
On Objective Function

Representation Methods in

Global Optimization

Panos M. Pardalos

Center for Applied Optimization, Department of Industrial and Systems

Engineering, University of Florida

Gainesville, FL USA

and

LATNA, National Research University Higher School of Economics

http://ww.ise.ufl.edu/pardalos

http://ww.ise.ufl.edu/pardalos
http://ww.ise.ufl.edu/pardalos
http://ww.ise.ufl.edu/pardalos

This talk is dedicated to the memory of my

friend and colleague Chris Floudas

China, 2013

University of Florida, 2015

Decomposition Techniques

Panos M. Pardalos 5

General

 Decomposition techniques for solving optimization problems have

been used as early as in the 1960’s for linear mixed integer and

convex optimization

 Well known techniques include:

• Dantzig-Wolfe

• Benders

 The choice of the decomposition (of objective function) influences

the choice of the algorithm used to solve the corresponding

optimization problem

Decomposition Techniques

Panos M. Pardalos 6

Overview

 Separable optimization:

min
𝑥∈ℝ𝑛

𝐹0(𝑥)

s.t. 𝐹𝑖 𝑥 ≤ 𝑏𝑖 , 𝑖 = 1, … , 𝑚

𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖 , 𝑖 = 1, … , 𝑚

where each 𝐹𝑖 𝑥 = 𝐹𝑖𝑗 𝑥𝑗 , 𝑖 = 0,1, … , 𝑚𝑛
𝑗=1

 Factorable optimization:

See book:

Garth, McCormick, “Nonlinear Programming: Algorithms and

Applications”, 1983

Decomposition Techniques

Panos M. Pardalos 7

Overview

 Almost Block Separable Optimization:

min
𝑥∈ℝ𝑛

𝑓 𝑥 = 𝑓1 𝑢, 𝑦 + 𝑓2(𝑣, 𝑦)

where 𝑥 = 𝑢, 𝑣, 𝑦 ∈ ℝ𝑛

and 𝑢 ∈ ℝ𝑛1 , 𝑣 ∈ ℝ𝑛2 , 𝑦 ∈ ℝ𝑛3 , 𝑛1 + 𝑛2 + 𝑛3 = 𝑛

𝑦 are called complicated variables [usually 𝑛1, 𝑛2 ≫ 𝑛3]

 Let 𝜑1 𝑦 = min
𝑢

𝑓1(𝑢, 𝑦) , 𝜑2 𝑦 = min
𝑣

𝑓2(𝑣, 𝑦)

Then the above problem is equivalent to:

min
𝑦

𝜑1 𝑦 + 𝜑2(𝑦)

Note that if 𝑓1, 𝑓2 are convex, then 𝜑1(𝑦) and φ2(𝑦) are convex

DC Optimization Problems

Panos M. Pardalos 8

Overview

 Many powerful techniques in global optimization are based on the

fact that many objective functions can be expressed as the

difference of two convex functions (so called d.c. functions)

 If 𝐷(𝑥) is an objective function in ℝ𝑛, then the representation

𝐷 𝑥 = 𝑝 𝑥 − 𝑞(𝑥), where 𝑝, 𝑞 are convex function is said to be a

d.c. decomposition of 𝐷

 The space of d.c. functions is closed under many operations

frequently encountered in optimization (i.e., sum, product, max,

min, etc)

 Hartman 1959: Every locally d.c. function is d.c.

 For simplicity of notation, consider the d.c. program:

min 𝑓 𝑥 − 𝑔(𝑥)

s.t. 𝑥 ∈ 𝐷

where 𝐷 is a polytope in ℝ𝑛 with nonempty interior and 𝑓 and 𝑔

are convex functions on ℝ𝑛

DC Optimization Problems

Panos M. Pardalos 9

Overview

 By introducing an additional variable 𝑡, the above problem can be

converted into the equivalent problem of Global Concave

Minimization:

min 𝑡 − 𝑔(𝑥)

s.t. 𝑥 ∈ 𝐷, 𝑓 𝑥 − 𝑡 ≤ 0

with concave objective function 𝑡 − 𝑔(𝑥) and convex feasible set

{ 𝑥, 𝑡 ∈ ℝ𝑛+1: 𝑥 ∈ 𝐷, 𝑓 𝑥 − 𝑡 ≤ 0}.

 If (𝑥∗, 𝑡∗) is an optimal solution of the above program then 𝑥∗ is an

optimal solution of the initial d.c. program and 𝑡∗ = 𝑓(𝑥∗)

 Therefore, any D.C. program can be solved by an algorithm for

minimizing a concave function over a convex set.

Continuous DC programming

Panos M. Pardalos 10

 DC function:

A real-valued function 𝑓: ℝ𝑛 ⟶ ℝ ∪ +∞, −∞ s.t.

𝑓 𝑥 = 𝑔 𝑥 − ℎ 𝑥 , ∀𝑥 ∈ ℝ𝑛

where 𝑔: ℝ𝑛 ⟶ ℝ ∪ +∞ and ℎ: ℝ𝑛 ⟶ ℝ ∪ +∞ are convex

functions

 DC program:

A program of the form:

min 𝑓0(𝑥)

s. t. 𝑓𝑖 𝑥 ≤ 0 , 𝑖 = 1,2, … , 𝑛

where 𝑓𝑖(𝑥) are convex functions (𝑖 = 0,1,2, … , 𝑛)

• It is equivalent to the unconstrained DC program:

inf
𝑥∈ℝ𝑛

𝑓 𝑥 = 𝑔 𝑥 − ℎ(𝑥)

Continuous DC programming

Panos M. Pardalos 11

 Subgradients:

A vector 𝑥∗ is a subgradient of a convex function ℎ at a point 𝑥 if:

ℎ 𝑧 ≥ ℎ 𝑥 + 𝑥∗, 𝑧 − 𝑥

• The subdifferential of ℎ(𝑥) is the set of all subgradients

 Conjugate functions:

A conjugate function ℎ∗: ℝ𝑛 ⟶ ℝ ∪ {+∞} of a convex function

ℎ: ℝ𝑛 ⟶ ℝ ∪ {+∞} is :

ℎ∗ 𝑝 ≔ sup
𝑦∈ℝ𝑛

{ 𝑦, 𝑥 − ℎ(𝑥)}

• The conjugate function ℎ∗(𝑦) of a function ℎ(𝑥) is convex

• If ℎ(𝑥) is a closed proper convex function, then ℎ∗∗ = ℎ

• Given closed convex functions 𝑔, ℎ: ℝ𝑛 → ℝ ∪ {+∞}, it is:

inf
𝑥∈ℝ𝑛

{𝑔 𝑥 − ℎ(𝑥)} = inf
𝑝∈ℝ𝑛

{ℎ∗ 𝑝 − 𝑔∗(𝑝)}

Continuous DC programming

Panos M. Pardalos 12

 DC Algorithm:

• Step 0 Find an inintial solution 𝑥0 ∈ 𝑑𝑜𝑚𝑅 𝑔 . Set 𝑡 ≔ 0.

• Step 1 Find 𝑝(𝑡) ∈ 𝜕𝑅ℎ(𝑥(𝑡)).

• Step 2 Find 𝑥(𝑡+1) ∈ 𝜕𝑅𝑔∗(𝑝(𝑡)), where 𝑔∗ is the conjugate of

𝑔.

• Step 3 If 𝑓 𝑥 𝑡+1 = 𝑓(𝑥(𝑡)), stop. Otherwise, set 𝑡 ≔ 𝑡 + 1,

go to Step 1.

where 𝑥(𝑡+1) = arg min
𝑦∈ℝ𝑛

{𝑔 𝑦 − ℎ 𝑥𝑡 − 𝑝, 𝑦 − 𝑥(𝑡) }

Continuous relaxations for discrete

DC programming

Panos M. Pardalos 13

 The positive support of 𝑥 ∈ ℤ𝑛 is:

supp+(𝑥) ≔ {𝑖 ∈ 1,2, … , 𝑛 : 𝑥𝑖 > 0}

 The indicator vector 𝜒𝑆 is defined by:

𝜒𝑆 𝑖 =
1, 𝑖 ∈ 𝑆
0, 𝑖 ∉ 𝑆

 There are two common discrete functions:

 𝑀♮-convex functions:

• For all 𝑥, 𝑦 ∈ ℤ𝑛 and 𝑖 ∈ 𝑠𝑢𝑝𝑝+(𝑥 − 𝑦), function ℎ: ℤ𝑛 → ℤ ∪

{+∞} is 𝑀♮-convex if it satisfies:

ℎ 𝑥 + ℎ 𝑦 ≥ min ℎ 𝑥 − 𝜒𝑖 + ℎ 𝑥 + 𝜒𝑖 ,

min
𝑗∈𝑠𝑢𝑝𝑝+(𝑥−𝑦)

{ℎ 𝑥 − 𝜒𝑖 + 𝜒𝑖 + ℎ(𝑦 + 𝜒𝑖 − 𝜒𝑗)}

 𝐿♮-convex functions:

• For all 𝑥, 𝑦 ∈ ℤ𝑛, function ℎ: ℤ𝑛 → ℤ ∪ {+∞} is 𝐿♮-convex if
it satisfies:

ℎ 𝑥 + ℎ 𝑦 ≥ ℎ
𝑥 + 𝑦

2
+ ℎ(

𝑥 + 𝑦

2
)

Panos M. Pardalos 14

 Given two functions 𝑔, ℎ: ℤ𝑛 → ℝ ∪ {+∞},

• The effective domain of 𝑔 is 𝑑𝑜𝑚𝑍𝑔 ≔ {𝑥 ∈ ℤ𝑛: 𝑔 𝑥 < +∞}

• The convex closure 𝑔 𝑥 : ℝ𝑛 → ℝ ∪ {+∞} of 𝑔 is:

𝑔 𝑥 = sup{𝑠 𝑥 : 𝑠 is an affine function, 𝑠 𝑦 ≤ 𝑔 𝑦 (𝑦 ∈ ℤ𝑛)}

• A convex extension 𝑔 : ℝ𝑛 → ℝ ∪ {+∞} of 𝑔 is a convex

function with the same function value on 𝑥 ∈ ℤ𝑛

• Let 𝑓 𝑥 ≔ 𝑔 (𝑥) − ℎ (𝑥). Then 𝑓 𝑥 ≔ 𝑔 𝑥 − ℎ 𝑥 , ∀𝑥 ∈
ℤ𝑛. Thus:

inf
𝑥∈ℤ𝑛

𝑔 𝑥 − ℎ(𝑥) = inf
𝑥∈ℤ𝑛

𝑓 𝑥 ≥ inf
𝑥∈ℝ𝑛

𝑓 𝑥

 For convex extensible functions 𝑔, ℎ: ℤ𝑛 → ℝ ∪ {+∞} with 𝑑𝑜𝑚𝑍𝑔

bounded and 𝑑𝑜𝑚𝑧𝑔 ⊆ 𝑑𝑜𝑚𝑍ℎ, it is:

inf
𝑧∈ℤ𝑛

{𝑔 𝑧 − ℎ(𝑧)} = inf
𝑥∈ℝ𝑛

{𝑔 𝑥 − ℎ (𝑥)}

where 𝑔 𝑥 is the linear closure of 𝑔(𝑥) and ℎ (𝑥) is any convex

extension of ℎ(𝑥)

Continuous relaxations for discrete

DC programming

DI Optimization Problems

Panos M. Pardalos 15

 Monotonicity with respect to some variables (partial monotonicity)

or to all variables (total monotonicity) is a natural property

exhibited by many problems encountered in applications. The most

general problem of d.i. monotonic optimization is:

min 𝑓 𝑥 − 𝑔(𝑥)

s.t. 𝑓𝑖 𝑥 − 𝑔𝑖 𝑥 ≤ 0 , 𝑖 = 1, … , 𝑚

where all functions are increasing in ℝ+
𝑛

 Assume without loss of generality that 𝑔 𝑥 = 0

 ∀𝑖 𝑓𝑖 𝑥 − 𝑔𝑖 𝑥 ≤ 0 ⇔ max
1≤𝑖≤𝑚

{𝑓𝑖 𝑥 − 𝑔𝑖(𝑥)} ≤ 0 ⇔ 𝐹 𝑥 −

𝐺 𝑥 ≤ 0, where:

𝐹 𝑥 = max
𝑖

{𝑓𝑖 𝑥 + 𝑔𝑗(𝑥)

𝑖≠𝑗

} , 𝐺 𝑥 = 𝑔𝑖(𝑥)

𝑖

 𝐹(𝑥) and 𝐺 𝑥 are both increasing functions

DI Optimization Problems

Panos M. Pardalos 16

 Problem reduces to:

min 𝑓(𝑥)

s.t. 𝐹 𝑥 + 𝑡 ≤ 𝐹(𝑏),

𝐺 𝑥 + 𝑡 ≥ 𝐹 𝑏 ,

0 ≤ 𝑡 ≤ 𝐹 𝑏 − 𝐹 0 ,

𝑥 ∈ 0, 𝑏 ⊂ ℝ+
𝑛

 A set 𝐺 ⊆ ℝ+
𝑛 is normal if for any two points 𝑥, 𝑥′ such that 𝑥′ ≤ 𝑥,

if 𝑥 ∈ 𝐺, then 𝑥′ ∈ 𝐺

 Numerous global optimization problems can be reformulated as

monotonic optimization problems. Such problems include

multiplicative programming, nonconvex quadratic programming,

polynomial programming and Lipschitz optimization problems

Decomposition and Multi-objective

Optimization

Panos M. Pardalos 17

Overview

 Consider the following problems:

min
𝑥∈𝐷⊆𝑅𝑛

𝐹 𝑥 = 𝑓1 𝑥 + ⋯ + 𝑓𝑚(𝑥) [1]

min
𝑥∈𝐷⊆𝑅𝑛

𝑓 𝑥 = 𝑓1 𝑥 , … , 𝑓𝑚 𝑥 [2]

[2] is a multi-objective optimization problem

Let 𝐸 𝑓, 𝐷 ⊆ 𝐷 be the set of all Pareto optimal solutions in 𝐷

 Theorem: If 𝑥 is an optimal solution of problem [1], then

𝑥 ∈ 𝐸(𝑓, 𝐷) of problem [2]

 Theorem: Let ℎ𝑖(𝑡) be monotonic increasing functions for

𝑖 = 1, … , 𝑚. Consider the multi-objective optimization problem

min
𝑥∈𝐷⊆𝑅𝑛

ℎ 𝑥 = ℎ1(𝑓1 𝑥), … , ℎ𝑚(𝑓𝑚 𝑥) [3]

Then 𝐸 𝑓, 𝐷 = 𝐸(ℎ, 𝐷).

Kolmogorov’s Superposition

Panos M. Pardalos 18

Overview

 Theorem: For any integer 𝑛 ≥ 2 there are continuous real functions

𝜓𝑝,𝑞(𝑥) on the closed unit interval 𝐸1 = [0,1] such that each

continuous real functions 𝑓(𝑥1, … , 𝑥𝑛) on the 𝑛-dimensional unit

cube 𝐸𝑛 is representable as

𝑓 𝑥1, … , 𝑥𝑛 = 𝜒𝑞[𝜓𝑝𝑞(𝑥𝑝)

𝑛

𝑝=1

]

2𝑛+1

𝑞=1

where 𝜒𝑞(𝑦) are continuous real functions

 For 𝑛 = 3, by setting:

𝜑𝑞 𝑥1, 𝑥2 = 𝜓1𝑞 𝑥1 + 𝜓2𝑞(𝑥2)

ℎ𝑞 𝑦, 𝑥3 = 𝜒𝑞[𝑦 + 𝜓3𝑞(𝑥3)]

we obtain from the above:

𝑓 𝑥1, 𝑥2, 𝑥3 = ℎ𝑞[𝜑𝑞 𝑥1, 𝑥2 , 𝑥3]

7

𝑞=1

MAX-DFSS Problem

Panos M. Pardalos 19

 An undirected connected graph 𝐺 = (𝑉, 𝐸) with at least 𝑘 + 1

vertices is 𝑘-vertex-connected if it remains connected whenever

fewer than 𝑘 vertices are removed

 The problem of finding a minimum weight 𝑘-vertex-connected

subgraph is NP-hard when 𝑘 ≥ 2

 The minimal 𝑘-connected spanning subgraph problem is

considered instead

 Boros et al considered how to generate all minimal 𝑘-vertex-

connected spanning subgraphs in incremental polynomial time

 We consider a routing system characterized by a minimal 2-

vertex-connected spanning subgraph with some high-degree

vertices.

• We name it the degree-concentrated maximum fault-

tolerant spanning subgraph problem (MAX-DFSS)

• Finding a maximum weight of minimal 2-vertex-connected

spanning subgraph is also hard to solve

MAX-DFSS Problem

Panos M. Pardalos 20

Formulation

 Given an undirected graph 𝐺 = (𝑉, 𝐸), we need to find a minimal

2-connected spanning subgraph. The aim is to maximize the sum of

the squares of the degree of each vertex:

max deg𝑆 𝑣 2

𝑣∈𝑉

s.t. 𝑆 : minimal 2-connected spanning subgraph

 This problem is the fault tolerant version of the problem of fault

tolerant version for the degree-concentrated spanning tree problem

(DST) of (Maehara et al, 2015)

 It can be applied in spanning tree routing system (Tanenbaum,

2010).

 In (Maehara et al, 2015), the monitoring of network

communications is considered

MAX-DFSS Problem

Panos M. Pardalos 21

Algorithms

 Greedy algorithm for the MAX-DFSS problem:

• Input. 2-connected graph 𝐺 = (𝑉, 𝐸)

• Output. A minimal 2-connected spanning subgraph 𝑆 ⊆ 𝐺

• Step 1 𝑆 ← 𝐺

• Step 2 Repeat

 Step 2.1 If 𝑆 is minimal 2-connected, go to step 3.

 Step 2.2 Select an edge 𝑒∗ ∈

arg max
𝑒∈𝐸(𝑆)

𝑆−𝑒 𝑖𝑠 2−𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

 deg𝑆−𝑒 𝑣 2

𝑣∈𝑉(𝑆−𝑒)

 Step 2.3 𝑆 ← 𝑆 − 𝑒∗

• Step 3 Output 𝑆

MAX-DFSS Problem

Panos M. Pardalos 22

DC Formulation

 Now we formulate the problem as a DC program.

Let 𝑀 ∈ ℝ 𝑉 × 𝐸 be the incidence matrix for graph 𝐺.

 Let 𝑥𝑒 ∈ 0,1 , ∀𝑒 ∈ 𝐸 indicate whether edge 𝑒 is chosen into the

subgraph or not.

For any 𝑥 ∈ 0,1 𝐸 we obtain a subgraph 𝑆 = 𝑒 ∈ 𝐸: 𝑥𝑒 = 1

𝑀𝑥 = deg𝑆 𝑣1 , deg𝑆 𝑣2 , . . , deg𝑆 𝑣𝑛
𝑇

 The objective function deg𝑆 𝑣 2
𝑣∈𝑉 can be formulated as 𝑥𝑇𝐴𝑥,

where 𝐴 = 𝑀𝑇𝑀 ∈ ℝ 𝐸 × 𝐸 . 𝐴 is positive semi-definite.

 The problem becomes:

max 𝑥𝑇𝐴𝑥

s.t. 𝑒 ∈ 𝐸: 𝑥𝑒 = 1 is a minimal 2-connected spanning

subgraph

 If 𝑔 𝑥 =
0, 𝑒 ∈ 𝐸: 𝑥𝑒 = 1 is a minimal 2−connected spanning subgraph

+∞, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

the problem is equivalent to min
𝑥∈ 0,1 𝑛

𝑔 𝑥 − 𝑥𝑇𝐴𝑥

MAX-DFSS Problem

Panos M. Pardalos 23

DC Algorithm

 DC algorithm for the MAX-DFSS problem:

• Step 0 Choose 𝑥 0 ∈ 𝑑𝑜𝑚𝑅(𝑔) to be an initial solution. Set

𝑡 ≔ 0

• Step 1 Compute 𝑝 𝑡 ∈ 𝜕ℎ(𝑥 𝑡)

• Step 2 Compute 𝑥 𝑡+1 ∈ 𝜕𝑔∗(𝑝 𝑡), i.e.,,

𝑥 𝑡+1 = arg min
𝑦

{𝑔 𝑦 − 𝑝 𝑡 , 𝑦 }

• Step 3 If 𝑓 𝑥 𝑡+1 = 𝑓 𝑥 𝑡 , go to Step 4. Otherwise, set

𝑡 ≔ 𝑡 + 1, go to Step 1

• Step 4 Call Greedy algorithm for the MAX-DFSS on the graph

represented by 𝑥 𝑡 .

MAX-DFSS Problem

Panos M. Pardalos 24

Complexity Evaluation

 𝑥 𝑡+1 can be obtained by solving a maximum weighted minimal 2-

connected spanning subgraph with edge weight 𝑝𝑒
𝑡

 for 𝑒 ∈ 𝐸

 Instead, we can find a 2-connected subgraph with at most 2 𝑉 − 2

edges and the total weight is at least 0.5 times the maximum total

weight of minimal 2-connected spanning subgraph.

 Lemma: Suppose 𝑆∗ is a maximum weight minimal 2-connected

spanning subgraph of 𝐺 and 𝑇∗ is a maximum weight spanning tree

of 𝑆∗. Then 𝑝 𝑇∗ ≥ 𝑝(𝑆∗)/2.

 Therefore, the complexity of the following algorithm is 𝑂(𝑉 3)

MAX-DFSS Problem

Panos M. Pardalos 25

Algorithms

 Algorithm for the MAX-DFSS problem:

• Input 2-connected graph 𝐺 = (𝑉, 𝐸, 𝑝) where 𝑝 is the edge

weight vector

• Output 2-connected spanning subgraph 𝑆 ⊆ 𝐺 with at most 2|𝑉|
edges

• Step 1 Find out a maximum spanning tree 𝑇 of 𝐺 by Prim

algorithm

• Step 2 𝑆 ← 𝑇

• Step 3 Repeat

Step 3.1 Perform block decomposition for 𝑆. If it has only one

block, go to step 4.

Step 3.2 Search the maximal weighted edge 𝑒 ∈ 𝐸\S striding

over different blocks

Step 3.3 𝑆 ← 𝑆 + 𝑒

• Step 4 Output 𝑆

MAX-DFSS Problem

Panos M. Pardalos 26

 Computational results can be found in:

Solving the degree-concentrated fault-tolerant spanning subgraph

problem by DC programming Chenchen Wu, Yishui Wang, Panos M.

Pardalos, Dachuan Xu, Zhao Zhang, Ding-Zhu Du (submitted, 2017)

Computational results

