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Introduction

Bad news. As numerous well known combinatorial optimization
problems, the Traveling Salesman Problem (TSP) and its
modifications are strongly NP-hard

Therefore, efficient (polynomial time) optimal algorithms and even
good approximation algorithms for these problems are hardly can be
constructed ever
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Introduction

All facts above are concerned with so called worst case or min max
principle

Algorithm is called efficient, if it finds an optimal (or good
suboptimal solution) for any instance of the problem

Good news. Promising results are obtained in a way of relaxation of
this minmax principle

Relaxation directions

subclassing considering special cases of the intractable problem,
e.g. metric, Euclidean settings, etc. (Lecture 1 and 2)

averaging constructing algorithms efficient in average, e.g.
simplex method for LP

randomization developing algorithms having high accuracy bounds
and small time consumption with high probability
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Algorithms with bounds

Consider a subclass In of our problem I consisting of instances of
length n

e.g., for TSP, In contains instances defined by graphs on n nodes
...

On In, define a probabilistic measure Pr = Prn

Algorithm A has an accuracy bound ε = ε(n) with a confidence
δ = δ(n) if

Pr

{∣∣∣∣APP(I)−OPT(I)

OPT(I)

∣∣∣∣ > ε(n)

}
≤ δ(n)

Algorithm A is called asymptotically optimal [Gimadi, Perepelitsa
(1974)] (or AO-algorithm), if

lim
n→∞

ε(n) = 0, and lim
n→∞

δ(n) = 0

AO-algorithm A, for which δ(n) = 0 for any n ≥ n0, is called
deterministic asymptotically optimal (DAO-algorithm)
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DAO-algorithm for the Euclidean Max-TSP

Euclidean Max-TSP

Max-TSP

Input: a complete weighted graph G = (V,E,w)

Required: to find a Hamiltonian cycle H of maximal weight

As above, Max-TSP is called the Euclidean, if V ⊂ Rd (for some
d > 1) and w(vi, vj) = ‖vi − vj‖2.

The Euclidean Max-TSP has a deterministic asymptotically optimal
algorithm with time complexity O(n3).
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DAO-algorithm for the Euclidean Max-TSP

Gimadi-Serdyukov algorithm :: preliminaries

In complete weighted graph, a maximum weight perfect matching can
be found (by J. Edmonds’ ‘blossom’ algorithm) in time O(n3) (see, e.g.
[Lovász, Plummer (1986)])

For any fixed dimension d > 1, any sufficient large collection of line
segments in Rd contains a couple of nearly parallel ones

Butterfly gadget: for any pair of line segments [A,B] and [C,D]
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DAO-algorithm for the Euclidean Max-TSP

Gimadi-Serdyukov algorithm :: preliminaries

In complete weighted graph, a maximum weight perfect matching can
be found (by J. Edmonds’ ‘blossom’ algorithm) in time O(n3) (see, e.g.
[Lovász, Plummer (1986)])

For any fixed dimension d > 1, any sufficient large collection of line
segments in Rd contains a couple of nearly parallel ones

Butterfly gadget: for any pair of line segments [A,B] and [C,D]
in the Euclidean space,

max{|A,C|+ |B,D|, |A,D|+ |B,C|}

≥ max{|A,B|, |C,D|, (|A,B|+ |C,D|) cos
α

2
}

where 0 ≤ α < π/2 is an angle between the segments
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DAO-algorithm for the Euclidean Max-TSP

Gimadi-Serdyukov algorithm :: angular packing on the
Euclidean sphere

The fact ‘for any fixed dimension d > 1, any sufficient large collection
of line segments in Rd contains a couple of nearly parallel ones’ follows
from compactness of the unit Euclidean sphere Sd−1 in d-dimensional
space wrt angular distance

x, y ∈ Sd−1, dist(x, y) = arccos(x, y)
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DAO-algorithm for the Euclidean Max-TSP

Gimadi-Serdyukov algorithm :: angular packing on the
Euclidean sphere

The fact ‘for any fixed dimension d > 1, any sufficient large collection
of line segments in Rd contains a couple of nearly parallel ones’ follows
from compactness of the unit Euclidean sphere Sd−1 in d-dimensional
space wrt angular distance

x, y ∈ Sd−1, dist(x, y) = arccos(x, y)

Lemma [Serdyukov, (1984)]

Let E be a set of t linear segments in Rd for some d > 1. Then, the
minimum inter-segment angle α(d, t) satisfies the equation

sin2 α(d, t)

2
≤ γd
t2/(d−1)
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DAO-algorithm for the Euclidean Max-TSP

Gimadi-Serdyukov algorithm :: scheme

1 Find a maximum weight perfect matching M∗ = {e1, . . . , eµ}, where
µ = bn/2c and w(e1) ≥ w(e2) ≥ . . . ≥ w(eµ)

2 For some number 2 ≤ t ≤ n/4 (will be specified later) take subsets
M∗1 = {e1, . . . , eµ−t+2} and M∗2 = {eµ−t+3, . . . , eµ} such that
M∗1 ∪M∗2 = M∗ and |M∗2 | = t− 2. We call elements of M∗1 and M∗2
heavy and light, respectively

3 Applying Serdyukov’s lemma recurrently, construct sequences
S1, . . . , St−1 of heavy edges such that, for any sequence
Si = (ei1 , . . . , eik ),

̂eij , eij+1 ≤ α(d, t), (1 ≤ j < k)
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DAO-algorithm for the Euclidean Max-TSP

Gimadi-Serdyukov algorithm :: scheme cont.

4 Consider the edges of M∗ in the following order:
S1, el1 , S2, . . . , elt−2 , St−1

5 Replacing any pair of consecutive edges according to the butterfly
gadget obtain Hamiltonian cycle H = Ht
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DAO-algorithm for the Euclidean Max-TSP

Gimadi-Serdyukov algorithm :: scheme cont.

4 Consider the edges of M∗ in the following order:
S1, el1 , S2, . . . , elt−2 , St−1

5 Replacing any pair of consecutive edges according to the butterfly
gadget obtain Hamiltonian cycle H = Ht

Stage 1 of the algorithm is the most expensive

Therefore, the overall time consumption of GS-algorithm is O(n3)
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DAO-algorithm for the Euclidean Max-TSP

Gimadi-Serdyukov algorithm :: accuracy bound

Technical Lemma 1

Weights w(Ht) and w(M∗) satisfy the following equation

w(Ht) ≥ 2w(M∗)

(
1− t− 2

µ

)
cos

α(d, t)

2

Technical Lemma 2

Let H∗ be a maximum weight Hamiltonian cycle (an optimal solution).
Then

w(M∗)

w(H∗)
≥ µ

n

For n = 2µ, TL2 is evidently follows from 2w(M∗) ≥ w(H∗)

For n = 2µ+ 1, we obtain 2w(M∗) ≥ (1− 1/n)w(H∗)
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DAO-algorithm for the Euclidean Max-TSP

Gimadi-Serdyukov algorithm :: accuracy bound

Main Lemma

w(Ht)

w(H∗)
≥ 1− 2

t− 1

n
− γd
t2/(d−1)

Theorem

For t = max{dn(d−1)/(d+1)/4e, 2}, we have

w(H∗)− w(Ht)

H∗
≤ βd
n2/(d+1)

i.e. GS-algorithm is deterministic asymptotically optimal
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DAO-algorithm for the Euclidean Max-k-SCCP

Maximum weight k-Size Cycle Cover Problem

Max-k-SCCP

Input: graph G = (V,E,w).

Find: a maximum-weight collection C = C1, ..., Ck of
vertex-disjoint cycles such that

⋃
i∈Nk

V (Ci) = V .

max

k∑
i=1

w(Ci) ≡
k∑
i=1

∑
e∈E(Ci)

w(e)

s.t.

C1, . . . , Ck are cycles in G

Ci ∩ Cj = ∅
V (C1) ∪ . . . ∪ V (Ck) = V
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DAO-algorithm for the Euclidean Max-k-SCCP

Gimadi-Rykov algorithm :: main idea

Gimadi-Serdyukov asymptotically optimal algorithm for the Euclidean
Max-TSP

Haimovich and Rinnoy Kan Iterative Tour Partition (ITP) heuristic

Cycle joining heuristic based on the butterfly gadget
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DAO-algorithm for the Euclidean Max-k-SCCP

Gimadi-Rykov algorithm :: scheme

1 Using GS-algorithm, find an approximate solution H̃ of the auxiliary
Euclidean Max-TSP

2 Take an arbitrarily integer partition l1 + . . .+ lk = n s.t. lj > 2

3 Applying ITP, build n candidate cycle covers C1, . . . , Cn

4 Output C̃ = arg max{Cj : j = 1, n}
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Gimadi-Rykov algorithm :: scheme

1 Using GS-algorithm, find an approximate solution H̃ of the auxiliary
Euclidean Max-TSP

2 Take an arbitrarily integer partition l1 + . . .+ lk = n s.t. lj > 2

3 Applying ITP, build n candidate cycle covers C1, . . . , Cn

4 Output C̃ = arg max{Cj : j = 1, n}

Time complexity of this algorithm is O(n3)
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DAO-algorithm for the Euclidean Max-k-SCCP

Gimadi-Rykov algorithm :: accuracy bound

ITP Lemma

w(C̃) ≥
(

1− k

n

)
w(H̃)

Indeed, by construction, any edge of H̃ belongs to Cj n− k times (and
k times is rejected)

Therefore,
∑n
j=1 w(Cj) ≥ (n− k)w(H̃)

Finally, w(C̃) ≥ 1/n
∑n
j=1 w(Cj) ≥ (1− k/n)w(H̃)

Combining with the previous results, obtain

Technical Lemma 3

w(C̃) ≥ 2w(M∗)

(
1− k

n

)(
1− t− 1

µ

)(
1− γd

t2/(d+1)

)
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Gimadi-Rykov algorithm :: accuracy bound

ITP Lemma

w(C̃) ≥
(

1− k

n

)
w(H̃)

Indeed, by construction, any edge of H̃ belongs to Cj n− k times (and
k times is rejected)

Therefore,
∑n
j=1 w(Cj) ≥ (n− k)w(H̃)

Finally, w(C̃) ≥ 1/n
∑n
j=1 w(Cj) ≥ (1− k/n)w(H̃)

Combining with the previous results, obtain

Technical Lemma 3

w(C̃) ≥ 2w(M∗)

(
1− k

n

)(
1− t− 1

µ

)(
1− γd

t2/(d+1)

)
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DAO-algorithm for the Euclidean Max-k-SCCP

Gimadi-Rykov algorithm :: accuracy bound

On the other hand, an optimal cycle cover C∗ can be restructured to a
Hamiltonian cycle H (by cycle joining and butterfly gadgets)

It is easy to check that w(H) ≥ (1− k/n)w(C∗)
Then,

2w(M∗) ≥
(

1− 1

n

)(
1− k

n

)
w(C∗)

since 2w(M∗) ≥ (1− 1/n)w(H)
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On the other hand, an optimal cycle cover C∗ can be restructured to a
Hamiltonian cycle H (by cycle joining and butterfly gadgets)

It is easy to check that w(H) ≥ (1− k/n)w(C∗)
Then,

2w(M∗) ≥
(

1− 1

n

)(
1− k

n

)
w(C∗)

since 2w(M∗) ≥ (1− 1/n)w(H)
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Gimadi-Rykov algorithm :: accuracy bound

As for GS-algorithm

Main Lemma

w(C̃)
w(C∗) ≥ 1− 2

k + t− 1

n
− γd
t2/(d−1)

Theorem

For t = max{dn(d−1)/(d+1)/4e, 2} and k = o(n) GR-algorithm is
deterministic asymptotically optimal
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For t = max{dn(d−1)/(d+1)/4e, 2} and k = o(n) GR-algorithm is
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Nearest Neighbor for Min TSP

Nearest Neighbor Heuristic

Many simple algorithms having poor worst case accuracy (in minmax
setting) perform good on random inputs

NN for Min-TSP

1 start with a partial tour consisting of a single, arbitrarily taken node v1

2 If the current partial tour is a1, . . . , ak and k < n, take ak + 1 from
nodes not in the tour, which is closest to ak and construct a new tour
a1, . . . , ak, ak+1

3 stop when the current tour contains all n nodes
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Nearest Neighbor for Min TSP

Nearest Neighbor Heuristic

Many simple algorithms having poor worst case accuracy (in minmax
setting) perform good on random inputs

NN for Min-TSP

1 start with a partial tour consisting of a single, arbitrarily taken node v1

2 If the current partial tour is a1, . . . , ak and k < n, take ak + 1 from
nodes not in the tour, which is closest to ak and construct a new tour
a1, . . . , ak, ak+1

3 stop when the current tour contains all n nodes

Time complexity of NN is O(n2)
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Nearest Neighbor for Min TSP

NN :: worst case accuracy bound

Theorem [Rozencrantz et al. (1977)]

For every r > 1 there exist n-node instance I of Metric Min-TSP such that

APP(I) > r ·OPT(I)
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Nearest Neighbor for Min TSP

NN :: worst case accuracy bound

Theorem [Rozencrantz et al. (1977)]

For every r > 1 there exist n-node instance I of Metric Min-TSP such that

APP(I) > r ·OPT(I)

Actually, it is proved that NN is O(logn)-approximation algorithm
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Nearest Neighbor for Min TSP

NN :: accuracy on random inputs

Consider Random Min-TSP, weights wi,j are i.i.d. in [an, bn]

Theorem [Gimadi (2001)]

For NN algorithm, equation

Pr

{∣∣∣∣APP(I)−OPT(I)

OPT(I)

∣∣∣∣ > ε(n)

}
≤ δ(n)

is valid for

ε(n) = 2
(bn − an)/an

n/ lnn
, δ(n) = O(n−1)

Moreover, the algorithm is asymptotically optimal when

bn − an
an

= o
( n

lnn

)
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Nearest Neighbor for Min TSP

NN :: accuracy on random inputs

Theorem follows from the well known Petrov’s measure concentration
theorem

The result is extended to the case of Gaussian and exponential
distributions and any other distribution majorizing them



Intro Deterministic AOA Rand. AOA Conclusion

Conclusion

Many intractable problems can be solved efficiently in special cases or
on random inputs

It is curious, but sometimes the ‘curse of dimensionality’ principle fails
(asymptotic optimal algorithms)

some poor in worst case algorithms (like Nearest Neighbor) are quit
good on random inputs
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Thank you for your attention!
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