Randomized Approximation Algorithms for TSP and Its Generalizations

Michael Khachay¹

¹Krasovsky Institute of Mathematics and Mechanics Ural Federal University

Summer School on Operations Research and Applications Nizhny Novgorod May 11, 2017

Intro

Introduction

- Bad news. As numerous well known combinatorial optimization problems, the Traveling Salesman Problem (TSP) and its modifications are strongly NP-hard
- Therefore, efficient (polynomial time) optimal algorithms and even good approximation algorithms for these problems are hardly can be constructed ever

Intro	Deterministic AOA 00000000000000	Rand. AOA 0000	
Introduction			

- All facts above are concerned with so called worst case or min max principle
 - Algorithm is called efficient, if it finds an optimal (or good suboptimal solution) for any instance of the problem
- Good news. Promising results are obtained in a way of relaxation of this minmax principle
- Relaxation directions

considering special cases of the intractable problem,
e.g. metric, Euclidean settings, etc. (Lecture 1 and 2)
constructing algorithms efficient in average, e.g.
simplex method for LP
and small time consumption with high probability

ション ふゆ く は く は く む く む く し く

Intro	Deterministic AOA 0000000000000	Rand. AOA 0000	
Introduction			

- All facts above are concerned with so called worst case or min max principle
 - Algorithm is called efficient, if it finds an optimal (or good suboptimal solution) for any instance of the problem
- Good news. Promising results are obtained in a way of relaxation of this minmax principle
- Relaxation directions

considering special cases of the intractable problem,
e.g. metric, Euclidean settings, etc. (Lecture 1 and 2)
constructing algorithms efficient in average, e.g.
simplex method for LP
and small time consumption with high probability

Intro	Deterministic AOA 0000000000000	Rand. AOA 0000	
Introduction			

- All facts above are concerned with so called worst case or min max principle
 - Algorithm is called efficient, if it finds an optimal (or good suboptimal solution) for any instance of the problem
- Good news. Promising results are obtained in a way of relaxation of this minmax principle
- Relaxation directions

subclassing	considering special cases of the intractable problem,
	e.g. metric, Euclidean settings, etc. (Lecture 1 and 2)
averaging	constructing algorithms efficient in average, e.g.
	simplex method for LP
$\operatorname{randomization}$	developing algorithms having high accuracy bounds
	and small time consumption with high probability

ntro

Algorithms with bounds

- Consider a subclass \mathcal{I}_n of our problem $\mathcal I$ consisting of instances of length n
 - e.g., for TSP, \mathcal{I}_n contains instances defined by graphs on n nodes ...
- On \mathcal{I}_n , define a probabilistic measure $\mathbf{Pr} = \mathbf{Pr}_n$
- Algorithm ${\mathcal A}$ has an accuracy bound $\varepsilon = \varepsilon(n)$ with a confidence $\delta = \delta(n)$ if

$$\mathbf{Pr}\left\{\left|\frac{\mathrm{APP}(I) - \mathrm{OPT}(I)}{\mathrm{OPT}(I)}\right| > \varepsilon(n)\right\} \le \delta(n)$$

• Algorithm \mathcal{A} is called asymptotically optimal [Gimadi, Perepelitsa (1974)] (or AO-algorithm), if

$$\lim_{n \to \infty} \varepsilon(n) = 0, \text{ and } \lim_{n \to \infty} \delta(n) = 0$$

 AO-algorithm A, for which δ(n) = 0 for any n ≥ n₀, is called deterministic asymptotically optimal (DAO-algorithm)

ntro

Algorithms with bounds

- Consider a subclass \mathcal{I}_n of our problem $\mathcal I$ consisting of instances of length n
 - e.g., for TSP, \mathcal{I}_n contains instances defined by graphs on n nodes ...
- On \mathcal{I}_n , define a probabilistic measure $\mathbf{Pr} = \mathbf{Pr}_n$
- Algorithm ${\mathcal A}$ has an accuracy bound $\varepsilon = \varepsilon(n)$ with a confidence $\delta = \delta(n)$ if

$$\mathbf{Pr}\left\{\left|\frac{\mathrm{APP}(I) - \mathrm{OPT}(I)}{\mathrm{OPT}(I)}\right| > \varepsilon(n)\right\} \le \delta(n)$$

• Algorithm \mathcal{A} is called asymptotically optimal [Gimadi, Perepelitsa (1974)] (or AO-algorithm), if

$$\lim_{n \to \infty} \varepsilon(n) = 0, \text{ and } \lim_{n \to \infty} \delta(n) = 0$$

 AO-algorithm A, for which δ(n) = 0 for any n ≥ n₀, is called deterministic asymptotically optimal (DAO-algorithm)

ntro

Algorithms with bounds

- Consider a subclass \mathcal{I}_n of our problem $\mathcal I$ consisting of instances of length n
 - e.g., for TSP, \mathcal{I}_n contains instances defined by graphs on n nodes ...
- On \mathcal{I}_n , define a probabilistic measure $\mathbf{Pr} = \mathbf{Pr}_n$
- Algorithm ${\mathcal A}$ has an accuracy bound $\varepsilon = \varepsilon(n)$ with a confidence $\delta = \delta(n)$ if

$$\mathbf{Pr}\left\{\left|\frac{\mathrm{APP}(I) - \mathrm{OPT}(I)}{\mathrm{OPT}(I)}\right| > \varepsilon(n)\right\} \le \delta(n)$$

• Algorithm \mathcal{A} is called asymptotically optimal [Gimadi, Perepelitsa (1974)] (or AO-algorithm), if

$$\lim_{n \to \infty} \varepsilon(n) = 0, \text{ and } \lim_{n \to \infty} \delta(n) = 0$$

• AO-algorithm \mathcal{A} , for which $\delta(n) = 0$ for any $n \ge n_0$, is called deterministic asymptotically optimal (DAO-algorithm)

ntro

・ロト ・ 同ト ・ ヨト ・ ヨト ・ りゃぐ

Algorithms with bounds

- \bullet Consider a subclass \mathcal{I}_n of our problem $\mathcal I$ consisting of instances of length n
 - e.g., for TSP, \mathcal{I}_n contains instances defined by graphs on n nodes ...
- On \mathcal{I}_n , define a probabilistic measure $\mathbf{Pr} = \mathbf{Pr}_n$
- Algorithm ${\mathcal A}$ has an accuracy bound $\varepsilon = \varepsilon(n)$ with a confidence $\delta = \delta(n)$ if

$$\mathbf{Pr}\left\{\left|\frac{\mathrm{APP}(I) - \mathrm{OPT}(I)}{\mathrm{OPT}(I)}\right| > \varepsilon(n)\right\} \le \delta(n)$$

• Algorithm \mathcal{A} is called asymptotically optimal [Gimadi, Perepelitsa (1974)] (or AO-algorithm), if

$$\lim_{n \to \infty} \varepsilon(n) = 0, \text{ and } \lim_{n \to \infty} \delta(n) = 0$$

• AO-algorithm \mathcal{A} , for which $\delta(n) = 0$ for any $n \ge n_0$, is called deterministic asymptotically optimal (DAO-algorithm)

	\mathbf{r}	

Rand. AOA 0000

ション ふゆ マ キャット マックシン

Contents

- DAO-algorithm for the Euclidean Max-TSP
- DAO-algorithm for the Euclidean Max-k-SCCP

2 Asymptotically Optimal Algorithms

• Nearest Neighbor for Min TSP

Rand. AOA 0000

うして ふゆう ふほう ふほう ふしつ

DAO-algorithm for the Euclidean Max-TSP

Euclidean Max-TSP

Max-TSP

Input: a complete weighted graph G = (V, E, w)

Required: to find a Hamiltonian cycle H of maximal weight

- As above, Max-TSP is called the Euclidean, if $V \subset \mathbb{R}^d$ (for some d > 1) and $w(v_i, v_j) = ||v_i v_j||_2$.
- The Euclidean Max-TSP has a deterministic asymptotically optimal algorithm with time complexity $O(n^3)$.

Deterministic AOA

Rand. AOA

うして ふゆう ふほう ふほう ふしつ

DAO-algorithm for the Euclidean Max-TSP

Euclidean Max-TSP

Max-TSP

Input: a complete weighted graph G = (V, E, w)

Required: to find a Hamiltonian cycle H of maximal weight

- As above, Max-TSP is called the Euclidean, if $V \subset \mathbb{R}^d$ (for some d > 1) and $w(v_i, v_j) = ||v_i v_j||_2$.
- The Euclidean Max-TSP has a deterministic asymptotically optimal algorithm with time complexity $O(n^3)$.

	Deterministic AOA		Rand. AOA	
	000000000000000000000000000000000000000			
DAO-algorithm for the E	uclidean Max-TSP			
Gimadi-Serd	lyukov algorithr	n :: p	reliminaries	

• In complete weighted graph, a maximum weight perfect matching can be found (by J. Edmonds' 'blossom' algorithm) in time $O(n^3)$ (see, e.g. [Lovász, Plummer (1986)])

うして ふゆう ふほう ふほう ふしつ

- For any fixed dimension d > 1, any sufficient large collection of line segments in \mathbb{R}^d contains a couple of nearly parallel ones
- Butterfly gadget: for any pair of line segments [A, B] and [C, D]

]	Determir	istic AOA	7		AOA		
			000000	0000000					
DAO-alg	orithm for the	e Eucl	idean Ma	1x-TSP					
\sim	1. 0	-	-	1	• • 1	1.			

Gimadi-Serdyukov algorithm :: preliminaries

• In complete weighted graph, a maximum weight perfect matching can be found (by J. Edmonds' 'blossom' algorithm) in time $O(n^3)$ (see, e.g. [Lovász, Plummer (1986)])

うして ふゆう ふほう ふほう ふしつ

- For any fixed dimension d > 1, any sufficient large collection of line segments in \mathbb{R}^d contains a couple of nearly parallel ones
- Butterfly gadget: for any pair of line segments [A, B] and [C, D]

	Deterministic AOA	Rand. AOA	
	000000000000000000000000000000000000000		
DAO-algo	rithm for the Euclidean Max-TSP		

Gimadi-Serdyukov algorithm :: preliminaries

- In complete weighted graph, a maximum weight perfect matching can be found (by J. Edmonds' 'blossom' algorithm) in time $O(n^3)$ (see, e.g. [Lovász, Plummer (1986)])
- For any fixed dimension d > 1, any sufficient large collection of line segments in \mathbb{R}^d contains a couple of nearly parallel ones
- Butterfly gadget: for any pair of line segments [A, B] and [C, D] in the Euclidean space,

$$\max\{|A, C| + |B, D|, |A, D| + |B, C|\}$$

$$\geq \max\{|A, B|, |C, D|, (|A, B| + |C, D|) \cos \frac{\alpha}{2}\}$$

うして ふゆう ふほう ふほう ふしつ

where $0 \leq \alpha < \pi/2$ is an angle between the segments

		D	etermin	nistic AOA	7		AOA		
		0	00000	0000000					
DAO-algo	orithm for the	e Euclio	dean Ma	ax-TSP					
\sim	1. 0		-	-					

Gimadi-Serdyukov algorithm :: preliminaries

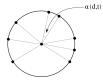
• In complete weighted graph, a maximum weight perfect matching can be found (by J. Edmonds' 'blossom' algorithm) in time $O(n^3)$ (see, e.g. [Lovász, Plummer (1986)])

- For any fixed dimension d > 1, any sufficient large collection of line segments in ℝ^d contains a couple of nearly parallel ones
- Butterfly gadget: for any pair of line segments [A, B] and [C, D]

• The fact 'for any fixed dimension d > 1, any sufficient large collection of line segments in \mathbb{R}^d contains a couple of nearly parallel ones' follows from compactness of the unit Euclidean sphere S_{d-1} in d-dimensional space wrt angular distance

$$x, y \in S_{d-1}, \operatorname{dist}(x, y) = \operatorname{arccos}(x, y)$$

うして ふゆう ふほう ふほう ふしつ



• The fact 'for any fixed dimension d > 1, any sufficient large collection of line segments in \mathbb{R}^d contains a couple of nearly parallel ones' follows from compactness of the unit Euclidean sphere S_{d-1} in d-dimensional space wrt angular distance

$$x, y \in S_{d-1}, \operatorname{dist}(x, y) = \operatorname{arccos}(x, y)$$

Lemma [Serdyukov, (1984)]

Let E be a set of t linear segments in \mathbb{R}^d for some d > 1. Then, the minimum inter-segment angle $\alpha(d, t)$ satisfies the equation

$$\sin^2 \frac{\alpha(d,t)}{2} \le \frac{\gamma_d}{t^{2/(d-1)}}$$

うして ふゆう ふほう ふほう ふしつ

DAO-algorithm for the Euclidean Max-TSP

Gimadi-Serdyukov algorithm :: scheme

- Find a maximum weight perfect matching $M^* = \{e_1, \ldots, e_\mu\}$, where $\mu = \lfloor n/2 \rfloor$ and $w(e_1) \ge w(e_2) \ge \ldots \ge w(e_\mu)$
- **2** For some number $2 \le t \le n/4$ (will be specified later) take subsets $M_1^* = \{e_1, \ldots, e_{\mu-t+2}\}$ and $M_2^* = \{e_{\mu-t+3}, \ldots, e_{\mu}\}$ such that $M_1^* \cup M_2^* = M^*$ and $|M_2^*| = t 2$. We call elements of M_1^* and M_2^* heavy and light, respectively
- Applying Serdyukov's lemma recurrently, construct sequences S_1, \ldots, S_{t-1} of heavy edges such that, for any sequence $S_i = (e_{i_1}, \ldots, e_{i_k}),$

 $\widehat{e_{i_j}, e_{i_{j+1}}} \le \alpha(d, t), \ (1 \le j < k)$

うして ふゆう ふほう ふほう ふしつ

DAO-algorithm for the Euclidean Max-TSP

Gimadi-Serdyukov algorithm :: scheme

- Find a maximum weight perfect matching $M^* = \{e_1, \ldots, e_\mu\}$, where $\mu = \lfloor n/2 \rfloor$ and $w(e_1) \ge w(e_2) \ge \ldots \ge w(e_\mu)$
- **2** For some number $2 \le t \le n/4$ (will be specified later) take subsets $M_1^* = \{e_1, \ldots, e_{\mu-t+2}\}$ and $M_2^* = \{e_{\mu-t+3}, \ldots, e_{\mu}\}$ such that $M_1^* \cup M_2^* = M^*$ and $|M_2^*| = t 2$. We call elements of M_1^* and M_2^* heavy and light, respectively

(a) Applying Serdyukov's lemma recurrently, construct sequences S_1, \ldots, S_{t-1} of heavy edges such that, for any sequence $S_i = (e_{i_1}, \ldots, e_{i_k}),$

 $\widehat{e_{i_j}, e_{i_{j+1}}} \le \alpha(d, t), \ (1 \le j < k)$

うして ふゆう ふほう ふほう ふしつ

DAO-algorithm for the Euclidean Max-TSP

Gimadi-Serdyukov algorithm :: scheme

- Find a maximum weight perfect matching $M^* = \{e_1, \ldots, e_\mu\}$, where $\mu = \lfloor n/2 \rfloor$ and $w(e_1) \ge w(e_2) \ge \ldots \ge w(e_\mu)$
- **2** For some number $2 \le t \le n/4$ (will be specified later) take subsets $M_1^* = \{e_1, \ldots, e_{\mu-t+2}\}$ and $M_2^* = \{e_{\mu-t+3}, \ldots, e_{\mu}\}$ such that $M_1^* \cup M_2^* = M^*$ and $|M_2^*| = t 2$. We call elements of M_1^* and M_2^* heavy and light, respectively
- Applying Serdyukov's lemma recurrently, construct sequences S₁,..., S_{t-1} of heavy edges such that, for any sequence S_i = (e_{i1},..., e_{ik}),

 $\widehat{e_{i_j}, e_{i_{j+1}}} \leq \alpha(d, t), \ (1 \leq j < k)$

DAO-algorithm for the Euclidean Max-TSP

- Find a maximum weight perfect matching $M^* = \{e_1, \ldots, e_\mu\}$, where $\mu = \lfloor n/2 \rfloor$ and $w(e_1) \ge w(e_2) \ge \ldots \ge w(e_\mu)$
- **2** For some number $2 \le t \le n/4$ (will be specified later) take subsets $M_1^* = \{e_1, \ldots, e_{\mu-t+2}\}$ and $M_2^* = \{e_{\mu-t+3}, \ldots, e_{\mu}\}$ such that $M_1^* \cup M_2^* = M^*$ and $|M_2^*| = t 2$. We call elements of M_1^* and M_2^* heavy and light, respectively
- Applying Serdyukov's lemma recurrently, construct sequences S₁,..., S_{t-1} of heavy edges such that, for any sequence S_i = (e_{i1},..., e_{ik}),

$$\widehat{e_{i_j}, e_{i_{j+1}}} \le \alpha(d, t), \ (1 \le j < k)$$

・ ▲ □ ト ▲ □ ト ▲ □ ト ● ● ● ●

DAO-algorithm for the Euclidean Max-TSP

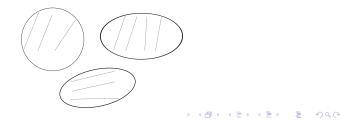
- Find a maximum weight perfect matching $M^* = \{e_1, \ldots, e_\mu\}$, where $\mu = \lfloor n/2 \rfloor$ and $w(e_1) \ge w(e_2) \ge \ldots \ge w(e_\mu)$
- **2** For some number $2 \le t \le n/4$ (will be specified later) take subsets $M_1^* = \{e_1, \ldots, e_{\mu-t+2}\}$ and $M_2^* = \{e_{\mu-t+3}, \ldots, e_{\mu}\}$ such that $M_1^* \cup M_2^* = M^*$ and $|M_2^*| = t 2$. We call elements of M_1^* and M_2^* heavy and light, respectively
- Applying Serdyukov's lemma recurrently, construct sequences S₁,..., S_{t-1} of heavy edges such that, for any sequence S_i = (e_{i1},..., e_{ik}),

$$\widehat{e_{i_j}, e_{i_{j+1}}} \le \alpha(d, t), \ (1 \le j < k)$$

DAO-algorithm for the Euclidean Max-TSP

- Find a maximum weight perfect matching $M^* = \{e_1, \ldots, e_\mu\}$, where $\mu = \lfloor n/2 \rfloor$ and $w(e_1) \ge w(e_2) \ge \ldots \ge w(e_\mu)$
- **2** For some number $2 \le t \le n/4$ (will be specified later) take subsets $M_1^* = \{e_1, \ldots, e_{\mu-t+2}\}$ and $M_2^* = \{e_{\mu-t+3}, \ldots, e_{\mu}\}$ such that $M_1^* \cup M_2^* = M^*$ and $|M_2^*| = t 2$. We call elements of M_1^* and M_2^* heavy and light, respectively
- Applying Serdyukov's lemma recurrently, construct sequences S₁,..., S_{t-1} of heavy edges such that, for any sequence S_i = (e_{i1},..., e_{ik}),

$$\widehat{e_{i_j}, e_{i_{j+1}}} \le \alpha(d, t), \ (1 \le j < k)$$



DAO-algorithm for the Euclidean Max-TSP

- Find a maximum weight perfect matching $M^* = \{e_1, \ldots, e_\mu\}$, where $\mu = \lfloor n/2 \rfloor$ and $w(e_1) \ge w(e_2) \ge \ldots \ge w(e_\mu)$
- **2** For some number $2 \le t \le n/4$ (will be specified later) take subsets $M_1^* = \{e_1, \ldots, e_{\mu-t+2}\}$ and $M_2^* = \{e_{\mu-t+3}, \ldots, e_{\mu}\}$ such that $M_1^* \cup M_2^* = M^*$ and $|M_2^*| = t 2$. We call elements of M_1^* and M_2^* heavy and light, respectively
- Applying Serdyukov's lemma recurrently, construct sequences S₁,..., S_{t-1} of heavy edges such that, for any sequence S_i = (e_{i1},..., e_{ik}),

$$\widehat{e_{i_j}, e_{i_{j+1}}} \le \alpha(d, t), \ (1 \le j < k)$$

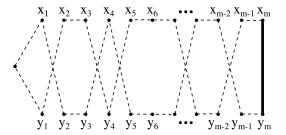
ション ふゆ マ キャット しょう くしゃ

DAO-algorithm for the Euclidean Max-TSP

- Consider the edges of M^* in the following order: $S_1, e_{l_1}, S_2, \ldots, e_{l_{t-2}}, S_{t-1}$
- So Replacing any pair of consecutive edges according to the butterfly gadget obtain Hamiltonian cycle $H = H_t$

	Deterministic AOA	Rand. AOA	
	000000000000000000000000000000000000000		
DAO-algorithm for the	Euclidean Max-TSP		

- Consider the edges of M^* in the following order: $S_1, e_{l_1}, S_2, \ldots, e_{l_{t-2}}, S_{t-1}$
- **(2)** Replacing any pair of consecutive edges according to the butterfly gadget obtain Hamiltonian cycle $H = H_t$



DAO-algorithm for the Euclidean Max-TSP

- Consider the edges of M^* in the following order: $S_1, e_{l_1}, S_2, \ldots, e_{l_{t-2}}, S_{t-1}$
- **()** Replacing any pair of consecutive edges according to the butterfly gadget obtain Hamiltonian cycle $H = H_t$
- Stage 1 of the algorithm is the most expensive
- Therefore, the overall time consumption of GS-algorithm is $O(n^3)$

Intro			

Deterministic AOA

Rand. AOA 0000 Conclusion

ション ふゆ マ キャット しょう くしゃ

DAO-algorithm for the Euclidean Max-TSP

Gimadi-Serdyukov algorithm :: accuracy bound

Technical Lemma 1

Weights $w(H_t)$ and $w(M^*)$ satisfy the following equation

$$w(H_t) \ge 2w(M^*)\left(1 - \frac{t-2}{\mu}\right)\cos\frac{\alpha(d,t)}{2}$$

Technical Lemma 2

Let H^* be a maximum weight Hamiltonian cycle (an optimal solution). Then

$$\frac{w(M^*)}{w(H^*)} \ge \frac{\mu}{n}$$

Intro			

Deterministic AOA

Rand. AOA

Conclusion

ション ふゆ マ キャット しょう くしゃ

DAO-algorithm for the Euclidean Max-TSP

Gimadi-Serdyukov algorithm :: accuracy bound

Technical Lemma 1

Weights $w(H_t)$ and $w(M^*)$ satisfy the following equation

$$w(H_t) \ge 2w(M^*)\left(1 - \frac{t-2}{\mu}\right)\cos\frac{\alpha(d,t)}{2}$$

Technical Lemma 2

Let H^* be a maximum weight Hamiltonian cycle (an optimal solution). Then

$$\frac{w(M^*)}{w(H^*)} \ge \frac{\mu}{n}$$

Intro			

Rand. AOA 0000

ション ふゆ マ キャット マックタン

DAO-algorithm for the Euclidean Max-TSP

Gimadi-Serdyukov algorithm :: accuracy bound

Technical Lemma 1

Weights $w(H_t)$ and $w(M^*)$ satisfy the following equation

$$w(H_t) \ge 2w(M^*)\left(1 - \frac{t-2}{\mu}\right)\cos\frac{\alpha(d,t)}{2}$$

Technical Lemma 2

Let H^* be a maximum weight Hamiltonian cycle (an optimal solution). Then

$$\frac{w(M^*)}{w(H^*)} \ge \frac{\mu}{n}$$

For $n = 2\mu$, TL2 is evidently follows from $2w(M^*) \ge w(H^*)$ For $n = 2\mu + 1$, we obtain $2w(M^*) \ge (1 - 1/n)w(H^*)$

Intro			

Deterministic AOA

Rand. AOA

Conclusion

ション ふゆ マ キャット しょう くしゃ

DAO-algorithm for the Euclidean Max-TSP

Gimadi-Serdyukov algorithm :: accuracy bound

Main Lemma

$$\frac{w(H_t)}{w(H^*)} \ge 1 - 2\frac{t-1}{n} - \frac{\gamma_d}{t^{2/(d-1)}}$$

Theorem

For $t = \max\{\lceil n^{(d-1)/(d+1)}/4\rceil, 2\}$, we have

$$\frac{w(H^*) - w(H_t)}{H^*} \le \frac{\beta_d}{n^{2/(d+1)}}$$

i.e. GS-algorithm is deterministic asymptotically optimal

Intro			

Deterministic AOA

Rand. AOA

Conclusion

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

DAO-algorithm for the Euclidean Max-TSP

Gimadi-Serdyukov algorithm :: accuracy bound

Main Lemma

$$\frac{w(H_t)}{w(H^*)} \ge 1 - 2\frac{t-1}{n} - \frac{\gamma_d}{t^{2/(d-1)}}$$

Theorem

For $t = \max\{\lceil n^{(d-1)/(d+1)}/4\rceil, 2\}$, we have

$$\frac{w(H^*) - w(H_t)}{H^*} \le \frac{\beta_d}{n^{2/(d+1)}}$$

i.e. GS-algorithm is deterministic asymptotically optimal

DAO-algorithm for the Euclidean Max-k-SCCP

Contents

Deterministic Asymptotically Optimal (DAO) Algorithms

- DAO-algorithm for the Euclidean Max-TSP
- DAO-algorithm for the Euclidean Max-k-SCCP

2 Asymptotically Optimal Algorithms

• Nearest Neighbor for Min TSP

Intro

ション ふゆ マ キャット しょう くしゃ

DAO-algorithm for the Euclidean Max-k-SCCP

Maximum weight k-Size Cycle Cover Problem

Max-k-SCCP

Input: graph G = (V, E, w).

Find: a maximum-weight collection $\mathcal{C} = C_1, ..., C_k$ of vertex-disjoint cycles such that $\bigcup_{i \in \mathbb{N}_k} V(C_i) = V$. DAO-algorithm for the Euclidean Max-k-SCCP

Maximum weight k-Size Cycle Cover Problem

Max-k-SCCP

Input: graph G = (V, E, w).

Find: a maximum-weight collection $\mathcal{C} = C_1, ..., C_k$ of vertex-disjoint cycles such that $\bigcup_{i \in \mathbb{N}_k} V(C_i) = V$.

$$\max \qquad \sum_{i=1}^{k} w(C_i) \equiv \sum_{i=1}^{k} \sum_{e \in E(C_i)} w(e)$$

s.t.

 C_1, \dots, C_k are cycles in G $C_i \cap C_j = \emptyset$ $V(C_1) \cup \dots \cup V(C_k) = V$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ □ のへで

ション ふゆ マ キャット マックシン

DAO-algorithm for the Euclidean Max-k-SCCP

Gimadi-Rykov algorithm :: main idea

- Gimadi-Serdyukov asymptotically optimal algorithm for the Euclidean Max-TSP
- Haimovich and Rinnoy Kan Iterative Tour Partition (ITP) heuristic
- Cycle joining heuristic based on the butterfly gadget

ション ふゆ マ キャット マックシン

DAO-algorithm for the Euclidean Max-k-SCCP

Gimadi-Rykov algorithm :: main idea

- Gimadi-Serdyukov asymptotically optimal algorithm for the Euclidean Max-TSP
- Haimovich and Rinnoy Kan Iterative Tour Partition (ITP) heuristic
- Cycle joining heuristic based on the butterfly gadget

Gimadi-Rykov algorithm :: scheme

- **9** Using GS-algorithm, find an approximate solution \tilde{H} of the auxiliary Euclidean Max-TSP



Gimadi-Rykov algorithm :: scheme

- **9** Using GS-algorithm, find an approximate solution \tilde{H} of the auxiliary Euclidean Max-TSP
- 2 Take an arbitrarily integer partition $l_1 + \ldots + l_k = n$ s.t. $l_i > 2$

Gimadi-Rykov algorithm :: scheme

- **9** Using GS-algorithm, find an approximate solution \tilde{H} of the auxiliary Euclidean Max-TSP
- **2** Take an arbitrarily integer partition $l_1 + \ldots + l_k = n$ s.t. $l_i > 2$
- Solution Applying ITP, build n candidate cycle covers C_1, \ldots, C_n

Gimadi-Rykov algorithm :: scheme

- **9** Using GS-algorithm, find an approximate solution \tilde{H} of the auxiliary Euclidean Max-TSP
- 2 Take an arbitrarily integer partition $l_1 + \ldots + l_k = n$ s.t. $l_j > 2$
- Solution Applying ITP, build n candidate cycle covers C_1, \ldots, C_n

Output $\tilde{\mathcal{C}} = \arg \max\{\mathcal{C}_i : i = 1, n\}$

	Deterministic AOA	Rand. AOA
	000000000000000000000000000000000000000	
DAO-algorithm	for the Euclidean Max-k-SCCP	

Gimadi-Rykov algorithm :: scheme

0 Using GS-algorithm, find an approximate solution \tilde{H} of the auxiliary Euclidean Max-TSP

うして ふゆう ふほう ふほう ふしつ

- **2** Take an arbitrarily integer partition $l_1 + \ldots + l_k = n$ s.t. $l_j > 2$
- **3** Applying ITP, build *n* candidate cycle covers C_1, \ldots, C_n

Output $\tilde{\mathcal{C}} = \arg \max{\{\mathcal{C}_j : j = 1, n\}}$

Time complexity of this algorithm is $O(n^3)$

DAO-algorithm for the Euclidean Max-k-SCCP

Gimadi-Rykov algorithm :: accuracy bound

ITP Lemma

$$w(\tilde{\mathcal{C}}) \ge \left(1 - \frac{k}{n}\right) w(\tilde{H})$$

- Indeed, by construction, any edge of \tilde{H} belongs to $C_j \ n k$ times (and k times is rejected)
- Therefore, $\sum_{j=1}^{n} w(\mathcal{C}_j) \ge (n-k)w(\tilde{H})$
- Finally, $w(\tilde{\mathcal{C}}) \ge 1/n \sum_{j=1}^{n} w(\mathcal{C}_j) \ge (1 k/n) w(\tilde{H})$

DAO-algorithm for the Euclidean Max-k-SCCP

Gimadi-Rykov algorithm :: accuracy bound

ITP Lemma

$$w(\tilde{\mathcal{C}}) \ge \left(1 - \frac{k}{n}\right) w(\tilde{H})$$

- Indeed, by construction, any edge of \tilde{H} belongs to $C_j \ n k$ times (and k times is rejected)
- Therefore, $\sum_{j=1}^{n} w(\mathcal{C}_j) \ge (n-k)w(\tilde{H})$
- Finally, $w(\tilde{\mathcal{C}}) \ge 1/n \sum_{j=1}^{n} w(\mathcal{C}_j) \ge (1 k/n) w(\tilde{H})$

DAO-algorithm for the Euclidean Max-k-SCCP

Gimadi-Rykov algorithm :: accuracy bound

ITP Lemma

$$w(\tilde{\mathcal{C}}) \ge \left(1 - \frac{k}{n}\right) w(\tilde{H})$$

- Indeed, by construction, any edge of \tilde{H} belongs to $C_j \ n k$ times (and k times is rejected)
- Therefore, $\sum_{j=1}^{n} w(\mathcal{C}_j) \ge (n-k)w(\tilde{H})$
- Finally, $w(\tilde{\mathcal{C}}) \ge 1/n \sum_{j=1}^{n} w(\mathcal{C}_j) \ge (1 k/n) w(\tilde{H})$

Combining with the previous results, obtain

Technical Lemma 3

$$w(\tilde{\mathcal{C}}) \ge 2w(M^*) \left(1 - \frac{k}{n}\right) \left(1 - \frac{t-1}{\mu}\right) \left(1 - \frac{\gamma_d}{t^{2/(d+1)}}\right)$$

	Deterministic AOA	Rand. AOA	
	00000000000000000		
DAO-algorithm for the	Euclidean Max-k-SCCP		

Gimadi-Rykov algorithm :: accuracy bound

- On the other hand, an optimal cycle cover C^* can be restructured to a Hamiltonian cycle H (by cycle joining and butterfly gadgets)
- It is easy to check that $w(H) \ge (1 k/n)w(\mathcal{C}^*)$

• Then,

$$2w(M^*) \ge \left(1 - \frac{1}{n}\right) \left(1 - \frac{k}{n}\right) w(\mathcal{C}^*)$$

うして ふゆう ふほう ふほう ふしつ

• since $2w(M^*) \ge (1 - 1/n)w(H)$

	Deterministic AOA	Rand. AOA	
	00000000000000000		
DAO-algorithm	for the Euclidean Max-k-SCCP		

Gimadi-Rykov algorithm :: accuracy bound

- On the other hand, an optimal cycle cover C^* can be restructured to a Hamiltonian cycle H (by cycle joining and butterfly gadgets)
- It is easy to check that $w(H) \ge (1 k/n)w(\mathcal{C}^*)$

• Then,

$$2w(M^*) \ge \left(1 - \frac{1}{n}\right) \left(1 - \frac{k}{n}\right) w(\mathcal{C}^*)$$

うして ふゆう ふほう ふほう ふしつ

• since $2w(M^*) \ge (1 - 1/n)w(H)$

	Deterministic AOA	Rand. AOA	
	0000000000000		
DAO-algo:	rithm for the Euclidean Max-k-SCCP		

Gimadi-Rykov algorithm :: accuracy bound

As for GS-algorithm

Main Lemma

$$\frac{w(\tilde{\mathcal{C}})}{w(\mathcal{C}^*)} \geq 1 - 2\frac{k+t-1}{n} - \frac{\gamma_d}{t^{2/(d-1)}}$$

うして ふゆう ふほう ふほう ふしつ

Theorem

For $t = \max\{\lceil n^{(d-1)/(d+1)}/4\rceil, 2\}$ and k = o(n) GR-algorithm is deterministic asymptotically optimal

	Deterministic AOA	Rand. AOA	
	00000000000000		
DAO-algorithm for the	e Euclidean Max-k-SCCP		
Gimadi-Ry	kov algorithm ::	accuracy bound	

As for GS-algorithm

Main Lemma

$$\frac{w(\tilde{\mathcal{C}})}{w(\mathcal{C}^*)} \geq 1 - 2\frac{k+t-1}{n} - \frac{\gamma_d}{t^{2/(d-1)}}$$

うして ふゆう ふほう ふほう ふしつ

Theorem

For $t = \max\{\lceil n^{(d-1)/(d+1)}/4\rceil, 2\}$ and k = o(n) GR-algorithm is deterministic asymptotically optimal

Rand. AOA

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○○

Contents

Deterministic Asymptotically Optimal (DAO) Algorithms

- DAO-algorithm for the Euclidean Max-TSP
- DAO-algorithm for the Euclidean Max-k-SCCP

2 Asymptotically Optimal Algorithms

• Nearest Neighbor for Min TSP

	Deterministic AOA	Rand. AOA	
		0000	
Nearest Neight	oor for Min TSP		
Nearest	Neighbor Heuristic		

Many simple algorithms having poor worst case accuracy (in minmax setting) perform good on random inputs

NN for Min-TSP

- **(**) start with a partial tour consisting of a single, arbitrarily taken node v_1
- If the current partial tour is a₁,..., a_k and k < n, take a_k + 1 from nodes not in the tour, which is closest to a_k and construct a new tour a₁,..., a_k, a_{k+1}

うつう 山田 エル・エー・ 山田 うらう

 \bigcirc stop when the current tour contains all n nodes

	Deterministic AOA	Rand. AOA	
		0000	
Nearest Neighb	oor for Min TSP		
Nearest	Neighbor Heuristic		

Many simple algorithms having poor worst case accuracy (in minmax setting) perform good on random inputs

NN for Min-TSP

- **(**) start with a partial tour consisting of a single, arbitrarily taken node v_1
- **2** If the current partial tour is a_1, \ldots, a_k and k < n, take $a_k + 1$ from nodes not in the tour, which is closest to a_k and construct a new tour $a_1, \ldots, a_k, a_{k+1}$

うして ふゆう ふほう ふほう ふしつ

0 stop when the current tour contains all n nodes

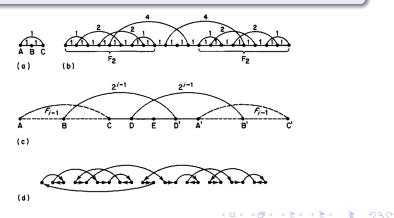
Time complexity of NN is $O(n^2)$

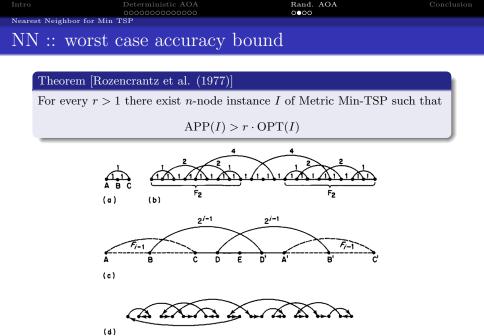
	Deterministic AOA	Rand. AOA	Conclusion
		0000	
Nearest Neighbor	for Min TSP		
$NN \cdots w$	orst case accuracy be	ound	

Theorem [Rozencrantz et al. (1977)]

For every r > 1 there exist *n*-node instance *I* of Metric Min-TSP such that

 $APP(I) > r \cdot OPT(I)$





Actually, it is proved that NN is $O(\log n)\text{-approximation algorithm}$

	Deterministic AOA	Rand. AOA	
		0000	
Nearest Neighbo	or for Min TSP		
NN :: a	ccuracy on random i	nputs	

• Consider Random Min-TSP, weights $w_{i,j}$ are i.i.d. in $[a_n, b_n]$

Theorem [Gimadi (2001)]

For NN algorithm, equation

$$\mathbf{Pr}\left\{\left|\frac{\mathrm{APP}(I) - \mathrm{OPT}(I)}{\mathrm{OPT}(I)}\right| > \varepsilon(n)\right\} \le \delta(n)$$

is valid for

$$\varepsilon(n) = 2\frac{(b_n - a_n)/a_n}{n/\ln n}, \quad \delta(n) = O(n^{-1})$$

Moreover, the algorithm is asymptotically optimal when

$$\frac{b_n - a_n}{a_n} = o\left(\frac{n}{\ln n}\right)$$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

	Deterministic AOA	Rand. AOA	Conclusion
		0000	
Nearest Neighbo	r for Min TSP		
NN :: a	curacy on random in	nputs	

• Theorem follows from the well known Petrov's measure concentration theorem

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• The result is extended to the case of Gaussian and exponential distributions and any other distribution majorizing them

ション ふゆ マ キャット マックシン

Conclusion

- Many intractable problems can be solved efficiently in special cases or on random inputs
- It is curious, but sometimes the 'curse of dimensionality' principle fails (asymptotic optimal algorithms)
- some poor in worst case algorithms (like Nearest Neighbor) are quit good on random inputs

Thank you for your attention!