

Approximability of the *d*-dimensional Euclidean Capacitated Vehicle Routing Problem

Michael Khachay¹

¹Krasovsky Institute of Mathematics and Mechanics Ural Federal University

Summer School on Operations Research and Applications Nizhny Novgorod May 11, 2017

うして ふゆう ふほう ふほう ふしつ

Intro		Metric CVRP	Euclidean CVRP	
Abstrac	et			

- We consider the classic single-product Capacitated Vehicle Routing Problem (CVRP) within unit customer demand.
- CVRP in strongly NP-hard even being formulated in Euclidean spaces of fixed dimension.
- Nevertheless, in such a special case the CVRP can be approximated well.
- For instance, in the Euclidean plane, for the problem (and it's various versions) there exist polynomial time approximation schemes (PTAS).
- We propose polynomial time approximation schemes for \mathbb{R}^d (for any fixed d > 1.

Intro		Metric CVRP	Euclidean CVRP	
Abstrac	et			

- We consider the classic single-product Capacitated Vehicle Routing Problem (CVRP) within unit customer demand.
- CVRP in strongly NP-hard even being formulated in Euclidean spaces of fixed dimension.
- Nevertheless, in such a special case the CVRP can be approximated well.
- For instance, in the Euclidean plane, for the problem (and it's various versions) there exist polynomial time approximation schemes (PTAS).
- We propose polynomial time approximation schemes for \mathbb{R}^d (for any fixed d > 1.

Intro	Problem statement	Metric CVRP	Euclidean CVRP	Conclusion
Conten	nts			

- 2 Problem statement
- 3 Metric CVRP
- 4 Euclidean CVRP

Introduction and related word

- Vehicle Routing Problem (VRP) is introduced in [Danzig and Ramser, 1959] for a fleet of gasoline trucks. Curiously, they were sure that this problem can be solved efficiently (in polynomial time).
- The VRP can be defined as the problem of designing the least cost delivery routes from a given depot to a set of spatially distributed customers s.t. some additional constraints (capacity, time-windows, etc.)
- VRP is a strongly NP-hard problem (having TSP as a special case). The problem remains NP-hard even in any fixed dimension Euclidean space [Papadimitriou (1977)], [Lenstra, Rinnooy Kan (1981)].

Intro		Metric CVRP	Euclidean CVRP	
Related	work			

- Metric CVRP is Apx-hard [Asano et al. (1996)].
- PTAS for Euclidean q-CVRP in the plane for $q = O(\log \log n)$ [Haimovich, R. Kan (1985)]
- In [Asano et al. (1996)] and [Arora (1998)], is extended for $q = O(\log n / \log \log n)$ and $q = \Omega(n)$.
- PTAS for the plane for $q \leq 2^{\log^{\delta} n}$, where $\delta = \delta(\varepsilon)$ [Adamaszek (2009)].
- O(n^{(log n)^{O(1/ε)}}) (for any value of q) time-complexity QPTAS [Das and Mathieu (2010), (2014)].
- All these results are valid for the plane.
- We extend the results obtained in [Haimovich, Kan (1985)] and [Asano (1996)] to the case of \mathbb{R}^d for any fixed d and any fixed number m of depots

Intro		Metric CVRP	Euclidean CVRP	
Related	work			

- Metric CVRP is Apx-hard [Asano et al. (1996)].
- PTAS for Euclidean q-CVRP in the plane for $q = O(\log \log n)$ [Haimovich, R. Kan (1985)]
- In [Asano et al. (1996)] and [Arora (1998)], is extended for $q = O(\log n / \log \log n)$ and $q = \Omega(n)$.
- PTAS for the plane for $q \leq 2^{\log^{\delta} n}$, where $\delta = \delta(\varepsilon)$ [Adamaszek (2009)].
- O(n^{(log n)^{O(1/ε)}}) (for any value of q) time-complexity QPTAS [Das and Mathieu (2010), (2014)].
- All these results are valid for the plane.
- We extend the results obtained in [Haimovich, Kan (1985)] and [Asano (1996)] to the case of \mathbb{R}^d for any fixed *d* and any fixed number *m* of depots

Intro		Metric CVRP	Euclidean CVRP	
Related	work			

- Metric CVRP is Apx-hard [Asano et al. (1996)].
- PTAS for Euclidean q-CVRP in the plane for $q = O(\log \log n)$ [Haimovich, R. Kan (1985)]
- In [Asano et al. (1996)] and [Arora (1998)], is extended for $q = O(\log n / \log \log n)$ and $q = \Omega(n)$.
- PTAS for the plane for $q \leq 2^{\log^{\delta} n}$, where $\delta = \delta(\varepsilon)$ [Adamaszek (2009)].
- O(n^{(log n)^{O(1/ε)}}) (for any value of q) time-complexity QPTAS [Das and Mathieu (2010), (2014)].
- All these results are valid for the plane.
- We extend the results obtained in [Haimovich, Kan (1985)] and [Asano (1996)] to the case of \mathbb{R}^d for any fixed d and any fixed number m of depots

Intro		Metric CVRP	Euclidean CVRP	
Related	work			

- Metric CVRP is Apx-hard [Asano et al. (1996)].
- PTAS for Euclidean q-CVRP in the plane for $q = O(\log \log n)$ [Haimovich, R. Kan (1985)]
- In [Asano et al. (1996)] and [Arora (1998)], is extended for $q = O(\log n / \log \log n)$ and $q = \Omega(n)$.
- PTAS for the plane for $q \leq 2^{\log^{\delta} n}$, where $\delta = \delta(\varepsilon)$ [Adamaszek (2009)].
- O(n^{(log n)^{O(1/ε)}}) (for any value of q) time-complexity QPTAS [Das and Mathieu (2010), (2014)].
- All these results are valid for the plane.
- We extend the results obtained in [Haimovich, Kan (1985)] and [Asano (1996)] to the case of \mathbb{R}^d for any fixed d and any fixed number m of depots

うして ふぼう ふほう ふほう ふしつ

Capacitated Vehicle Routing Problem (CVRP)

- Input: A complete weighted graph $G^0 = (X \cup Y, E, w)$ and a capacity $q \in \mathbb{N}$. Here $X = \{x_1, \ldots, x_n\}$ is a set of clients, $Y = \{y_1, \ldots, y_m\}$ is a set of depots, $w : E \to \mathbb{R}_+$ defines inter-node transportation costs.
 - $x_i \mapsto r_i = \min\{w(y_j, x_i) \colon j = 1, \dots, m\},$ $X_1 \cup \dots \cup X_m = X, \ X_j = \{x_i \in X \colon r_i = w(x_i, y_j)\},$
 - such that any client x_i is assigned to the nearest depot y_j . • any feasible route R has a form $y_{j_s}, x_{i_1}, \ldots, x_{i_t}, y_{j_f}$, where x_{i_1}, \ldots, x_{i_t} are distinct clients and $t \leq q$. $w(R) = w(\{y_{j_s}, x_{i_1}\}) + w(\{x_{i_1}, x_{i_2}\}) + \ldots + w(\{x_{i_t}, y_{j_f}\}).$
- The problem is, for a given graph G and capacity q, to find a cheapest set of tours visiting each client once.
- If m = 1, we have the Single Depot Capacitated Vehicle Routing Problem (SDCVRP), otherwise MDCVRP.
- MDCVRP1: routes can start and terminate at different depots. MDCVRP2: for any route R, $y_{j_s} = y_{j_f}$.

(日) (日) (日) (日) (日) (日) (日) (日)

Capacitated Vehicle Routing Problem (CVRP)

• Input: A complete weighted graph $G^0 = (X \cup Y, E, w)$ and a capacity $q \in \mathbb{N}$. Here $X = \{x_1, \ldots, x_n\}$ is a set of clients, $Y = \{y_1, \ldots, y_m\}$ is a set of depots, $w : E \to \mathbb{R}_+$ defines inter-node transportation costs.

$$x_i \mapsto r_i = \min\{w(y_j, x_i) : j = 1, \dots, m\},\ X_1 \cup \dots \cup X_m = X, \ X_j = \{x_i \in X : r_i = w(x_i, y_j)\},\$$

such that any client x_i is assigned to the nearest depot y_j . • any feasible route R has a form $y_{j_s}, x_{i_1}, \ldots, x_{i_t}, y_{j_f}$, where x_{i_1}, \ldots, x_{i_t} are distinct clients and $t \leq q$. $w(R) = w(\{y_{j_s}, x_{i_1}\}) + w(\{x_{i_1}, x_{i_2}\}) + \ldots + w(\{x_{i_t}, y_{j_f}\}).$

- The problem is, for a given graph G and capacity q, to find a cheapest set of tours visiting each client once.
- If m = 1, we have the Single Depot Capacitated Vehicle Routing Problem (SDCVRP), otherwise MDCVRP.
- MDCVRP1: routes can start and terminate at different depots. MDCVRP2: for any route R, $y_{j_s} = y_{j_f}$.

Capacitated Vehicle Routing Problem (CVRP)

• Input: A complete weighted graph $G^0 = (X \cup Y, E, w)$ and a capacity $q \in \mathbb{N}$. Here $X = \{x_1, \ldots, x_n\}$ is a set of clients, $Y = \{y_1, \ldots, y_m\}$ is a set of depots, $w : E \to \mathbb{R}_+$ defines inter-node transportation costs.

$$x_i \mapsto r_i = \min\{w(y_j, x_i) : j = 1, \dots, m\},\ X_1 \cup \dots \cup X_m = X, \ X_j = \{x_i \in X : r_i = w(x_i, y_j)\},$$

such that any client x_i is assigned to the nearest depot y_j . • any feasible route R has a form $y_{j_s}, x_{i_1}, \ldots, x_{i_t}, y_{j_f}$, where x_{i_1}, \ldots, x_{i_t} are distinct clients and $t \leq q$. $w(R) = w(\{y_{j_s}, x_{i_1}\}) + w(\{x_{i_1}, x_{i_2}\}) + \ldots + w(\{x_{i_t}, y_{j_f}\}).$

- The problem is, for a given graph G and capacity q, to find a cheapest set of tours visiting each client once.
- If m = 1, we have the Single Depot Capacitated Vehicle Routing Problem (SDCVRP), otherwise MDCVRP.
- MDCVRP1: routes can start and terminate at different depots. MDCVRP2: for any route R, $y_{j_s} = y_{j_f}$.

Capacitated Vehicle Routing Problem (CVRP)

• Input: A complete weighted graph $G^0 = (X \cup Y, E, w)$ and a capacity $q \in \mathbb{N}$. Here $X = \{x_1, \ldots, x_n\}$ is a set of clients, $Y = \{y_1, \ldots, y_m\}$ is a set of depots, $w : E \to \mathbb{R}_+$ defines inter-node transportation costs.

$$x_i \mapsto r_i = \min\{w(y_j, x_i) : j = 1, \dots, m\},\ X_1 \cup \dots \cup X_m = X, \ X_j = \{x_i \in X : r_i = w(x_i, y_j)\},\$$

such that any client x_i is assigned to the nearest depot y_j.
any feasible route R has a form y_{j_s}, x_{i₁},..., x_{i_t}, y_{j_f}, where x_{i₁},..., x_{i_t} are distinct clients and t ≤ q. w(R) = w({y_{i_s}, x_{i₁}}) + w({x_{i₁}, x_{i₂}}) + ... + w({x_{i_t}, y_{j_f}}).

- The problem is, for a given graph G and capacity q, to find a cheapest set of tours visiting each client once.
- If m = 1, we have the Single Depot Capacitated Vehicle Routing Problem (SDCVRP), otherwise MDCVRP.
- MDCVRP1: routes can start and terminate at different depots. MDCVRP2: for any route R, y_{js} = y_{jf}.

Special settings

Metric CVRP

The weight function w meets the triangle inequality. For any vertices x_{i_1}, x_{i_2} and $x_{i_3}, w(x_{i_1}, x_{i_2}) \leq w(x_{i_1}, x_{i_3}) + w(x_{i_2}, x_{i_3})$.

Euclidean CVRP

In this case, the depot and all the customers locations are points in *d*-dimensional Euclidean space $X \cup \{x_0\} \subset \mathbb{R}^d$ and $w(x_i, x_j) = \|x_i - x_j\|_2$.

ITP heuristic: the scheme

- Relate the initial SDCVRP problem with TSP problem for the graph $G = G^0 \langle X \rangle$.
- Take an arbitrary Hamiltonian cycle H in the graph G.
- Starting from x₁, break this cycle into l = ⌈n/q⌉ disjoint segments such that each of them contains at most q customers.
- Then, connect the endpoints of any segment with depot y_1 to provide a feasible solution for the initial problem.
- Perform the same procedure iteratively for any other starting point x_i and construct *n* feasible solutions V_1, \ldots, V_n of the initial instance of SDCVRP.
- Output the best (cheapest) one $S_{\text{ITP}} = \arg\min_{\langle \square \rangle > \langle \square \rangle > \langle$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

ITP heuristic: general case

Let
$$\bar{r} = 1/n \sum_{i=1}^{n} r_i$$
. Compare $w(S_{\text{ITP}})$ with $w(H)$

Lemma 1 (upper bound)

$$w(S_{\text{ITP}}) \le 2\left\lceil \frac{n}{q} \right\rceil \bar{r} + \left(1 - \frac{\lceil n/q \rceil}{n}\right) w(H)$$

ITP heuristic: general case

Let
$$\bar{r} = 1/n \sum_{i=1}^{n} r_i$$
. Compare $w(S_{\text{ITP}})$ with $w(H)$

Lemma 1 (upper bound)

$$w(S_{\text{ITP}}) \le 2\left\lceil \frac{n}{q} \right\rceil \bar{r} + \left(1 - \frac{\lceil n/q \rceil}{n}\right) w(H)$$

Proof.

- For $l = \lceil n/q \rceil$, each edge $\{x_{i_1}, x_{i_2}\}$ of the tour *H* is included n l times to the solutions V_1, \ldots, V_n and *l* times is replaced with 'radial' edges $\{y_1, x_{i_1}\}$ and $\{y_1, x_{i_2}\}$ of costs r_{i_1} and r_{i_2} .
- Therefore, the total cost C of all solutions V_1, \ldots, V_n is equal to $C = 2l \sum_{i=1}^n r_i + (n-l)T(X).$
- Thus,

$$w(S_{\text{ITP}}) \le \frac{C}{n} = 2l\bar{r} + (1 - l/n)T(X) = 2\left\lceil \frac{n}{q} \right\rceil \bar{r} + \left(1 - \frac{\lceil n/q \rceil}{n}\right)w(H).$$

200

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

ITP heuristic: the metric case

On the other hand, for an arbitrary feasible solution S of the SDCVRP and the corresponding cycle ${\cal H}$

Lemma 2 (lower bound)

$$w(S) \ge \max\left\{2\frac{n}{q}\bar{r}, w(H)\right\}.$$

ITP heuristic: the metric case

On the other hand, for an arbitrary feasible solution S of the SDCVRP and the corresponding cycle ${\cal H}$

Lemma 2 (lower bound)

$$w(S) \ge \max\left\{2\frac{n}{q}\overline{r}, w(H)\right\}.$$

Proof.

- The bound $w(S) \ge w(H)$ follows from the triangle inequality.
- Let X_1, \ldots, X_l be client subsets visited by different routes (of S). Again, by the triangle inequality,

$$w(S) \ge \sum_{j=1}^{l} 2 \max_{x_i \in X_j} r_i \ge 2 \sum_{j=1}^{l} \frac{\sum_{x_i \in X_j} r_i}{|X_j|} \ge 2 \sum_{j=1}^{l} \frac{\sum_{x_i \in X_j} r_i}{q} = 2 \frac{n}{q} \bar{r}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

ITP heuristic: the metric case

As a consequence, for optimum values of the SDCVRP and TSP defined by graphs G^0 and G

Theorem 3 (Haimovich and R.Kan)

$$\max\left\{2\frac{n}{q}\bar{r}, \mathrm{TSP}^*\right\} \leq \mathrm{SDCVRP}^* \leq 2\left\lceil\frac{n}{q}\right\rceil\bar{r} + \left(1 - \frac{1}{q}\right)\mathrm{TSP}^*.$$

Corollary 4

Suppose, in ITP, we use a Hamiltonian cycle H, such that $w(H) \leq (1 + \varepsilon) TSP^*$. Then, the cost $w(S_{ITP})$ of ITP-based approximate solution will be

$$w(S_{\text{ITP}}) \le 2\left\lceil \frac{n}{q} \right\rceil \bar{r} + (1 - 1/q)(1 + \varepsilon) \text{TSP}^*.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

ITP heuristic: the metric case

As a consequence, for optimum values of the SDCVRP and TSP defined by graphs G^0 and G

Theorem 3 (Haimovich and R.Kan)

$$\max\left\{2\frac{n}{q}\bar{r}, \mathrm{TSP}^*\right\} \leq \mathrm{SDCVRP}^* \leq 2\left\lceil\frac{n}{q}\right\rceil\bar{r} + \left(1 - \frac{1}{q}\right)\mathrm{TSP}^*.$$

Corollary 4

Suppose, in ITP, we use a Hamiltonian cycle H, such that $w(H) \leq (1 + \varepsilon) TSP^*$. Then, the cost $w(S_{ITP})$ of ITP-based approximate solution will be

$$w(S_{\text{ITP}}) \le 2\left\lceil \frac{n}{q} \right\rceil \bar{r} + (1 - 1/q)(1 + \varepsilon) \text{TSP}^*.$$

Fixed ratio approximation for the SDCVRP

Further, for any $\rho\text{-approximation}$ algorithm for TSP, we obtain

$$\frac{w(S_{\text{ITP}})}{\text{SDCVRP}^*} \le \frac{2\left\lceil \frac{n}{q} \rceil \bar{r} + (1 - l/n)\rho \text{TSP}^*\right}{\max\left\{2\frac{n}{q} \bar{r}, \text{TSP}^*\right\}} \le \frac{q}{n} + 1 + \left(1 - \frac{\lceil n/q \rceil}{n}\right)\rho \le \frac{q}{n} + 1 + \left(1 - \frac{1}{q}\right)\rho,$$

- For q = o(n), any ρ -approximation algorithm for the metric TSP induces asymptotically $(1 + \rho)$ -approximation algorithm for the metric SDCVRP.
- Since the running time of the ITP is at most $O(n^2)$, the overall complexity of any ITP-based approximation algorithm is defined by the running time of the underline approximation algorithm for TSP.
- Well-known Christofides algorithm produces 5/2-approximation algorithm for SDCVRP with time-complexity $O(n^3)$.

Fixed ratio approximation for the SDCVRP

Further, for any $\rho\text{-approximation}$ algorithm for TSP, we obtain

$$\frac{w(S_{\text{ITP}})}{\text{SDCVRP}^*} \le \frac{2\left\lceil \frac{n}{q} \rceil \overline{r} + (1 - l/n)\rho \text{TSP}^*\right}{\max\left\{2\frac{n}{q}\overline{r}, \text{TSP}^*\right\}} \le \frac{q}{n} + 1 + \left(1 - \frac{\lceil n/q \rceil}{n}\right)\rho \le \frac{q}{n} + 1 + \left(1 - \frac{1}{q}\right)\rho,$$

- For q = o(n), any ρ -approximation algorithm for the metric TSP induces asymptotically $(1 + \rho)$ -approximation algorithm for the metric SDCVRP.
- Since the running time of the ITP is at most $O(n^2)$, the overall complexity of any ITP-based approximation algorithm is defined by the running time of the underline approximation algorithm for TSP.
- Well-known Christofides algorithm produces 5/2-approximation algorithm for SDCVRP with time-complexity $O(n^3)$.

Fixed ratio approximation for the SDCVRP

Further, for any $\rho\text{-approximation}$ algorithm for TSP, we obtain

$$\frac{w(S_{\text{ITP}})}{\text{SDCVRP}^*} \le \frac{2\left\lceil \frac{n}{q} \rceil \overline{r} + (1 - l/n)\rho \text{TSP}^*\right}{\max\left\{2\frac{n}{q}\overline{r}, \text{TSP}^*\right\}} \le \frac{q}{n} + 1 + \left(1 - \frac{\lceil n/q \rceil}{n}\right)\rho \le \frac{q}{n} + 1 + \left(1 - \frac{1}{q}\right)\rho,$$

- For q = o(n), any ρ -approximation algorithm for the metric TSP induces asymptotically $(1 + \rho)$ -approximation algorithm for the metric SDCVRP.
- Since the running time of the ITP is at most $O(n^2)$, the overall complexity of any ITP-based approximation algorithm is defined by the running time of the underline approximation algorithm for TSP.
- Well-known Christofides algorithm produces 5/2-approximation algorithm for SDCVRP with time-complexity $O(n^3)$.

	Problem statement	Metric CVRP	Euclidean CVRP	Conclusion
Conte	ents			

1 Introduction

- 2 Problem statement
- 3 Metric CVRP
- 4 Euclidean CVRP

Combined ITP scheme (CITP)

- Input: a complete weighted *n*-graph $G^0(X \cup \{y\}, E, w)$, a capacity $q \in \mathbb{N}$, and and accuracy $\varepsilon > 0$.
- **Output:** $(1 + \varepsilon)$ -approximate solution S_{CITP} of the CVRP.
- relabel the clients so that $r_1 \ge r_2 \ge \ldots \ge r_n$;
- take a value $k = k(\varepsilon)$ specifying partition X into subsets $X(k) = \{x_1, \dots, x_{k-1}\}$ of outer and $X \setminus X(k)$ inner clients;
- find an exact solution $S^*(X(k))$ for MDCVRP specified by $G^0 \langle X(k) \cup Y \rangle$;
- using ITP, find an approximate solution $S_{\text{ITP}}(X_j \setminus X(k))$ for each subgraph $G^0 \langle X_j \setminus X(k) \cup \{y_j\}\rangle$;
- output

 $S_{\text{CITP}} = S^*(X(k)) \cup S_{\text{ITP}}(X_1 \setminus X(k)) \cup \ldots \cup S_{\text{ITP}}(X_m \setminus X(k)).$

Euclidean CVRP

Conclusion

Combined ITP scheme (CITP)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ

Main result

Theorem 5

For any ρ -approximation algorithm with the running time of $O(n^c)$ used for the inner TSP, for any fixed $q, m \ge 1, \rho \ge 1$, and $d \ge 2$, the CITP scheme is an Efficient Polynomial Time Approximation Scheme (EPTAS) for the Euclidean CVRP with time complexity of $O(n^c + n^2 + mK^q 2^K)$, where $K = k(\varepsilon)$.

Remark

The CITP scheme remains a PTAS for the Euclidean CVRP even for slightly relaxed restrictions on its parameters, e.g. for any fixed d, ρ , and $q = O((\log \log(n))^{1/d})$.

Main result

Theorem 5

For any ρ -approximation algorithm with the running time of $O(n^c)$ used for the inner TSP, for any fixed $q, m \ge 1, \rho \ge 1$, and $d \ge 2$, the CITP scheme is an Efficient Polynomial Time Approximation Scheme (EPTAS) for the Euclidean CVRP with time complexity of $O(n^c + n^2 + mK^q 2^K)$, where $K = k(\varepsilon)$.

Remark

The CITP scheme remains a PTAS for the Euclidean CVRP even for slightly relaxed restrictions on its parameters, e.g. for any fixed d, ρ , and $q = O((\log \log(n))^{1/d})$.

Proof sketch: the case of single depot

The main idea

- for any k obtain an upper bound e(k) of the relative error in terms of r_k and $\text{TSP}^*(X \setminus X(k))$
- use the new upper bound for the optimum value of a TSP instance embedded into an Euclidean sphere of radius r_k
- show that for any given accuracy bound ε there exists $k = k(\varepsilon, \rho, m)$ (does not depending on n) such that $e(k) \leq \varepsilon$.

Upper bound for e(k)

Lemma 6

For an arbitrary k,

 $\begin{aligned} \operatorname{SDCVRP}^*(X, \{y\}) \\ &\leq \operatorname{SDCVRP}^*(X(k), \{y\}) + \operatorname{SDCVRP}^*(X \setminus X(k), \{y\}) \\ &\leq \operatorname{SDCVRP}^*(X, \{y\}) + 4(k-1)r_k. \end{aligned}$

Applying Lemmas 1,2, and 6, obtain

$$\begin{split} e(k) &= \frac{w(S_{\text{CITP}}(X)) - \text{SDCVRP}^*(X)}{\text{SDCVRP}^*(X)} \\ &= \frac{\text{SDCVRP}^*(X(k)) + w(S_{\text{ITP}}(X \setminus X(k))) - \text{SDCVRP}^*(X)}{\text{SDCVRP}^*(X)} \\ &\leq q(2k-1)\frac{r_k}{\sum_{i=1}^n r_i} + \frac{q\rho}{2\sum_{i=1}^n r_i} \text{TSP}^*(X \setminus X(k)). \end{split}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ● ● ● ●

ション ふゆ アメリア メリア しょうくの

Upper bound for TSP^{*}

• Condider the angular distance defined on the unit Euclidean sphere

$$dist(x_1, x_2) = \arccos(x_1, x_2), \ (x_1, x_2 \in S^{d-1}).$$

• We need a finite ε -net N for this metric, i.e. a finite subset $N \subset S^{d-1}$ such that, for any $x \in S^{d-1}$, there exists $\xi \in N$ such that $dist(\xi, x) \leq \varepsilon$.

Upper bound for TSP^*

Lemma 7 (see e.g. Hubbert et al. (2015))

For an arbitrary $h \in (0, h_0)$, $h_0 = \pi/(6\sqrt{d-1})$, on the sphere S^{d-1} there exists an $h\sqrt{d-1}$ -net N = N(d, h) such that $|N| = Ch^{-(d-1)}$ for some constant C = C(d).

Upper bound for TSP^*

Lemma 8

For an arbitrary d > 1 and a finite $X \subset B(y, R)$ the following bounds

$$\text{TSP}^*(X) \leq \begin{cases} C_1 R^{1/d} (\sum_{i=1}^n r_i)^{(d-1)/d}, & \text{if } \sum_{i=1}^n r_i > RC \frac{(d-1)^{(d+1)/2}}{(\pi/6)^d}, \\ C_2 R, & \text{otherwise}, \end{cases}$$

are valid, where

$$C_1 = 2dC^{1/d}(d-1)^{(d-1)/2d}$$
 and $C_2 = 2dC(\pi/6)^{-(d-1)}(d-1)^{(d-1)/2}$.

Euclidean CVRP

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Conclusion

Upper bound for $\overline{\mathrm{TSP}^*}$

ション ふゆ マ キャット マックシン

Show that for any ε there exist k: $e(k) \leq \varepsilon$

By Lemma 8,

$$\begin{aligned} e(k) &\leq q(2k-1) \frac{r_k}{\sum_{i=1}^n r_i} + \frac{q\rho}{2} \max\left\{ C_1 \left(\frac{r_k}{\sum_{i=1}^n r_i} \right)^{1/d} C_2 \frac{r_k}{\sum_{i=1}^n r_i} \right\} \\ &\leq q(2k-1) \frac{r_k}{\sum_{i=1}^n r_i} + \frac{q\rho}{2} \max\{C_1, C_2\} \left(\frac{r_k}{\sum_{i=1}^n r_i} \right)^{1/d}, \end{aligned}$$

since $r_k \leq \sum_{i=1}^n r_i$. Denote $(r_k / \sum_{i=1}^n r_i)^{1/d}$ by s_k . Suppose that, for any $t \in \{1, \ldots, k\}$,

$$q(2t-1)s_t^d + \frac{q\rho}{2}C^*s_t > \varepsilon$$

is valid, where $C^* = \max\{C_1, C_2\}$ depends on d ultimately.

Show that for any ε there exist k: $e(k) \leq \varepsilon$

There exist two options.

• $s_t \ge \varepsilon/(q\rho C^*)$ for each t. Then,

$$1 \ge \sum_{t=1}^{k} s_t^d \ge k \left(\frac{\varepsilon}{q\rho C^*}\right)^d \text{and } k \le \left(\frac{q\rho C^*}{\varepsilon}\right)^d.$$

• Let t_0 be the smallest number, for which

 $s_{t_0} < \varepsilon/(q\rho C^*).$

The same inequality is valid also for each $t_0 \leq t \leq k$, and, by assumption $s_t^d > \varepsilon/(2q(2t-1))$. Therefore

$$\begin{split} 1 \ge \sum_{t=1}^{k} s_t^d \ge (t_0 - 1) \left(\frac{\varepsilon}{q\rho C^*}\right)^d + \frac{\varepsilon}{2q} \sum_{t=t_0}^{k} \frac{1}{2t - 1} \\ \ge (t_0 - 1) \left(\frac{\varepsilon}{q\rho C^*}\right)^d + \frac{\varepsilon}{2q} \int_{t_0}^{k+1} \frac{dt}{2t - 1} \\ = (t_0 - 1) \left(\frac{\varepsilon}{q\rho C^*}\right)^d + \frac{\varepsilon}{4q} (\ln(2k + 1) - \ln(2t_0 - 1)). \end{split}$$

Intro

roblem statement

Metric CVRP

Euclidean CVRP

うして ふゆう ふほう ふほう ふしつ

Conclusion

Show that for any ε there exist k: $e(k) \leq \varepsilon$

Without loss of generality suppose that $\varepsilon \leq 4q\rho$. This equation together with the obvious (for d > 1) condition $C^* \geq 4$ implies

$$\left(\frac{\varepsilon}{q\rho \, C^*}\right)^d \le \frac{\varepsilon}{4q}$$

and

$$\left(\frac{\varepsilon}{q\rho C^*}\right)^{-d} \ge t_0 - 1 + \ln(2k+1) - \ln(2t_0 - 1). \tag{1}$$

Minimizing the RHS of (1) subject to $t_0 \in \{1, \ldots, k\}$, we obtain

$$k \le \frac{1}{2} e^{\left(\frac{q\rho C^*}{\varepsilon}\right)^d}$$

And, finally, we come to the decision that the segment

$$\left[1, \frac{1}{2}e^{\left(\frac{q\rho C^*}{\varepsilon}\right)^d} + 1\right]$$

definitely contains the required number $k = k(\varepsilon)$ such that $e(k) \leq \varepsilon$.

		Metric CVRP	Euclidean CVRP	Conclusion
Summa	ıry			

- Extending the approach to construction approximation algorithms for CVRP on the basis of well-known ITP heuristic, we propose new efficient polynomial time approximation schemas for the Euclidean CVRP for any dimension fixed d > 1, number m of depots, approximation ratio ρ , and capacity q.
- The proposed scheme remains polynomial even for $q = O((\log \log n)^{1/d}).$
- Approximation algorithm used for solution of the inner TSP should not has a fixed approximation ratio. This can be useful for tackling *Big Data*.
- In future work, it would be interesting to extend the results obtained to some special cases of the Euclidean CVRP (time windows, uniform demand, pickup and delivery, etc.)

	Metric CVRP	Euclidean CVRP	Conclusion

Thank you for your attention!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへぐ