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Abstract

We consider the classic single-product Capacitated Vehicle
Routing Problem (CVRP) within unit customer demand.

CVRP in strongly NP-hard even being formulated in Euclidean
spaces of fixed dimension.

Nevertheless, in such a special case the CVRP can be
approximated well.

For instance, in the Euclidean plane, for the problem (and it’s
various versions) there exist polynomial time approximation
schemes (PTAS).

We propose polynomial time approximation schemes for Rd (for
any fixed d > 1.
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Introduction and related word

Vehicle Routing Problem (VRP) is introduced in [Danzig and Ramser,
1959] for a fleet of gasoline trucks. Curiously, they were sure that this
problem can be solved efficiently (in polynomial time).

The VRP can be defined as the problem of designing the least cost
delivery routes from a given depot to a set of spatially distributed
customers s.t. some additional constraints (capacity, time-windows,
etc.)

VRP is a strongly NP-hard problem (having TSP as a special case).
The problem remains NP-hard even in any fixed dimension Euclidean
space [Papadimitriou (1977)], [Lenstra, Rinnooy Kan (1981)].
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Related work

Metric CVRP is Apx-hard [Asano et al. (1996)].

PTAS for Euclidean q-CVRP in the plane for q = O(log log n)
[Haimovich, R. Kan (1985)]

In [Asano et al. (1996)] and [Arora (1998)], is extended for
q = O(logn/ log log n) and q = Ω(n).

PTAS for the plane for q ≤ 2logδ n, where δ = δ(ε) [Adamaszek (2009)].

O(n(logn)O(1/ε)

) (for any value of q) time-complexity QPTAS [Das and
Mathieu (2010), (2014)].

All these results are valid for the plane.

We extend the results obtained in [Haimovich, Kan (1985)] and [Asano
(1996)] to the case of Rd for any fixed d and any fixed number m of
depots

Actually, we propose a family of EPTAS’s parametrized by an
approximation algorithm applied to the inner TSP
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Capacitated Vehicle Routing Problem (CVRP)

Input: A complete weighted graph G0 = (X ∪ Y,E,w) and a capacity
q ∈ N. Here X = {x1, . . . , xn} is a set of clients, Y = {y1, . . . , ym} is a
set of depots, w : E → R+ defines inter-node transportation costs.

xi 7→ ri = min{w(yj , xi) : j = 1, . . . ,m},
X1 ∪ . . . ∪Xm = X, Xj = {xi ∈ X : ri = w(xi, yj)},

such that any client xi is assigned to the nearest depot yj .
any feasible route R has a form yjs , xi1 , . . . , xit , yjf , where
xi1 , . . . , xit are distinct clients and t ≤ q.
w(R) = w({yjs , xi1}) + w({xi1 , xi2}) + . . .+ w({xit , yjf }).

The problem is, for a given graph G and capacity q, to find a
cheapest set of tours visiting each client once.

If m = 1, we have the Single Depot Capacitated Vehicle Routing
Problem (SDCVRP), otherwise MDCVRP.

MDCVRP1: routes can start and terminate at different depots.
MDCVRP2: for any route R, yjs = yjf .
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Special settings

Metric CVRP

The weight function w meets the triangle inequality. For any vertices
xi1 , xi2 and xi3 , w(xi1 , xi2) ≤ w(xi1 , xi3) + w(xi2 , xi3).

Euclidean CVRP

In this case, the depot and all the customers locations are points in
d-dimensional Euclidean space X ∪ {x0} ⊂ Rd and
w(xi, xj) = ‖xi − xj‖2.
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ITP heuristic: the scheme

Relate the initial SDCVRP problem with TSP problem for the graph
G = G0 〈X〉.
Take an arbitrary Hamiltonian cycle H in the graph G.

Starting from x1, break this cycle into l = dn/qe disjoint segments
such that each of them contains at most q customers.

Then, connect the endpoints of any segment with depot y1 to provide
a feasible solution for the initial problem.

Perform the same procedure iteratively for any other starting point xi
and construct n feasible solutions V1, . . . , Vn of the initial instance of
SDCVRP.

Output the best (cheapest) one SITP = arg minw(Vj).
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ITP heuristic: general case

Let r̄ = 1/n
∑n
i=1 ri. Compare w(SITP) with w(H)

Lemma 1 (upper bound)

w(SITP) ≤ 2

⌈
n

q

⌉
r̄ +

(
1− dn/qe

n

)
w(H)

Proof.

For l = dn/qe, each edge {xi1 , xi2} of the tour H is included n− l
times to the solutions V1, . . . , Vn and l times is replaced with ‘radial’
edges {y1, xi1} and {y1, xi2} of costs ri1 and ri2 .

Therefore, the total cost C of all solutions V1, . . . , Vn is equal to
C = 2l

∑n
i=1 ri + (n− l)T (X).

Thus,

w(SITP) ≤ C

n
= 2lr̄ + (1− l/n)T (X) = 2

⌈
n

q

⌉
r̄ +

(
1− dn/qe

n

)
w(H).
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ITP heuristic: the metric case

On the other hand, for an arbitrary feasible solution S of the
SDCVRP and the corresponding cycle H

Lemma 2 (lower bound)

w(S) ≥ max

{
2
n

q
r̄, w(H)

}
.

Proof.

The bound w(S) ≥ w(H) follows from the triangle inequality.

Let X1, . . . , Xl be client subsets visited by different routes (of S).
Again, by the triangle inequality,

w(S) ≥
l∑

j=1

2 max
xi∈Xj

ri ≥ 2

l∑
j=1

∑
xi∈Xj ri

|Xj |
≥ 2

l∑
j=1

∑
xi∈Xj ri

q
= 2

n

q
r̄.
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ITP heuristic: the metric case

As a consequence, for optimum values of the SDCVRP and TSP
defined by graphs G0 and G

Theorem 3 (Haimovich and R.Kan)

max

{
2
n

q
r̄,TSP∗

}
≤ SDCVRP∗ ≤ 2

⌈
n

q

⌉
r̄ +

(
1− 1

q

)
TSP∗.

Corollary 4

Suppose, in ITP, we use a Hamiltonian cycle H, such that
w(H) ≤ (1 + ε)TSP∗. Then, the cost w(SITP) of ITP-based
approximate solution will be

w(SITP) ≤ 2

⌈
n

q

⌉
r̄ + (1− 1/q)(1 + ε)TSP∗.
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Fixed ratio approximation for the SDCVRP

Further, for any ρ-approximation algorithm for TSP, we obtain

w(SITP)

SDCVRP∗
≤

2dn
q
er̄ + (1− l/n)ρTSP∗

max

{
2n

q
r̄,TSP∗

}
≤ q

n
+ 1 +

(
1− dn/qe

n

)
ρ ≤ q

n
+ 1 +

(
1− 1

q

)
ρ,

For q = o(n), any ρ-approximation algorithm for the metric TSP
induces asymptotically (1 + ρ)-approximation algorithm for the metric
SDCVRP.

Since the running time of the ITP is at most O(n2), the overall
complexity of any ITP-based approximation algorithm is defined by
the running time of the underline approximation algorithm for TSP.

Well-known Christofides algorithm produces 5/2-approximation
algorithm for SDCVRP with time-complexity O(n3).
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Combined ITP scheme (CITP)

Input: a complete weighted n-graph G0(X ∪ {y}, E, w), a
capacity q ∈ N, and and accuracy ε > 0.

Output: (1 + ε)-approximate solution SCITP of the CVRP.

relabel the clients so that r1 ≥ r2 ≥ . . . ≥ rn;

take a value k = k(ε) specifying partition X into subsets
X(k) = {x1, . . . , xk−1} of outer and X \X(k) inner clients;

find an exact solution S∗(X(k)) for MDCVRP specified by
G0 〈X(k) ∪ Y 〉;
using ITP, find an approximate solution SITP(Xj \X(k)) for each
subgraph G0 〈Xj \X(k) ∪ {yj}〉;
output
SCITP = S∗(X(k)) ∪ SITP(X1 \X(k)) ∪ . . . ∪ SITP(Xm \X(k)).
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Combined ITP scheme (CITP)
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Main result

Theorem 5

For any ρ-approximation algorithm with the running time of O(nc)
used for the inner TSP, for any fixed q, m ≥ 1, ρ ≥ 1, and d ≥ 2, the
CITP scheme is an Efficient Polynomial Time Approximation
Scheme (EPTAS) for the Euclidean CVRP with time complexity of
O(nc + n2 +mKq2K), where K = k(ε).

Remark

The CITP scheme remains a PTAS for the Euclidean CVRP even for
slightly relaxed restrictions on its parameters, e.g. for any fixed d, ρ,
and q = O((log log(n))1/d).



Intro Problem statement Metric CVRP Euclidean CVRP Conclusion

Main result

Theorem 5

For any ρ-approximation algorithm with the running time of O(nc)
used for the inner TSP, for any fixed q, m ≥ 1, ρ ≥ 1, and d ≥ 2, the
CITP scheme is an Efficient Polynomial Time Approximation
Scheme (EPTAS) for the Euclidean CVRP with time complexity of
O(nc + n2 +mKq2K), where K = k(ε).

Remark

The CITP scheme remains a PTAS for the Euclidean CVRP even for
slightly relaxed restrictions on its parameters, e.g. for any fixed d, ρ,
and q = O((log log(n))1/d).



Intro Problem statement Metric CVRP Euclidean CVRP Conclusion

Proof sketch: the case of single depot

The main idea

for any k obtain an upper bound e(k) of the relative error in
terms of rk and TSP∗(X \X(k))

use the new upper bound for the optimum value of a TSP
instance embedded into an Euclidean sphere of radius rk

show that for any given accuracy bound ε there exists
k = k(ε, ρ,m) (does not depending on n) such that e(k) ≤ ε.
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Upper bound for e(k)

Lemma 6

For an arbitrary k,

SDCVRP∗(X, {y})
≤ SDCVRP∗(X(k), {y}) + SDCVRP∗(X \X(k), {y})

≤ SDCVRP∗(X, {y}) + 4(k − 1)rk.

Applying Lemmas 1,2, and 6, obtain

e(k) =
w(SCITP(X))− SDCVRP∗(X)

SDCVRP∗(X)

=
SDCVRP∗(X(k)) + w(SITP(X \X(k)))− SDCVRP∗(X)

SDCVRP∗(X)

≤ q(2k − 1)
rk∑n
i=1 ri

+
qρ

2
∑n
i=1 ri

TSP∗(X \X(k)).
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Upper bound for TSP∗

Condider the angular distance defined on the unit Euclidean
sphere

dist(x1, x2) = arccos(x1, x2), (x1, x2 ∈ Sd−1).

We need a finite ε-net N for this metric, i.e. a finite subset
N ⊂ Sd−1 such that, for any x ∈ Sd−1, there exists ξ ∈ N such
that dist(ξ, x) ≤ ε.
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Upper bound for TSP∗

Lemma 7 (see e.g. Hubbert et al. (2015))

For an arbitrary h ∈ (0, h0), h0 = π/(6
√
d− 1), on the sphere Sd−1

there exists an h
√
d− 1-net N = N(d, h) such that |N | = Ch−(d−1)

for some constant C = C(d).
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Upper bound for TSP∗

Lemma 8

For an arbitrary d > 1 and a finite X ⊂ B(y,R) the following bounds

TSP∗(X) ≤

{
C1R

1/d(
∑n
i=1 ri)

(d−1)/d, if
∑n
i=1 ri > RC (d−1)(d+1)/2

(π/6)d
,

C2R, otherwise,

are valid, where

C1 = 2dC1/d(d− 1)(d−1)/2d and C2 = 2dC(π/6)−(d−1)(d− 1)(d−1)/2.
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Upper bound for TSP∗
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Show that for any ε there exist k: e(k) ≤ ε

By Lemma 8,

e(k) ≤ q(2k − 1)
rk∑n
i=1 ri

+
qρ

2
max

{
C1

(
rk∑n
i=1 ri

)1/d

, C2
rk∑n
i=1 ri

}

≤ q(2k − 1)
rk∑n
i=1 ri

+
qρ

2
max{C1, C2}

(
rk∑n
i=1 ri

)1/d

,

since rk ≤
∑n

i=1 ri.

Denote (rk/
∑n

i=1 ri)
1/d by sk. Suppose that, for any t ∈ {1, . . . , k},

q(2t− 1)sdt +
qρ

2
C∗st > ε

is valid, where C∗ = max{C1, C2} depends on d ultimately.
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Show that for any ε there exist k: e(k) ≤ ε

There exist two options.

st ≥ ε/(qρC∗) for each t. Then,

1 ≥
k∑

t=1

sdt ≥ k
(

ε

qρC∗

)d

and k ≤
(
qρC∗

ε

)d

.

Let t0 be the smallest number, for which

st0 < ε/(qρC∗).

The same inequality is valid also for each t0 ≤ t ≤ k, and, by
assumption sdt > ε/(2q(2t− 1)). Therefore

1 ≥
k∑

t=1

sdt ≥ (t0 − 1)

(
ε

qρC∗

)d

+
ε

2q

k∑
t=t0

1

2t− 1

≥ (t0 − 1)

(
ε

qρC∗

)d

+
ε

2q

k+1∫
t0

dt

2t− 1

= (t0 − 1)

(
ε

qρC∗

)d

+
ε

4q
(ln(2k + 1)− ln(2t0 − 1)).
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Show that for any ε there exist k: e(k) ≤ ε

Without loss of generality suppose that ε ≤ 4qρ. This equation together
with the obvious (for d > 1) condition C∗ ≥ 4 implies(

ε

qρC∗

)d

≤ ε

4q
,

and (
ε

qρC∗

)−d

≥ t0 − 1 + ln(2k + 1)− ln(2t0 − 1). (1)

Minimizing the RHS of (1) subject to t0 ∈ {1, . . . , k}, we obtain

k ≤ 1

2
e

(
qρC∗
ε

)d
.

And, finally, we come to the decision that the segment[
1,

1

2
e

(
qρC∗
ε

)d
+ 1

]
definitely contains the required number k = k(ε) such that e(k) ≤ ε.
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Summary

Extending the approach to construction approximation
algorithms for CVRP on the basis of well-known ITP heuristic,
we propose new efficient polynomial time approximation schemas
for the Euclidean CVRP for any dimension fixed d > 1, number
m of depots, approximation ratio ρ, and capacity q.

The proposed scheme remains polynomial even for
q = O((log logn)1/d).

Approximation algorithm used for solution of the inner TSP
should not has a fixed approximation ratio. This can be useful
for tackling Big Data.

In future work, it would be interesting to extend the results
obtained to some special cases of the Euclidean CVRP (time
windows, uniform demand, pickup and delivery, etc.)
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Thank you for your attention!
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