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General 

 Decomposition techniques for solving optimization problems have 

been used as early as in the 1960’s for linear mixed integer and 

convex optimization 

 

 

 Well known techniques include: 

• Dantzig-Wolfe 

• Benders 

 

 

 The choice of the decomposition (of objective function) influences 

the choice of the algorithm used to solve the corresponding 

optimization problem 
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Overview 

 Separable optimization: 

min
𝑥∈ℝ𝑛

𝐹0(𝑥) 

s.t. 𝐹𝑖 𝑥 ≤ 𝑏𝑖  , 𝑖 = 1, … , 𝑚 

𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖  , 𝑖 = 1, … , 𝑚 

where each 𝐹𝑖 𝑥 =  𝐹𝑖𝑗 𝑥𝑗 , 𝑖 = 0,1, … , 𝑚𝑛
𝑗=1  

 

 

 Factorable optimization: 

See book: 

Garth, McCormick, “Nonlinear Programming: Algorithms and 

Applications”, 1983 
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Overview 

 Almost Block Separable Optimization: 

min
𝑥∈ℝ𝑛

𝑓 𝑥 = 𝑓1 𝑢, 𝑦 + 𝑓2(𝑣, 𝑦) 

where 𝑥 = 𝑢, 𝑣, 𝑦 ∈ ℝ𝑛 

and 𝑢 ∈ ℝ𝑛1 , 𝑣 ∈ ℝ𝑛2 , 𝑦 ∈ ℝ𝑛3  , 𝑛1 + 𝑛2 + 𝑛3 = 𝑛 

𝑦 are called complicated variables [usually 𝑛1, 𝑛2 ≫ 𝑛3] 

 

 

 Let 𝜑1 𝑦 = min
𝑢

𝑓1(𝑢, 𝑦) , 𝜑2 𝑦 = min
𝑣

𝑓2(𝑣, 𝑦) 

Then the above problem is equivalent to: 

min
𝑦

𝜑1 𝑦 + 𝜑2(𝑦) 

Note that if 𝑓1, 𝑓2 are convex, then 𝜑1(𝑦) and φ2(𝑦) are convex 



DC Optimization Problems 

Panos M. Pardalos 8 

Overview 

 Many powerful techniques in global optimization are based on the 

fact that many objective functions can be expressed as the 

difference of two convex functions (so called d.c. functions) 

 If 𝐷(𝑥) is an objective function in ℝ𝑛, then the representation 

𝐷 𝑥 = 𝑝 𝑥 − 𝑞(𝑥), where 𝑝, 𝑞 are convex function is said to be a 

d.c. decomposition of 𝐷 

 The space of d.c. functions is closed under many operations 

frequently encountered in optimization (i.e., sum, product, max, 

min, etc) 

 Hartman 1959: Every locally d.c. function is d.c. 

 For simplicity of notation, consider the d.c. program: 

min 𝑓 𝑥 − 𝑔(𝑥) 

s.t. 𝑥 ∈ 𝐷 

where 𝐷 is a polytope in ℝ𝑛 with nonempty interior and 𝑓 and 𝑔 

are convex functions on ℝ𝑛 
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Overview 

 By introducing an additional variable 𝑡, the above problem can be 

converted into the equivalent problem of Global Concave 

Minimization: 

min 𝑡 − 𝑔(𝑥) 

s.t.  𝑥 ∈ 𝐷, 𝑓 𝑥 − 𝑡 ≤ 0 

 

with concave objective function 𝑡 − 𝑔(𝑥) and convex feasible set 

{ 𝑥, 𝑡 ∈ ℝ𝑛+1: 𝑥 ∈ 𝐷, 𝑓 𝑥 − 𝑡 ≤ 0}. 

 

 If (𝑥∗, 𝑡∗) is an optimal solution of the above program then 𝑥∗ is an 

optimal solution of the initial d.c. program and 𝑡∗ = 𝑓(𝑥∗) 

 

 Therefore, any D.C. program can be solved by an algorithm for 

minimizing a concave function over a convex set. 
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 DC function: 

A real-valued function 𝑓: ℝ𝑛 ⟶ ℝ ∪ +∞, −∞  s.t. 

𝑓 𝑥 = 𝑔 𝑥 − ℎ 𝑥 , ∀𝑥 ∈ ℝ𝑛 

where 𝑔: ℝ𝑛 ⟶ ℝ ∪ +∞  and ℎ: ℝ𝑛 ⟶ ℝ ∪ +∞  are convex 

functions 

 

 

 DC program: 

A program of the form: 

min 𝑓0(𝑥) 

s. t. 𝑓𝑖 𝑥 ≤ 0 , 𝑖 = 1,2, … , 𝑛 

where 𝑓𝑖(𝑥) are convex functions (𝑖 = 0,1,2, … , 𝑛) 

 

• It is equivalent to the unconstrained DC program: 

inf
𝑥∈ℝ𝑛

𝑓 𝑥 = 𝑔 𝑥 − ℎ(𝑥) 
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 Subgradients: 

A vector 𝑥∗ is a subgradient of a convex function ℎ at a point 𝑥 if: 

ℎ 𝑧 ≥ ℎ 𝑥 + 𝑥∗, 𝑧 − 𝑥  

• The subdifferential of ℎ(𝑥) is the set of all subgradients 

 

 

 Conjugate functions: 

A conjugate function ℎ∗: ℝ𝑛 ⟶ ℝ ∪ {+∞} of a convex function 

ℎ: ℝ𝑛 ⟶ ℝ ∪ {+∞} is : 

ℎ∗ 𝑝 ≔ sup
𝑦∈ℝ𝑛

{ 𝑦, 𝑥 − ℎ(𝑥)} 

• The conjugate function ℎ∗(𝑦) of a function ℎ(𝑥) is convex 

• If ℎ(𝑥) is a closed proper convex function, then ℎ∗∗ = ℎ 

• Given closed convex functions 𝑔, ℎ: ℝ𝑛 → ℝ ∪ {+∞}, it is: 

inf
𝑥∈ℝ𝑛

{𝑔 𝑥 − ℎ(𝑥)} = inf
𝑝∈ℝ𝑛

{ℎ∗ 𝑝 − 𝑔∗(𝑝)} 
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 DC Algorithm: 

 

• Step 0 Find an inintial solution 𝑥0 ∈ 𝑑𝑜𝑚𝑅 𝑔 . Set 𝑡 ≔ 0. 

 

• Step 1 Find 𝑝(𝑡) ∈ 𝜕𝑅ℎ(𝑥(𝑡)). 

 

• Step 2 Find 𝑥(𝑡+1) ∈ 𝜕𝑅𝑔∗(𝑝(𝑡)), where 𝑔∗ is the conjugate of 

𝑔. 

 

• Step 3 If 𝑓 𝑥 𝑡+1 = 𝑓(𝑥(𝑡)), stop. Otherwise, set 𝑡 ≔ 𝑡 + 1, 

go to Step 1. 

 

where 𝑥(𝑡+1) = arg min
𝑦∈ℝ𝑛

{𝑔 𝑦 − ℎ 𝑥𝑡 − 𝑝, 𝑦 − 𝑥(𝑡) } 
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 The positive support of 𝑥 ∈ ℤ𝑛 is: 

supp+(𝑥) ≔ {𝑖 ∈ 1,2, … , 𝑛 : 𝑥𝑖 > 0} 

 The indicator vector 𝜒𝑆 is defined by: 

𝜒𝑆 𝑖 =  
1, 𝑖 ∈ 𝑆
0, 𝑖 ∉ 𝑆

 

 There are two common discrete functions: 

 𝑀♮-convex functions: 

• For all 𝑥, 𝑦 ∈ ℤ𝑛 and 𝑖 ∈ 𝑠𝑢𝑝𝑝+(𝑥 − 𝑦), function ℎ: ℤ𝑛 → ℤ ∪

{+∞} is 𝑀♮-convex if it satisfies: 

ℎ 𝑥 + ℎ 𝑦 ≥ min ℎ 𝑥 − 𝜒𝑖 + ℎ 𝑥 + 𝜒𝑖 , 

min
𝑗∈𝑠𝑢𝑝𝑝+(𝑥−𝑦)

{ℎ 𝑥 − 𝜒𝑖 + 𝜒𝑖 + ℎ(𝑦 + 𝜒𝑖 − 𝜒𝑗)} 

 𝐿♮-convex functions: 

• For all 𝑥, 𝑦 ∈ ℤ𝑛, function ℎ: ℤ𝑛 → ℤ ∪ {+∞} is 𝐿♮-convex if 
it satisfies: 

ℎ 𝑥 + ℎ 𝑦 ≥ ℎ
𝑥 + 𝑦

2
+ ℎ(

𝑥 + 𝑦

2
) 
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 Given two functions 𝑔, ℎ: ℤ𝑛 → ℝ ∪ {+∞},  

• The effective domain of 𝑔 is 𝑑𝑜𝑚𝑍𝑔 ≔ {𝑥 ∈ ℤ𝑛: 𝑔 𝑥 < +∞} 

• The convex closure 𝑔 𝑥 : ℝ𝑛 → ℝ ∪ {+∞} of 𝑔 is: 

𝑔 𝑥 = sup{𝑠 𝑥 : 𝑠 is an affine function, 𝑠 𝑦 ≤ 𝑔 𝑦 (𝑦 ∈ ℤ𝑛)} 

• A convex extension 𝑔 : ℝ𝑛 → ℝ ∪ {+∞} of 𝑔 is a convex 

function with the same function value on 𝑥 ∈ ℤ𝑛 

• Let 𝑓 𝑥 ≔ 𝑔 (𝑥) − ℎ (𝑥). Then 𝑓 𝑥 ≔ 𝑔 𝑥 − ℎ 𝑥 , ∀𝑥 ∈
ℤ𝑛. Thus: 

inf
𝑥∈ℤ𝑛

𝑔 𝑥 − ℎ(𝑥) = inf
𝑥∈ℤ𝑛

𝑓 𝑥 ≥ inf
𝑥∈ℝ𝑛

𝑓 𝑥  

 For convex extensible functions 𝑔, ℎ: ℤ𝑛 → ℝ ∪ {+∞} with 𝑑𝑜𝑚𝑍𝑔 

bounded and 𝑑𝑜𝑚𝑧𝑔 ⊆ 𝑑𝑜𝑚𝑍ℎ, it is: 

inf
𝑧∈ℤ𝑛

{𝑔 𝑧 − ℎ(𝑧)} = inf
𝑥∈ℝ𝑛

{𝑔 𝑥 − ℎ (𝑥)} 

where 𝑔 𝑥  is the linear closure of 𝑔(𝑥) and ℎ (𝑥) is any convex 

extension of ℎ(𝑥) 

Continuous relaxations for discrete 

DC programming 
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 Monotonicity with respect to some variables (partial monotonicity) 

or to all variables (total monotonicity) is a natural property 

exhibited by many problems encountered in applications. The most 

general problem of d.i. monotonic optimization is: 

min 𝑓 𝑥 − 𝑔(𝑥) 

s.t. 𝑓𝑖 𝑥 − 𝑔𝑖 𝑥 ≤ 0 , 𝑖 = 1, … , 𝑚 

where all functions are increasing in ℝ+
𝑛  

 

 Assume without loss of generality that 𝑔 𝑥 = 0 

 

 ∀𝑖 𝑓𝑖 𝑥 − 𝑔𝑖 𝑥 ≤ 0 ⇔ max
1≤𝑖≤𝑚

{𝑓𝑖 𝑥 − 𝑔𝑖(𝑥)} ≤ 0 ⇔ 𝐹 𝑥 −

𝐺 𝑥 ≤ 0, where: 

𝐹 𝑥 = max
𝑖

{𝑓𝑖 𝑥 +  𝑔𝑗(𝑥)

𝑖≠𝑗

} , 𝐺 𝑥 =  𝑔𝑖(𝑥)

𝑖

 

 

 𝐹(𝑥) and 𝐺 𝑥  are both increasing functions 
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 Problem reduces to: 

min 𝑓(𝑥) 

s.t.   𝐹 𝑥 + 𝑡 ≤ 𝐹(𝑏), 

𝐺 𝑥 + 𝑡 ≥ 𝐹 𝑏 , 

0 ≤ 𝑡 ≤ 𝐹 𝑏 − 𝐹 0 , 

𝑥 ∈ 0, 𝑏 ⊂ ℝ+
𝑛  

 

 A set 𝐺 ⊆ ℝ+
𝑛  is normal if for any two points 𝑥, 𝑥′ such that 𝑥′ ≤ 𝑥, 

if 𝑥 ∈ 𝐺, then 𝑥′ ∈ 𝐺 

 

 Numerous global optimization problems can be reformulated as 

monotonic optimization problems. Such problems include 

multiplicative programming, nonconvex quadratic programming, 

polynomial programming and Lipschitz optimization problems 
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Overview 

 Consider the following problems: 

min
𝑥∈𝐷⊆𝑅𝑛

𝐹 𝑥 = 𝑓1 𝑥 + ⋯ + 𝑓𝑚(𝑥)     [1] 

min
𝑥∈𝐷⊆𝑅𝑛

𝑓 𝑥 = 𝑓1 𝑥 , … , 𝑓𝑚 𝑥         [2] 

[2] is a multi-objective optimization problem 

Let 𝐸 𝑓, 𝐷 ⊆ 𝐷 be the set of all Pareto optimal solutions in 𝐷 

 

 Theorem: If 𝑥  is an optimal solution of problem [1], then 

𝑥 ∈ 𝐸(𝑓, 𝐷) of problem [2] 

 

 Theorem: Let ℎ𝑖(𝑡) be monotonic increasing functions for 

𝑖 = 1, … , 𝑚. Consider the multi-objective optimization problem 

min
𝑥∈𝐷⊆𝑅𝑛

ℎ 𝑥 = ℎ1(𝑓1 𝑥 ), … , ℎ𝑚(𝑓𝑚 𝑥 )         [3] 

Then 𝐸 𝑓, 𝐷 = 𝐸(ℎ, 𝐷). 
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Overview 

 Theorem: For any integer 𝑛 ≥ 2 there are continuous real functions 

𝜓𝑝,𝑞(𝑥) on the closed unit interval 𝐸1 = [0,1] such that each 

continuous real functions 𝑓(𝑥1, … , 𝑥𝑛) on the 𝑛-dimensional unit 

cube 𝐸𝑛 is representable as 

𝑓 𝑥1, … , 𝑥𝑛 =  𝜒𝑞[ 𝜓𝑝𝑞(𝑥𝑝)

𝑛

𝑝=1

]

2𝑛+1

𝑞=1

 

where 𝜒𝑞(𝑦) are continuous real functions 

 

 For 𝑛 = 3, by setting: 

𝜑𝑞 𝑥1, 𝑥2 = 𝜓1𝑞 𝑥1 + 𝜓2𝑞(𝑥2) 

ℎ𝑞 𝑦, 𝑥3 = 𝜒𝑞[𝑦 + 𝜓3𝑞(𝑥3)] 

we obtain from the above: 

𝑓 𝑥1, 𝑥2, 𝑥3 =  ℎ𝑞[𝜑𝑞 𝑥1, 𝑥2 , 𝑥3]

7

𝑞=1
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 An undirected connected graph 𝐺 = (𝑉, 𝐸) with at least 𝑘 + 1 

vertices is 𝑘-vertex-connected if it remains connected whenever 

fewer than 𝑘 vertices are removed 

 The problem of finding a minimum weight 𝑘-vertex-connected 

subgraph is NP-hard when 𝑘 ≥ 2 

 The minimal 𝑘-connected spanning subgraph problem is 

considered instead 

 Boros et al considered how to generate all minimal 𝑘-vertex-

connected spanning subgraphs in incremental polynomial time 

 We consider a routing system characterized by a minimal 2-

vertex-connected spanning subgraph with some high-degree 

vertices. 

• We name it the degree-concentrated maximum fault-

tolerant spanning subgraph problem (MAX-DFSS) 

• Finding a maximum weight of minimal 2-vertex-connected 

spanning subgraph is also hard to solve 
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Formulation 

 Given an undirected graph 𝐺 = (𝑉, 𝐸), we need to find a minimal 

2-connected spanning subgraph. The aim is to maximize the sum of 

the squares of the degree of each vertex: 

max  deg𝑆 𝑣 2

𝑣∈𝑉

 

s.t. 𝑆 : minimal 2-connected spanning subgraph 

 

 This problem is the fault tolerant version of the problem of fault 

tolerant version for the degree-concentrated spanning tree problem 

(DST) of (Maehara et al, 2015) 

 

 It can be applied in spanning tree routing system (Tanenbaum, 

2010). 

 

 In (Maehara et al, 2015), the monitoring of network 

communications is considered 
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Algorithms 

 Greedy algorithm for the MAX-DFSS problem: 

 

• Input. 2-connected graph 𝐺 = (𝑉, 𝐸) 

• Output. A minimal 2-connected spanning subgraph 𝑆 ⊆ 𝐺 

• Step 1  𝑆 ← 𝐺 

• Step 2  Repeat 

 Step 2.1  If  𝑆 is minimal 2-connected, go to step 3. 

 Step 2.2  Select an edge 𝑒∗ ∈ 

arg max
𝑒∈𝐸(𝑆)

𝑆−𝑒 𝑖𝑠 2−𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

 deg𝑆−𝑒 𝑣 2

𝑣∈𝑉(𝑆−𝑒)

 

 

 Step 2.3  𝑆 ← 𝑆 − 𝑒∗ 

• Step 3  Output 𝑆 
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DC Formulation 

 Now we formulate the problem as a DC program. 

Let 𝑀 ∈ ℝ 𝑉 × 𝐸  be the incidence matrix for graph 𝐺. 

 Let 𝑥𝑒 ∈ 0,1 , ∀𝑒 ∈ 𝐸 indicate whether edge 𝑒 is chosen into the 

subgraph or not. 

For any 𝑥 ∈ 0,1 𝐸  we obtain a subgraph 𝑆 = 𝑒 ∈ 𝐸: 𝑥𝑒 = 1  

𝑀𝑥 = deg𝑆  𝑣1 , deg𝑆  𝑣2 , . . , deg𝑆  𝑣𝑛
𝑇 

 The objective function  deg𝑆 𝑣 2
𝑣∈𝑉  can be formulated as 𝑥𝑇𝐴𝑥, 

where 𝐴 = 𝑀𝑇𝑀 ∈ ℝ 𝐸 × 𝐸 . 𝐴 is positive semi-definite. 

 The problem becomes: 

max   𝑥𝑇𝐴𝑥 

s.t. 𝑒 ∈ 𝐸: 𝑥𝑒 = 1 is a minimal 2-connected spanning 

subgraph 

 If 𝑔 𝑥 =  
0, 𝑒 ∈ 𝐸: 𝑥𝑒 = 1 is a minimal 2−connected spanning subgraph

+∞, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

the problem is equivalent to min
𝑥∈ 0,1 𝑛

𝑔 𝑥 − 𝑥𝑇𝐴𝑥 
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DC Algorithm 

 DC algorithm for the MAX-DFSS problem: 

 

• Step 0  Choose 𝑥 0 ∈ 𝑑𝑜𝑚𝑅(𝑔) to be an initial solution. Set 

𝑡 ≔ 0 

• Step 1  Compute 𝑝 𝑡 ∈ 𝜕ℎ(𝑥 𝑡 ) 

• Step 2  Compute 𝑥 𝑡+1 ∈ 𝜕𝑔∗(𝑝 𝑡 ), i.e.,, 

𝑥 𝑡+1 = arg min
𝑦

{𝑔 𝑦 − 𝑝 𝑡 , 𝑦 } 

• Step 3  If 𝑓 𝑥 𝑡+1 = 𝑓 𝑥 𝑡 , go to Step 4. Otherwise, set 

𝑡 ≔ 𝑡 + 1, go to Step 1 

• Step 4  Call Greedy algorithm for the MAX-DFSS on the graph 

represented by 𝑥 𝑡 . 
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Complexity Evaluation 

 𝑥 𝑡+1  can be obtained by solving a maximum weighted minimal 2-

connected spanning subgraph with edge weight 𝑝𝑒
𝑡

 for 𝑒 ∈ 𝐸 

 

 

 Instead, we can find a 2-connected subgraph with at most 2 𝑉 − 2 

edges and the total weight is at least 0.5 times the maximum total 

weight of minimal 2-connected spanning subgraph. 

 

 

 Lemma: Suppose 𝑆∗ is a maximum weight minimal 2-connected 

spanning subgraph of 𝐺 and 𝑇∗ is a maximum weight spanning tree 

of 𝑆∗. Then 𝑝 𝑇∗ ≥ 𝑝(𝑆∗)/2. 

 

 

 Therefore, the complexity of the following algorithm is 𝑂( 𝑉 3) 
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Algorithms 

 Algorithm for the MAX-DFSS problem: 

 

• Input  2-connected graph 𝐺 = (𝑉, 𝐸, 𝑝) where 𝑝 is the edge 

weight vector 

• Output  2-connected spanning subgraph 𝑆 ⊆ 𝐺 with at most 2|𝑉| 
edges 

• Step  1 Find out a maximum spanning tree 𝑇 of 𝐺 by Prim 

algorithm 

• Step 2  𝑆 ← 𝑇 

• Step 3  Repeat 

Step 3.1  Perform block decomposition for 𝑆. If it has only one 

block, go to step 4. 

Step 3.2  Search the maximal weighted edge 𝑒 ∈ 𝐸\S striding 

over different blocks 

Step 3.3  𝑆 ← 𝑆 + 𝑒 

• Step 4  Output 𝑆 
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 Computational results can be found in: 

 

 

Solving the degree-concentrated fault-tolerant spanning subgraph 

problem by DC programming Chenchen Wu, Yishui Wang, Panos M. 

Pardalos, Dachuan Xu, Zhao Zhang, Ding-Zhu Du (submitted, 2017) 

Computational results 


