Randomized Approximation Algorithms for TSP and Its Generalizations

Michael Khachay ${ }^{1}$
${ }^{1}$ Krasovsky Institute of Mathematics and Mechanics
Ural Federal University

Summer School on Operations Research and Applications Nizhny Novgorod

May 11, 2017

Introduction

- Bad news. As numerous well known combinatorial optimization problems, the Traveling Salesman Problem (TSP) and its modifications are strongly NP-hard
- Therefore, efficient (polynomial time) optimal algorithms and even good approximation algorithms for these problems are hardly can be constructed ever

Introduction

- All facts above are concerned with so called worst case or min max principle
- Algorithm is called efficient, if it finds an optimal (or good suboptimal solution) for any instance of the problem
- Good news. Promising results are obtained in a way of relaxation of this minmax principle
- Relaxation directions
subclassing considering special cases of the intractable problem, e.g. metric, Euclidean settings, etc. (Lecture 1 and 2)
averaging constructing algorithms efficient in average, e.g. simplex method for LP
randomization developing algorithms having high accuracy bounds and small time consumption with high probability

Introduction

- All facts above are concerned with so called worst case or min max principle
- Algorithm is called efficient, if it finds an optimal (or good suboptimal solution) for any instance of the problem
- Good news. Promising results are obtained in a way of relaxation of this minmax principle
- Relaxation directions
subclassing considering special cases of the intractable problem, e.g. metric, Euclidean settings, etc. (Lecture 1 and 2)
averaging constructing algorithms efficient in average, e.g. simplex method for LP
randomization developing algorithms having high accuracy bounds and small time consumption with high probability

Introduction

- All facts above are concerned with so called worst case or min max principle
- Algorithm is called efficient, if it finds an optimal (or good suboptimal solution) for any instance of the problem
- Good news. Promising results are obtained in a way of relaxation of this minmax principle
- Relaxation directions
subclassing considering special cases of the intractable problem, e.g. metric, Euclidean settings, etc. (Lecture 1 and 2)
averaging constructing algorithms efficient in average, e.g. simplex method for LP
randomization developing algorithms having high accuracy bounds and small time consumption with high probability

Algorithms with bounds

- Consider a subclass \mathcal{I}_{n} of our problem \mathcal{I} consisting of instances of length n
- e.g., for TSP, \mathcal{I}_{n} contains instances defined by graphs on n nodes
- On \mathcal{I}_{n}, define a probabilistic measure $\mathbf{P r}=\mathbf{P r}_{n}$
- Algorithm \mathcal{A} has an accuracy bound $\varepsilon=\varepsilon(n)$ with a confidence $\delta=\delta(n)$ if

- Algorithm \mathcal{A} is called asymptotically optimal [Gimadi, Perepelitsa (1974)] (or AO-algorithm), if

$$
\lim _{n \rightarrow \infty} \varepsilon(n)=0, \text { and } \lim _{n \rightarrow \infty} \delta(n)=0
$$

- AO-algorithm \mathcal{A}, for which $\delta(n)=0$ for any $n \geq n_{0}$, is called deterministic asymptotically optimal (DAO-algorithm)

Algorithms with bounds

- Consider a subclass \mathcal{I}_{n} of our problem \mathcal{I} consisting of instances of length n
- e.g., for TSP, \mathcal{I}_{n} contains instances defined by graphs on n nodes
- On \mathcal{I}_{n}, define a probabilistic measure $\mathbf{P r}=\mathbf{P r}_{n}$
- Algorithm \mathcal{A} has an accuracy bound $\varepsilon=\varepsilon(n)$ with a confidence $\delta=\delta(n)$ if

$$
\operatorname{Pr}\left\{\left|\frac{\operatorname{APP}(I)-\operatorname{OPT}(I)}{\operatorname{OPT}(I)}\right|>\varepsilon(n)\right\} \leq \delta(n)
$$

- Algorithm \mathcal{A} is called asymptotically optimal [Gimadi, Perepelitsa (1974)] (or AO-algorithm), if

$$
\lim _{n \rightarrow \infty} \varepsilon(n)=0, \text { and } \lim _{n \rightarrow \infty} \delta(n)=0
$$

- AO-algorithm \mathcal{A}, for which $\delta(n)=0$ for any $n \geq n_{0}$, is called deterministic asymptotically optimal (DAO-algorithm)

Algorithms with bounds

- Consider a subclass \mathcal{I}_{n} of our problem \mathcal{I} consisting of instances of length n
- e.g., for TSP, \mathcal{I}_{n} contains instances defined by graphs on n nodes
- On \mathcal{I}_{n}, define a probabilistic measure $\mathbf{P r}=\mathbf{P r}_{n}$
- Algorithm \mathcal{A} has an accuracy bound $\varepsilon=\varepsilon(n)$ with a confidence $\delta=\delta(n)$ if

$$
\operatorname{Pr}\left\{\left|\frac{\operatorname{APP}(I)-\operatorname{OPT}(I)}{\operatorname{OPT}(I)}\right|>\varepsilon(n)\right\} \leq \delta(n)
$$

- Algorithm \mathcal{A} is called asymptotically optimal [Gimadi, Perepelitsa (1974)] (or AO-algorithm), if

$$
\lim _{n \rightarrow \infty} \varepsilon(n)=0, \text { and } \lim _{n \rightarrow \infty} \delta(n)=0
$$

- AO-algorithm \mathcal{A}, for which $\delta(n)=0$ for any $n \geq n_{0}$, is called deterministic asymptotically optimal (DAO-algorithm)

Algorithms with bounds

- Consider a subclass \mathcal{I}_{n} of our problem \mathcal{I} consisting of instances of length n
- e.g., for TSP, \mathcal{I}_{n} contains instances defined by graphs on n nodes
- On \mathcal{I}_{n}, define a probabilistic measure $\mathbf{P r}=\mathbf{P r}_{n}$
- Algorithm \mathcal{A} has an accuracy bound $\varepsilon=\varepsilon(n)$ with a confidence $\delta=\delta(n)$ if

$$
\operatorname{Pr}\left\{\left|\frac{\operatorname{APP}(I)-\operatorname{OPT}(I)}{\operatorname{OPT}(I)}\right|>\varepsilon(n)\right\} \leq \delta(n)
$$

- Algorithm \mathcal{A} is called asymptotically optimal [Gimadi, Perepelitsa (1974)] (or AO-algorithm), if

$$
\lim _{n \rightarrow \infty} \varepsilon(n)=0, \text { and } \lim _{n \rightarrow \infty} \delta(n)=0
$$

- AO-algorithm \mathcal{A}, for which $\delta(n)=0$ for any $n \geq n_{0}$, is called deterministic asymptotically optimal (DAO-algorithm)

Contents

(1) Deterministic Asymptotically Optimal (DAO) Algorithms

- DAO-algorithm for the Euclidean Max-TSP
- DAO-algorithm for the Euclidean Max-k-SCCP
(2) Asymptotically Optimal Algorithms
- Nearest Neighbor for Min TSP
(3) Conclusion

Euclidean Max-TSP

Max-TSP

Input: a complete weighted graph $G=(V, E, w)$
Required: to find a Hamiltonian cycle H of maximal weight

- As above, Max-TSP is called the Euclidean, if $V \subset \mathbb{R}^{d}$ (for some $d>1)$ and $w\left(v_{i}, v_{j}\right)=\left\|v_{i}-v_{j}\right\|_{2}$.
- The Euclidean Max-TSP has a deterministic asymptotically optimal algorithm with time complexity $O\left(n^{3}\right)$.

Euclidean Max-TSP

Max-TSP

Input: a complete weighted graph $G=(V, E, w)$
Required: to find a Hamiltonian cycle H of maximal weight

- As above, Max-TSP is called the Euclidean, if $V \subset \mathbb{R}^{d}$ (for some $d>1)$ and $w\left(v_{i}, v_{j}\right)=\left\|v_{i}-v_{j}\right\|_{2}$.
- The Euclidean Max-TSP has a deterministic asymptotically optimal algorithm with time complexity $O\left(n^{3}\right)$.

Gimadi-Serdyukov algorithm :: preliminaries

- In complete weighted graph, a maximum weight perfect matching can be found (by J. Edmonds' 'blossom' algorithm) in time $O\left(n^{3}\right)$ (see, e.g. [Lovász, Plummer (1986)])
- For any fixed dimension $d>1$, any sufficient large collection of line segments in \mathbb{R}^{d} contains a couple of nearly parallel ones
- Butterfly gadget: for any pair of line segments $[A, B\rceil$ and $[C, D]$

Gimadi-Serdyukov algorithm :: preliminaries

- In complete weighted graph, a maximum weight perfect matching can be found (by J. Edmonds' 'blossom' algorithm) in time $O\left(n^{3}\right)$ (see, e.g. [Lovász, Plummer (1986)])
- For any fixed dimension $d>1$, any sufficient large collection of line segments in \mathbb{R}^{d} contains a couple of nearly parallel ones
- Butterfly gadget: for any pair of line segments $[A, B]$ and $[C, D]$

Gimadi-Serdyukov algorithm :: preliminaries

- In complete weighted graph, a maximum weight perfect matching can be found (by J. Edmonds' 'blossom' algorithm) in time $O\left(n^{3}\right)$ (see, e.g. [Lovász, Plummer (1986)])
- For any fixed dimension $d>1$, any sufficient large collection of line segments in \mathbb{R}^{d} contains a couple of nearly parallel ones
- Butterfly gadget: for any pair of line segments $[A, B]$ and $[C, D]$ in the Euclidean space,

$$
\begin{aligned}
\max \{|A, C|+|B, D|,|A, D| & +|B, C|\} \\
& \geq \max \left\{|A, B|,|C, D|,(|A, B|+|C, D|) \cos \frac{\alpha}{2}\right\}
\end{aligned}
$$

where $0 \leq \alpha<\pi / 2$ is an angle between the segments

Gimadi-Serdyukov algorithm :: preliminaries

- In complete weighted graph, a maximum weight perfect matching can be found (by J. Edmonds' 'blossom' algorithm) in time $O\left(n^{3}\right)$ (see, e.g. [Lovász, Plummer (1986)])
- For any fixed dimension $d>1$, any sufficient large collection of line segments in \mathbb{R}^{d} contains a couple of nearly parallel ones
- Butterfly gadget: for any pair of line segments $[A, B]$ and $[C, D]$

Gimadi-Serdyukov algorithm :: angular packing on the Euclidean sphere

- The fact 'for any fixed dimension $d>1$, any sufficient large collection of line segments in \mathbb{R}^{d} contains a couple of nearly parallel ones' follows from compactness of the unit Euclidean sphere S_{d-1} in d-dimensional space wrt angular distance

$$
x, y \in S_{d-1}, \operatorname{dist}(x, y)=\arccos (x, y)
$$

Gimadi-Serdyukov algorithm :: angular packing on the Euclidean sphere

- The fact 'for any fixed dimension $d>1$, any sufficient large collection of line segments in \mathbb{R}^{d} contains a couple of nearly parallel ones' follows from compactness of the unit Euclidean sphere S_{d-1} in d-dimensional space wrt angular distance

$$
x, y \in S_{d-1}, \operatorname{dist}(x, y)=\arccos (x, y)
$$

Lemma [Serdyukov, (1984)]
Let E be a set of t linear segments in \mathbb{R}^{d} for some $d>1$. Then, the minimum inter-segment angle $\alpha(d, t)$ satisfies the equation

$$
\sin ^{2} \frac{\alpha(d, t)}{2} \leq \frac{\gamma_{d}}{t^{2 /(d-1)}}
$$

Gimadi-Serdyukov algorithm :: scheme

(1) Find a maximum weight perfect matching $M^{*}=\left\{e_{1}, \ldots, e_{\mu}\right\}$, where $\mu=\lfloor n / 2\rfloor$ and $w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq \ldots \geq w\left(e_{\mu}\right)$
(2) For some number $2 \leq t \leq n / 4$ (will be specified later) take subsets $M_{1}^{*}=\left\{e_{1}, \ldots, e_{\mu-t+2}\right\}$ and $M_{2}^{*}=\left\{e_{\mu-t+3}, \ldots, e_{\mu}\right\}$ such that $M_{1}^{*} \cup M_{2}^{*}=M^{*}$ and $\left|M_{2}^{*}\right|=t-2$. We call elements of M_{1}^{*} and M_{2}^{*} heavy and light, respectively
© Applying Serdyukov's lemma recurrently, construct sequences S_{1}, \ldots, S_{t-1} of heavy edges such that, for any sequence $S_{i}=\left(e_{i_{1}}, \ldots, e_{i_{k}}\right)$,

Gimadi-Serdyukov algorithm :: scheme

(1) Find a maximum weight perfect matching $M^{*}=\left\{e_{1}, \ldots, e_{\mu}\right\}$, where $\mu=\lfloor n / 2\rfloor$ and $w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq \ldots \geq w\left(e_{\mu}\right)$
(2) For some number $2 \leq t \leq n / 4$ (will be specified later) take subsets $M_{1}^{*}=\left\{e_{1}, \ldots, e_{\mu-t+2}\right\}$ and $M_{2}^{*}=\left\{e_{\mu-t+3}, \ldots, e_{\mu}\right\}$ such that $M_{1}^{*} \cup M_{2}^{*}=M^{*}$ and $\left|M_{2}^{*}\right|=t-2$. We call elements of M_{1}^{*} and M_{2}^{*} heavy and light, respectively

Gimadi-Serdyukov algorithm :: scheme

(1) Find a maximum weight perfect matching $M^{*}=\left\{e_{1}, \ldots, e_{\mu}\right\}$, where $\mu=\lfloor n / 2\rfloor$ and $w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq \ldots \geq w\left(e_{\mu}\right)$
(2) For some number $2 \leq t \leq n / 4$ (will be specified later) take subsets $M_{1}^{*}=\left\{e_{1}, \ldots, e_{\mu-t+2}\right\}$ and $M_{2}^{*}=\left\{e_{\mu-t+3}, \ldots, e_{\mu}\right\}$ such that $M_{1}^{*} \cup M_{2}^{*}=M^{*}$ and $\left|M_{2}^{*}\right|=t-2$. We call elements of M_{1}^{*} and M_{2}^{*} heavy and light, respectively
(3) Applying Serdyukov's lemma recurrently, construct sequences S_{1}, \ldots, S_{t-1} of heavy edges such that, for any sequence $S_{i}=\left(e_{i_{1}}, \ldots, e_{i_{k}}\right)$,

$$
\widehat{e_{i_{j}}, e_{i_{j+1}}} \leq \alpha(d, t), \quad(1 \leq j<k)
$$

Gimadi-Serdyukov algorithm :: scheme

(1) Find a maximum weight perfect matching $M^{*}=\left\{e_{1}, \ldots, e_{\mu}\right\}$, where $\mu=\lfloor n / 2\rfloor$ and $w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq \ldots \geq w\left(e_{\mu}\right)$
(2) For some number $2 \leq t \leq n / 4$ (will be specified later) take subsets $M_{1}^{*}=\left\{e_{1}, \ldots, e_{\mu-t+2}\right\}$ and $M_{2}^{*}=\left\{e_{\mu-t+3}, \ldots, e_{\mu}\right\}$ such that $M_{1}^{*} \cup M_{2}^{*}=M^{*}$ and $\left|M_{2}^{*}\right|=t-2$. We call elements of M_{1}^{*} and M_{2}^{*} heavy and light, respectively
(3) Applying Serdyukov's lemma recurrently, construct sequences S_{1}, \ldots, S_{t-1} of heavy edges such that, for any sequence $S_{i}=\left(e_{i_{1}}, \ldots, e_{i_{k}}\right)$,

$$
\widehat{e_{i_{j}}, e_{i_{j+1}}} \leq \alpha(d, t), \quad(1 \leq j<k)
$$

Gimadi-Serdyukov algorithm :: scheme

(1) Find a maximum weight perfect matching $M^{*}=\left\{e_{1}, \ldots, e_{\mu}\right\}$, where $\mu=\lfloor n / 2\rfloor$ and $w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq \ldots \geq w\left(e_{\mu}\right)$
(2) For some number $2 \leq t \leq n / 4$ (will be specified later) take subsets $M_{1}^{*}=\left\{e_{1}, \ldots, e_{\mu-t+2}\right\}$ and $M_{2}^{*}=\left\{e_{\mu-t+3}, \ldots, e_{\mu}\right\}$ such that $M_{1}^{*} \cup M_{2}^{*}=M^{*}$ and $\left|M_{2}^{*}\right|=t-2$. We call elements of M_{1}^{*} and M_{2}^{*} heavy and light, respectively
(3) Applying Serdyukov's lemma recurrently, construct sequences S_{1}, \ldots, S_{t-1} of heavy edges such that, for any sequence $S_{i}=\left(e_{i_{1}}, \ldots, e_{i_{k}}\right)$,

$$
\widehat{e_{i_{j}}, e_{i_{j+1}}} \leq \alpha(d, t), \quad(1 \leq j<k)
$$

Gimadi-Serdyukov algorithm :: scheme

(1) Find a maximum weight perfect matching $M^{*}=\left\{e_{1}, \ldots, e_{\mu}\right\}$, where $\mu=\lfloor n / 2\rfloor$ and $w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq \ldots \geq w\left(e_{\mu}\right)$
(2) For some number $2 \leq t \leq n / 4$ (will be specified later) take subsets $M_{1}^{*}=\left\{e_{1}, \ldots, e_{\mu-t+2}\right\}$ and $M_{2}^{*}=\left\{e_{\mu-t+3}, \ldots, e_{\mu}\right\}$ such that $M_{1}^{*} \cup M_{2}^{*}=M^{*}$ and $\left|M_{2}^{*}\right|=t-2$. We call elements of M_{1}^{*} and M_{2}^{*} heavy and light, respectively
(3) Applying Serdyukov's lemma recurrently, construct sequences S_{1}, \ldots, S_{t-1} of heavy edges such that, for any sequence $S_{i}=\left(e_{i_{1}}, \ldots, e_{i_{k}}\right)$,

$$
\widehat{e_{i_{j}}, e_{i_{j+1}}} \leq \alpha(d, t), \quad(1 \leq j<k)
$$

Gimadi-Serdyukov algorithm :: scheme

(1) Find a maximum weight perfect matching $M^{*}=\left\{e_{1}, \ldots, e_{\mu}\right\}$, where $\mu=\lfloor n / 2\rfloor$ and $w\left(e_{1}\right) \geq w\left(e_{2}\right) \geq \ldots \geq w\left(e_{\mu}\right)$
(2) For some number $2 \leq t \leq n / 4$ (will be specified later) take subsets $M_{1}^{*}=\left\{e_{1}, \ldots, e_{\mu-t+2}\right\}$ and $M_{2}^{*}=\left\{e_{\mu-t+3}, \ldots, e_{\mu}\right\}$ such that $M_{1}^{*} \cup M_{2}^{*}=M^{*}$ and $\left|M_{2}^{*}\right|=t-2$. We call elements of M_{1}^{*} and M_{2}^{*} heavy and light, respectively
(3) Applying Serdyukov's lemma recurrently, construct sequences S_{1}, \ldots, S_{t-1} of heavy edges such that, for any sequence $S_{i}=\left(e_{i_{1}}, \ldots, e_{i_{k}}\right)$,

$$
\widehat{e_{i_{j}}, e_{i_{j+1}}} \leq \alpha(d, t), \quad(1 \leq j<k)
$$

Gimadi-Serdyukov algorithm :: scheme cont.

(1) Consider the edges of M^{*} in the following order:
$S_{1}, e_{l_{1}}, S_{2}, \ldots, e_{t-2}, S_{t-1}$
(0) Replacing any pair of consecutive edges according to the butterfly gadget obtain Hamiltonian cycle $H=H_{t}$

Gimadi-Serdyukov algorithm :: scheme cont.

(9) Consider the edges of M^{*} in the following order:
$S_{1}, e_{l_{1}}, S_{2}, \ldots, e_{l_{t-2}}, S_{t-1}$
(6) Replacing any pair of consecutive edges according to the butterfly gadget obtain Hamiltonian cycle $H=H_{t}$

Gimadi-Serdyukov algorithm :: scheme cont.

(1) Consider the edges of M^{*} in the following order:
$S_{1}, e_{l_{1}}, S_{2}, \ldots, e_{l_{t-2}}, S_{t-1}$
(6) Replacing any pair of consecutive edges according to the butterfly gadget obtain Hamiltonian cycle $H=H_{t}$

- Stage 1 of the algorithm is the most expensive
- Therefore, the overall time consumption of GS-algorithm is $O\left(n^{3}\right)$

Gimadi-Serdyukov algorithm :: accuracy bound

Technical Lemma 1

Weights $w\left(H_{t}\right)$ and $w\left(M^{*}\right)$ satisfy the following equation

$$
w\left(H_{t}\right) \geq 2 w\left(M^{*}\right)\left(1-\frac{t-2}{\mu}\right) \cos \frac{\alpha(d, t)}{2}
$$

Technical Lemma 2

Let H^{*} he a maximum weight Hamiltonian cycle (an optimal solution) Then

Gimadi-Serdyukov algorithm :: accuracy bound

Technical Lemma 1

Weights $w\left(H_{t}\right)$ and $w\left(M^{*}\right)$ satisfy the following equation

$$
w\left(H_{t}\right) \geq 2 w\left(M^{*}\right)\left(1-\frac{t-2}{\mu}\right) \cos \frac{\alpha(d, t)}{2}
$$

Technical Lemma 2

Let H^{*} be a maximum weight Hamiltonian cycle (an optimal solution). Then

$$
\frac{w\left(M^{*}\right)}{w\left(H^{*}\right)} \geq \frac{\mu}{n}
$$

Gimadi-Serdyukov algorithm :: accuracy bound

Technical Lemma 1

Weights $w\left(H_{t}\right)$ and $w\left(M^{*}\right)$ satisfy the following equation

$$
w\left(H_{t}\right) \geq 2 w\left(M^{*}\right)\left(1-\frac{t-2}{\mu}\right) \cos \frac{\alpha(d, t)}{2}
$$

Technical Lemma 2

Let H^{*} be a maximum weight Hamiltonian cycle (an optimal solution).
Then

$$
\frac{w\left(M^{*}\right)}{w\left(H^{*}\right)} \geq \frac{\mu}{n}
$$

For $n=2 \mu$, TL2 is evidently follows from $2 w\left(M^{*}\right) \geq w\left(H^{*}\right)$
For $n=2 \mu+1$, we obtain $2 w\left(M^{*}\right) \geq(1-1 / n) w\left(H^{*}\right)$

Gimadi-Serdyukov algorithm :: accuracy bound

Main Lemma

$$
\frac{w\left(H_{t}\right)}{w\left(H^{*}\right)} \geq 1-2 \frac{t-1}{n}-\frac{\gamma_{d}}{t^{2 /(d-1)}}
$$

Theorem
For $t=\max \left\{\left\lceil n^{(d-1) /(d+1)} / 4\right\rceil, 2\right\}$, we have

i.e. GS-algorithm is deterministic asymptotically optimal

Gimadi-Serdyukov algorithm :: accuracy bound

Main Lemma

$$
\frac{w\left(H_{t}\right)}{w\left(H^{*}\right)} \geq 1-2 \frac{t-1}{n}-\frac{\gamma_{d}}{t^{2 /(d-1)}}
$$

Theorem

For $t=\max \left\{\left\lceil n^{(d-1) /(d+1)} / 4\right\rceil, 2\right\}$, we have

$$
\frac{w\left(H^{*}\right)-w\left(H_{t}\right)}{H^{*}} \leq \frac{\beta_{d}}{n^{2 /(d+1)}}
$$

i.e. GS-algorithm is deterministic asymptotically optimal

Contents

(1) Deterministic Asymptotically Optimal (DAO) Algorithms - DAO-algorithm for the Euclidean Max-TSP

- DAO-algorithm for the Euclidean Max-k-SCCP
(2) Asymptotically Optimal Algorithms
- Nearest Neighbor for Min TSP
(3) Conclusion

Maximum weight k-Size Cycle Cover Problem

Max- k-SCCP

Input: graph $G=(V, E, w)$.
Find: a maximum-weight collection $\mathcal{C}=C_{1}, \ldots, C_{k}$ of vertex-disjoint cycles such that $\bigcup_{i \in \mathbb{N}_{k}} V\left(C_{i}\right)=V$.

Maximum weight k-Size Cycle Cover Problem

Max- k-SCCP

Input: graph $G=(V, E, w)$.
Find: a maximum-weight collection $\mathcal{C}=C_{1}, \ldots, C_{k}$ of vertex-disjoint cycles such that $\bigcup_{i \in \mathbb{N}_{k}} V\left(C_{i}\right)=V$.
$\max \quad \sum_{i=1}^{k} w\left(C_{i}\right) \equiv \sum_{i=1}^{k} \sum_{e \in E\left(C_{i}\right)} w(e)$
s.t.
C_{1}, \ldots, C_{k} are cycles in G
$C_{i} \cap C_{j}=\varnothing$
$V\left(C_{1}\right) \cup \ldots \cup V\left(C_{k}\right)=V$

Gimadi-Rykov algorithm :: main idea

- Gimadi-Serdyukov asymptotically optimal algorithm for the Euclidean Max-TSP
- Haimovich and Rinnoy Kan Iterative Tour Partition (ITP) heuristic
- Cycle joining heuristic based on the butterfly gadget

Gimadi-Rykov algorithm :: main idea

- Gimadi-Serdyukov asymptotically optimal algorithm for the Euclidean Max-TSP
- Haimovich and Rinnoy Kan Iterative Tour Partition (ITP) heuristic
- Cycle joining heuristic based on the butterfly gadget

Gimadi-Rykov algorithm :: scheme

(1) Using GS-algorithm, find an approximate solution \tilde{H} of the auxiliary Euclidean Max-TSP
(2) Take an arbitrarily integer partition $l_{1}+\ldots+l_{k}=n$ s.t. $l_{j}>2$

- Applying ITP, build n candidate cycle covers $\mathcal{C}_{1}, \ldots, \mathcal{C}_{n}$

(1) Output $\tilde{\mathcal{C}}=\arg \max \left\{\mathcal{C}_{j}: j=1, n\right\}$

Gimadi-Rykov algorithm :: scheme

(1) Using GS-algorithm, find an approximate solution \tilde{H} of the auxiliary Euclidean Max-TSP
(2) Take an arbitrarily integer partition $l_{1}+\ldots+l_{k}=n$ s.t. $l_{j}>2$

- Applying ITP, build n candidate cycle covers $\mathcal{C}_{1}, \ldots, \mathcal{C}_{n}$

(4) Output $\tilde{\mathcal{C}}=\arg \max \left\{\mathcal{C}_{j}: j=1, n\right\}$

Gimadi-Rykov algorithm :: scheme

(1) Using GS-algorithm, find an approximate solution \tilde{H} of the auxiliary Euclidean Max-TSP
(2) Take an arbitrarily integer partition $l_{1}+\ldots+l_{k}=n$ s.t. $l_{j}>2$
(3) Applying ITP, build n candidate cycle covers $\mathcal{C}_{1}, \ldots, \mathcal{C}_{n}$

(9) Output $\tilde{\mathcal{C}}=\arg \max \left\{\mathcal{C}_{j}: j=1, n\right\}$

Gimadi-Rykov algorithm :: scheme

(1) Using GS-algorithm, find an approximate solution \tilde{H} of the auxiliary Euclidean Max-TSP
(2) Take an arbitrarily integer partition $l_{1}+\ldots+l_{k}=n$ s.t. $l_{j}>2$
(3) Applying ITP, build n candidate cycle covers $\mathcal{C}_{1}, \ldots, \mathcal{C}_{n}$

(1) Output $\tilde{\mathcal{C}}=\arg \max \left\{\mathcal{C}_{j}: j=1, n\right\}$

Gimadi-Rykov algorithm :: scheme

(1) Using GS-algorithm, find an approximate solution \tilde{H} of the auxiliary Euclidean Max-TSP
(2) Take an arbitrarily integer partition $l_{1}+\ldots+l_{k}=n$ s.t. $l_{j}>2$
(3) Applying ITP, build n candidate cycle covers $\mathcal{C}_{1}, \ldots, \mathcal{C}_{n}$

(9) Output $\tilde{\mathcal{C}}=\arg \max \left\{\mathcal{C}_{j}: j=1, n\right\}$

Time complexity of this algorithm is $O\left(n^{3}\right)$

Gimadi-Rykov algorithm :: accuracy bound

ITP Lemma

$$
w(\tilde{\mathcal{C}}) \geq\left(1-\frac{k}{n}\right) w(\tilde{H})
$$

- Indeed, by construction, any edge of \tilde{H} belongs to $\mathcal{C}_{j} n-k$ times (and k times is rejected)
- Therefore, $\sum_{j=1}^{n} w\left(\mathcal{C}_{j}\right) \geq(n-k) w(\tilde{H})$
- Finally, $w(\tilde{\mathcal{C}}) \geq 1 / n \sum_{j=1}^{n} w\left(\mathcal{C}_{j}\right) \geq(1-k / n) w(\tilde{H})$

Gimadi-Rykov algorithm :: accuracy bound

ITP Lemma

$$
w(\tilde{\mathcal{C}}) \geq\left(1-\frac{k}{n}\right) w(\tilde{H})
$$

- Indeed, by construction, any edge of \tilde{H} belongs to $\mathcal{C}_{j} n-k$ times (and k times is rejected)
- Therefore, $\sum_{j=1}^{n} w\left(\mathcal{C}_{j}\right) \geq(n-k) w(\tilde{H})$
- Finally, $w(\tilde{\mathcal{C}}) \geq 1 / n \sum_{j=1}^{n} w\left(\mathcal{C}_{j}\right) \geq(1-k / n) w(\tilde{H})$

Gimadi-Rykov algorithm :: accuracy bound

ITP Lemma

$$
w(\tilde{\mathcal{C}}) \geq\left(1-\frac{k}{n}\right) w(\tilde{H})
$$

- Indeed, by construction, any edge of \tilde{H} belongs to $\mathcal{C}_{j} n-k$ times (and k times is rejected)
- Therefore, $\sum_{j=1}^{n} w\left(\mathcal{C}_{j}\right) \geq(n-k) w(\tilde{H})$
- Finally, $w(\tilde{\mathcal{C}}) \geq 1 / n \sum_{j=1}^{n} w\left(\mathcal{C}_{j}\right) \geq(1-k / n) w(\tilde{H})$

Combining with the previous results, obtain

Technical Lemma 3

$$
w(\tilde{\mathcal{C}}) \geq 2 w\left(M^{*}\right)\left(1-\frac{k}{n}\right)\left(1-\frac{t-1}{\mu}\right)\left(1-\frac{\gamma_{d}}{t^{2 /(d+1)}}\right)
$$

Gimadi-Rykov algorithm :: accuracy bound

- On the other hand, an optimal cycle cover \mathcal{C}^{*} can be restructured to a Hamiltonian cycle H (by cycle joining and butterfly gadgets)
- It is easy to check that $w(H) \geq(1-k / n) w\left(\mathcal{C}^{*}\right)$
- Then,

- since $2 w\left(M^{*}\right) \geq(1-1 / n) w(H)$

Gimadi-Rykov algorithm :: accuracy bound

- On the other hand, an optimal cycle cover \mathcal{C}^{*} can be restructured to a Hamiltonian cycle H (by cycle joining and butterfly gadgets)
- It is easy to check that $w(H) \geq(1-k / n) w\left(\mathcal{C}^{*}\right)$
- Then,

$$
2 w\left(M^{*}\right) \geq\left(1-\frac{1}{n}\right)\left(1-\frac{k}{n}\right) w\left(\mathcal{C}^{*}\right)
$$

- since $2 w\left(M^{*}\right) \geq(1-1 / n) w(H)$

Gimadi-Rykov algorithm :: accuracy bound

As for GS-algorithm

Main Lemma

$$
\frac{w(\tilde{\mathcal{C}})}{w\left(\mathcal{C}^{*}\right)} \geq 1-2 \frac{k+t-1}{n}-\frac{\gamma_{d}}{t^{2 /(d-1)}}
$$

Theorem

For $t=\max \left\{\left\lceil n^{(d-1) /(d+1)} / 4\right\rceil, 2\right\}$ and $k=o(n)$ GR-algorithm is
deterministic asymptotically optimal

Gimadi-Rykov algorithm :: accuracy bound

As for GS-algorithm
Main Lemma

$$
\frac{w(\tilde{\mathcal{C}})}{w\left(\mathcal{C}^{*}\right)} \geq 1-2 \frac{k+t-1}{n}-\frac{\gamma_{d}}{t^{2 /(d-1)}}
$$

Theorem

For $t=\max \left\{\left\lceil n^{(d-1) /(d+1)} / 4\right\rceil, 2\right\}$ and $k=o(n)$ GR-algorithm is deterministic asymptotically optimal

Contents

(1) Deterministic Asymptotically Optimal (DAO) Algorithms

- DAO-algorithm for the Euclidean Max-TSP
- DAO-algorithm for the Euclidean Max-k-SCCP
(2) Asymptotically Optimal Algorithms
- Nearest Neighbor for Min TSP
(3) Conclusion

Nearest Neighbor Heuristic

Many simple algorithms having poor worst case accuracy (in minmax setting) perform good on random inputs

NN for Min-TSP

(1) start with a partial tour consisting of a single, arbitrarily taken node v_{1}
(2) If the current partial tour is a_{1}, \ldots, a_{k} and $k<n$, take $a_{k}+1$ from nodes not in the tour, which is closest to a_{k} and construct a new tour $a_{1}, \ldots, a_{k}, a_{k+1}$
(3) stop when the current tour contains all n nodes

Nearest Neighbor Heuristic

Many simple algorithms having poor worst case accuracy (in minmax setting) perform good on random inputs

NN for Min-TSP

(1) start with a partial tour consisting of a single, arbitrarily taken node v_{1}
(2) If the current partial tour is a_{1}, \ldots, a_{k} and $k<n$, take $a_{k}+1$ from nodes not in the tour, which is closest to a_{k} and construct a new tour $a_{1}, \ldots, a_{k}, a_{k+1}$
(3) stop when the current tour contains all n nodes

Time complexity of NN is $O\left(n^{2}\right)$

NN :: worst case accuracy bound

Theorem [Rozencrantz et al. (1977)]

For every $r>1$ there exist n-node instance I of Metric Min-TSP such that

$$
\operatorname{APP}(I)>r \cdot \operatorname{OPT}(I)
$$

(c)

(d)

NN :: worst case accuracy bound

Theorem [Rozencrantz et al. (1977)]

For every $r>1$ there exist n-node instance I of Metric Min-TSP such that

$$
\operatorname{APP}(I)>r \cdot \operatorname{OPT}(I)
$$

(c)

(d)

Actually, it is proved that NN is $O(\log n)$-approximation algorithm

NN :: accuracy on random inputs

- Consider Random Min-TSP, weights $w_{i, j}$ are i.i.d. in $\left[a_{n}, b_{n}\right]$

Theorem [Gimadi (2001)]

For NN algorithm, equation

$$
\operatorname{Pr}\left\{\left|\frac{\operatorname{APP}(I)-\mathrm{OPT}(I)}{\mathrm{OPT}(I)}\right|>\varepsilon(n)\right\} \leq \delta(n)
$$

is valid for

$$
\varepsilon(n)=2 \frac{\left(b_{n}-a_{n}\right) / a_{n}}{n / \ln n}, \quad \delta(n)=O\left(n^{-1}\right)
$$

Moreover, the algorithm is asymptotically optimal when

$$
\frac{b_{n}-a_{n}}{a_{n}}=o\left(\frac{n}{\ln n}\right)
$$

NN :: accuracy on random inputs

- Theorem follows from the well known Petrov's measure concentration theorem
- The result is extended to the case of Gaussian and exponential distributions and any other distribution majorizing them

Conclusion

- Many intractable problems can be solved efficiently in special cases or on random inputs
- It is curious, but sometimes the 'curse of dimensionality' principle fails (asymptotic optimal algorithms)
- some poor in worst case algorithms (like Nearest Neighbor) are quit good on random inputs

Thank you for your attention!

