If ℎ(𝑥) is a closed proper convex function, then ℎ∗∗ = ℎ 

• Given closed convex functions 𝑔, ℎ: ℝ𝑛 → ℝ ∪ {+∞}, it is: 

inf
𝑥∈ℝ𝑛

{𝑔 𝑥 − ℎ(𝑥)} = inf
𝑝∈ℝ𝑛

{ℎ∗ 𝑝 − 𝑔∗(𝑝)} 
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 DC Algorithm: 

 

• Step 0 Find an inintial solution 𝑥0 ∈ 𝑑𝑜𝑚𝑅 𝑔 . Set 𝑡 ≔ 0. 

 

• Step 1 Find 𝑝(𝑡) ∈ 𝜕𝑅ℎ(𝑥(𝑡)). 

 

• Step 2 Find 𝑥(𝑡+1) ∈ 𝜕𝑅𝑔∗(𝑝(𝑡)), where 𝑔∗ is the conjugate of 

𝑔. 

 

• Step 3 If 𝑓 𝑥 𝑡+1 = 𝑓(𝑥(𝑡)), stop. Otherwise, set 𝑡 ≔ 𝑡 + 1, 

go to Step 1. 

 

where 𝑥(𝑡+1) = arg min
𝑦∈ℝ𝑛

{𝑔 𝑦 − ℎ 𝑥𝑡 − 𝑝, 𝑦 − 𝑥(𝑡) } 
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 The positive support of 𝑥 ∈ ℤ𝑛 is: 

supp+(𝑥) ≔ {𝑖 ∈ 1,2, … , 𝑛 : 𝑥𝑖 > 0} 

 The indicator vector 𝜒𝑆 is defined by: 

𝜒𝑆 𝑖 =  
1, 𝑖 ∈ 𝑆
0, 𝑖 ∉ 𝑆

 

 There are two common discrete functions: 

 𝑀♮-convex functions: 

• For all 𝑥, 𝑦 ∈ ℤ𝑛 and 𝑖 ∈ 𝑠𝑢𝑝𝑝+(𝑥 − 𝑦), function ℎ: ℤ𝑛 → ℤ ∪

{+∞} is 𝑀♮-convex if it satisfies: 

ℎ 𝑥 + ℎ 𝑦 ≥ min ℎ 𝑥 − 𝜒𝑖 + ℎ 𝑥 + 𝜒𝑖 , 

min
𝑗∈𝑠𝑢𝑝𝑝+(𝑥−𝑦)

{ℎ 𝑥 − 𝜒𝑖 + 𝜒𝑖 + ℎ(𝑦 + 𝜒𝑖 − 𝜒𝑗)} 

 𝐿♮-convex functions: 

• For all 𝑥, 𝑦 ∈ ℤ𝑛, function ℎ: ℤ𝑛 → ℤ ∪ {+∞} is 𝐿♮-convex if 
it satisfies: 

ℎ 𝑥 + ℎ 𝑦 ≥ ℎ
𝑥 + 𝑦

2
+ ℎ(

𝑥 + 𝑦

2
) 
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 Given two functions 𝑔, ℎ: ℤ𝑛 → ℝ ∪ {+∞},  

• The effective domain of 𝑔 is 𝑑𝑜𝑚𝑍𝑔 ≔ {𝑥 ∈ ℤ𝑛: 𝑔 𝑥 < +∞} 

• The convex closure 𝑔 𝑥 : ℝ𝑛 → ℝ ∪ {+∞} of 𝑔 is: 

𝑔 𝑥 = sup{𝑠 𝑥 : 𝑠 is an affine function, 𝑠 𝑦 ≤ 𝑔 𝑦 (𝑦 ∈ ℤ𝑛)} 

• A convex extension 𝑔 : ℝ𝑛 → ℝ ∪ {+∞} of 𝑔 is a convex 

function with the same function value on 𝑥 ∈ ℤ𝑛 

• Let 𝑓 𝑥 ≔ 𝑔 (𝑥) − ℎ (𝑥). Then 𝑓 𝑥 ≔ 𝑔 𝑥 − ℎ 𝑥 , ∀𝑥 ∈
ℤ𝑛. Thus: 

inf
𝑥∈ℤ𝑛

𝑔 𝑥 − ℎ(𝑥) = inf
𝑥∈ℤ𝑛

𝑓 𝑥 ≥ inf
𝑥∈ℝ𝑛

𝑓 𝑥  

 For convex extensible functions 𝑔, ℎ: ℤ𝑛 → ℝ ∪ {+∞} with 𝑑𝑜𝑚𝑍𝑔 

bounded and 𝑑𝑜𝑚𝑧𝑔 ⊆ 𝑑𝑜𝑚𝑍ℎ, it is: 

inf
𝑧∈ℤ𝑛

{𝑔 𝑧 − ℎ(𝑧)} = inf
𝑥∈ℝ𝑛

{𝑔 𝑥 − ℎ (𝑥)} 

where 𝑔 𝑥  is the linear closure of 𝑔(𝑥) and ℎ (𝑥) is any convex 

extension of ℎ(𝑥) 

Continuous relaxations for discrete 

DC programming 
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 Monotonicity with respect to some variables (partial monotonicity) 

or to all variables (total monotonicity) is a natural property 

exhibited by many problems encountered in applications. The most 

general problem of d.i. monotonic optimization is: 

min 𝑓 𝑥 − 𝑔(𝑥) 

s.t. 𝑓𝑖 𝑥 − 𝑔𝑖 𝑥 ≤ 0 , 𝑖 = 1, … , 𝑚 

where all functions are increasing in ℝ+
𝑛  

 

 Assume without loss of generality that 𝑔 𝑥 = 0 

 

 ∀𝑖 𝑓𝑖 𝑥 − 𝑔𝑖 𝑥 ≤ 0 ⇔ max
1≤𝑖≤𝑚

{𝑓𝑖 𝑥 − 𝑔𝑖(𝑥)} ≤ 0 ⇔ 𝐹 𝑥 −

𝐺 𝑥 ≤ 0, where: 

𝐹 𝑥 = max
𝑖

{𝑓𝑖 𝑥 +  𝑔𝑗(𝑥)

𝑖≠𝑗

} , 𝐺 𝑥 =  𝑔𝑖(𝑥)

𝑖

 

 

 𝐹(𝑥) and 𝐺 𝑥  are both increasing functions 
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 Problem reduces to: 

min 𝑓(𝑥) 

s.t.   𝐹 𝑥 + 𝑡 ≤ 𝐹(𝑏), 

𝐺 𝑥 + 𝑡 ≥ 𝐹 𝑏 , 

0 ≤ 𝑡 ≤ 𝐹 𝑏 − 𝐹 0 , 

𝑥 ∈ 0, 𝑏 ⊂ ℝ+
𝑛  

 

 A set 𝐺 ⊆ ℝ+
𝑛  is normal if for any two points 𝑥, 𝑥′ such that 𝑥′ ≤ 𝑥, 

if 𝑥 ∈ 𝐺, then 𝑥′ ∈ 𝐺 

 

 Numerous global optimization problems can be reformulated as 

monotonic optimization problems. Such problems include 

multiplicative programming, nonconvex quadratic programming, 

polynomial programming and Lipschitz optimization problems 
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Overview 

 Consider the following problems: 

min
𝑥∈𝐷⊆𝑅𝑛

𝐹 𝑥 = 𝑓1 𝑥 + ⋯ + 𝑓𝑚(𝑥)     [1] 

min
𝑥∈𝐷⊆𝑅𝑛

𝑓 𝑥 = 𝑓1 𝑥 , … , 𝑓𝑚 𝑥         [2] 

[2] is a multi-objective optimization problem 

Let 𝐸 𝑓, 𝐷 ⊆ 𝐷 be the set of all Pareto optimal solutions in 𝐷 

 

 Theorem: If 𝑥  is an optimal solution of problem [1], then 

𝑥 ∈ 𝐸(𝑓, 𝐷) of problem [2] 

 

 Theorem: Let ℎ𝑖(𝑡) be monotonic increasing functions for 

𝑖 = 1, … , 𝑚. Consider the multi-objective optimization problem 

min
𝑥∈𝐷⊆𝑅𝑛

ℎ 𝑥 = ℎ1(𝑓1 𝑥 ), … , ℎ𝑚(𝑓𝑚 𝑥 )         [3] 

Then 𝐸 𝑓, 𝐷 = 𝐸(ℎ, 𝐷). 
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Overview 

 Theorem: For any integer 𝑛 ≥ 2 there are continuous real functions 

𝜓𝑝,𝑞(𝑥) on the closed unit interval 𝐸1 = [0,1] such that each 

continuous real functions 𝑓(𝑥1, … , 𝑥𝑛) on the 𝑛-dimensional unit 

cube 𝐸𝑛 is representable as 

𝑓 𝑥1, … , 𝑥𝑛 =  𝜒𝑞[ 𝜓𝑝𝑞(𝑥𝑝)

𝑛

𝑝=1

]

2𝑛+1

𝑞=1

 

where 𝜒𝑞(𝑦) are continuous real functions 

 

 For 𝑛 = 3, by setting: 

𝜑𝑞 𝑥1, 𝑥2 = 𝜓1𝑞 𝑥1 + 𝜓2𝑞(𝑥2) 

ℎ𝑞 𝑦, 𝑥3 = 𝜒𝑞[𝑦 + 𝜓3𝑞(𝑥3)] 

we obtain from the above: 

𝑓 𝑥1, 𝑥2, 𝑥3 =  ℎ𝑞[𝜑𝑞 𝑥1, 𝑥2 , 𝑥3]

7

𝑞=1
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 An undirected connected graph 𝐺 = (𝑉, 𝐸) with at least 𝑘 + 1 

vertices is 𝑘-vertex-connected if it remains connected whenever 

fewer than 𝑘 vertices are removed 

 The problem of finding a minimum weight 𝑘-vertex-connected 

subgraph is NP-hard when 𝑘 ≥ 2 

 The minimal 𝑘-connected spanning subgraph problem is 

considered instead 

 Boros et al considered how to generate all minimal 𝑘-vertex-

connected spanning subgraphs in incremental polynomial time 

 We consider a routing system characterized by a minimal 2-

vertex-connected spanning subgraph with some high-degree 

vertices. 

• We name it the degree-concentrated maximum fault-

tolerant spanning subgraph problem (MAX-DFSS) 

• Finding a maximum weight of minimal 2-vertex-connected 

spanning subgraph is also hard to solve 
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Formulation 

 Given an undirected graph 𝐺 = (𝑉, 𝐸), we need to find a minimal 

2-connected spanning subgraph. The aim is to maximize the sum of 

the squares of the degree of each vertex: 

max  deg𝑆 𝑣 2

𝑣∈𝑉

 

s.t. 𝑆 : minimal 2-connected spanning subgraph 

 

 This problem is the fault tolerant version of the problem of fault 

tolerant version for the degree-concentrated spanning tree problem 

(DST) of (Maehara et al, 2015) 

 

 It can be applied in spanning tree routing system (Tanenbaum, 

2010). 

 

 In (Maehara et al, 2015), the monitoring of network 

communications is considered 
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Algorithms 

 Greedy algorithm for the MAX-DFSS problem: 

 

• Input. 2-connected graph 𝐺 = (𝑉, 𝐸) 

• Output. A minimal 2-connected spanning subgraph 𝑆 ⊆ 𝐺 

• Step 1  𝑆 ← 𝐺 

• Step 2  Repeat 

 Step 2.1  If  𝑆 is minimal 2-connected, go to step 3. 

 Step 2.2  Select an edge 𝑒∗ ∈ 

arg max
𝑒∈𝐸(𝑆)

𝑆−𝑒 𝑖𝑠 2−𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

 deg𝑆−𝑒 𝑣 2

𝑣∈𝑉(𝑆−𝑒)

 

 

 Step 2.3  𝑆 ← 𝑆 − 𝑒∗ 

• Step 3  Output 𝑆 
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DC Formulation 

 Now we formulate the problem as a DC program. 

Let 𝑀 ∈ ℝ 𝑉 × 𝐸  be the incidence matrix for graph 𝐺. 

 Let 𝑥𝑒 ∈ 0,1 , ∀𝑒 ∈ 𝐸 indicate whether edge 𝑒 is chosen into the 

subgraph or not. 

For any 𝑥 ∈ 0,1 𝐸  we obtain a subgraph 𝑆 = 𝑒 ∈ 𝐸: 𝑥𝑒 = 1  

𝑀𝑥 = deg𝑆  𝑣1 , deg𝑆  𝑣2 , . . , deg𝑆  𝑣𝑛
𝑇 

 The objective function  deg𝑆 𝑣 2
𝑣∈𝑉  can be formulated as 𝑥𝑇𝐴𝑥, 

where 𝐴 = 𝑀𝑇𝑀 ∈ ℝ 𝐸 × 𝐸 . 𝐴 is positive semi-definite. 

 The problem becomes: 

max   𝑥𝑇𝐴𝑥 

s.t. 𝑒 ∈ 𝐸: 𝑥𝑒 = 1 is a minimal 2-connected spanning 

subgraph 

 If 𝑔 𝑥 =  
0, 𝑒 ∈ 𝐸: 𝑥𝑒 = 1 is a minimal 2−connected spanning subgraph

+∞, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

the problem is equivalent to min
𝑥∈ 0,1 𝑛

𝑔 𝑥 − 𝑥𝑇𝐴𝑥 



MAX-DFSS Problem 

Panos M. Pardalos 23 

DC Algorithm 

 DC algorithm for the MAX-DFSS problem: 

 

• Step 0  Choose 𝑥 0 ∈ 𝑑𝑜𝑚𝑅(𝑔) to be an initial solution. Set 

𝑡 ≔ 0 

• Step 1  Compute 𝑝 𝑡 ∈ 𝜕ℎ(𝑥 𝑡 ) 

• Step 2  Compute 𝑥 𝑡+1 ∈ 𝜕𝑔∗(𝑝 𝑡 ), i.e.,, 

𝑥 𝑡+1 = arg min
𝑦

{𝑔 𝑦 − 𝑝 𝑡 , 𝑦 } 

• Step 3  If 𝑓 𝑥 𝑡+1 = 𝑓 𝑥 𝑡 , go to Step 4. Otherwise, set 

𝑡 ≔ 𝑡 + 1, go to Step 1 

• Step 4  Call Greedy algorithm for the MAX-DFSS on the graph 

represented by 𝑥 𝑡 . 
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Complexity Evaluation 

 𝑥 𝑡+1  can be obtained by solving a maximum weighted minimal 2-

connected spanning subgraph with edge weight 𝑝𝑒
𝑡

 for 𝑒 ∈ 𝐸 

 

 

 Instead, we can find a 2-connected subgraph with at most 2 𝑉 − 2 

edges and the total weight is at least 0.5 times the maximum total 

weight of minimal 2-connected spanning subgraph. 

 

 

 Lemma: Suppose 𝑆∗ is a maximum weight minimal 2-connected 

spanning subgraph of 𝐺 and 𝑇∗ is a maximum weight spanning tree 

of 𝑆∗. Then 𝑝 𝑇∗ ≥ 𝑝(𝑆∗)/2. 

 

 

 Therefore, the complexity of the following algorithm is 𝑂( 𝑉 3) 
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Algorithms 

 Algorithm for the MAX-DFSS problem: 

 

• Input  2-connected graph 𝐺 = (𝑉, 𝐸, 𝑝) where 𝑝 is the edge 

weight vector 

• Output  2-connected spanning subgraph 𝑆 ⊆ 𝐺 with at most 2|𝑉| 
edges 

• Step  1 Find out a maximum spanning tree 𝑇 of 𝐺 by Prim 

algorithm 

• Step 2  𝑆 ← 𝑇 

• Step 3  Repeat 

Step 3.1  Perform block decomposition for 𝑆. If it has only one 

block, go to step 4. 

Step 3.2  Search the maximal weighted edge 𝑒 ∈ 𝐸\S striding 

over different blocks 

Step 3.3  𝑆 ← 𝑆 + 𝑒 

• Step 4  Output 𝑆 
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 Computational results can be found in: 

 

 

Solving the degree-concentrated fault-tolerant spanning subgraph 

problem by DC programming Chenchen Wu, Yishui Wang, Panos M. 

Pardalos, Dachuan Xu, Zhao Zhang, Ding-Zhu Du (submitted, 2017) 

Computational results 


