CAO
Center for Applied Optimization

Study of Coordinated Scheduling and Transportation based on Serial-batching

Dis Jun Pej

Schoo of Management, Hetei University of Lechology, Ghina

Outline

1 Basic batch scheduling

Background

Extrusion Factory:

Aging Factory :

1 Basic batch scheduling

Background

Parallel batch: The jobs are processed simultaneously in their belonged batch
Serial batch: The jobs are processed one after another in their belonged batch

Parallel-batch processing machine

Serial-batch processing machine

1 Basic batch scheduling

Difference between traditional job processing way and batch processing way

2 Supply Chain Scheduling with Non-identical Job Sizes and Release Times

$$
S \rightarrow M \mid r_{i}, \sum_{J_{i} \in b_{k}} s_{i} \leq c, s-\text { batch, } p-\text { batch, } T \mid C_{\max }
$$

(1) The jobs arriving dynamically at the supplier are to be processed on a serial batching machine in the form of serial bathes.
(2) After completed in the supplier, a batch is transported from the supplier to the manufacturer immediately for further processing.
(3) After one batch arriving at the manufacturer, the jobs in the batch are processed on a parallel batching machine in the form of parallel batches.

2 Supply Chain Scheduling with Non-identical Inh Cizos and Release Times
 Mixed integer programming model (1)

Minimize $C_{\text {max }}$
Subject to

$$
\begin{array}{lc}
\sum_{k=1}^{L} x_{i k}=1, & i=1,2, \ldots, n \\
\sum_{i=1}^{n} s_{i} \cdot x_{i k} \leq c, & k=1,2, \ldots, L \\
S_{1 k} \geq r_{i} \cdot x_{i k}, & i=1,2, \ldots, n, \quad k=1,2, \ldots, L \\
C_{1 k}=S_{1 k}+s+\sum_{i=1}^{n} x_{i k} \cdot p_{i}, \quad k=1,2, \ldots, L \tag{5}
\end{array}
$$

$$
\begin{equation*}
S_{2 k} \geq C_{1 k}+T, \quad k=1,2, \ldots, L \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
C_{2 k}=S_{2 k}+P, \quad k=1,2, \ldots, L \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
C_{1 k}-C_{1 f}+P^{f}+s-\left(1-y_{k f}\right) M \leq 0, \quad k=1,2, \ldots, L, f=1,2, \ldots, L, k \neq f \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
z_{\text {kf }}+z_{f k}=1, \quad k=1,2, \ldots, L, f=1,2, \ldots, L, \quad k \neq f \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
C_{\max } \geq C_{2 k}, \quad k=1,2, \ldots, L \tag{10}
\end{equation*}
$$

2 Supply Chain Scheduling with Non-identical Inh Cizoce and Release Times
 Mixed integer programming model (1)

$$
\begin{equation*}
\text { Minimize } C_{\max } \tag{1}
\end{equation*}
$$

Subject to

$$
\begin{equation*}
\sum_{k=1}^{L} x_{i k}=1, \quad i=1,2, \ldots, n \tag{2}
\end{equation*}
$$

$$
\sum_{i=1}^{n} s_{i} \cdot x_{i k} \leq c, \quad k=1,2, \ldots, L
$$

$$
S_{1 k} \geq r_{i} \cdot x_{i k}, \quad i=1,2, \ldots, n, \quad k=1,2, \ldots, L
$$

$$
C_{1 k}=S_{1 k}+s+\sum_{i=1}^{n} x_{i k} \cdot p_{i}, \quad k=1,2, \ldots, L
$$

$$
\begin{equation*}
S_{2 k} \geq C_{1 k}+T, \quad k=1,2, \ldots, L \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
C_{2 k}=S_{2 k}+P, \quad k=1,2, \ldots, L \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
C_{1 k}-C_{1 f}+P^{f}+s-\left(1-y_{k f}\right) M \leq 0, \quad k=1,2, \ldots, L, f=1,2, \ldots, L, k \neq f \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
z_{\text {kf }}+z_{f k}=1, \quad k=1,2, \ldots, L, f=1,2, \ldots, L, \quad k \neq f \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
C_{\max } \geq C_{2 k}, \quad k=1,2, \ldots, L \tag{10}
\end{equation*}
$$

2 Supply Chain Scheduling with Non-identical Inh Cizoc and Release Times
 Mixed integer programming model (1)

$$
\begin{align*}
& \text { Minimize } C_{\max } \tag{1}\\
& \text { Subject to } \\
& \sum_{k=1}^{L} x_{i k}=1, \quad \quad \quad i=1,2, \ldots, n \tag{2}\\
& \sum_{i=1}^{n} s_{i} \cdot x_{i k} \leq c, \quad k=1,2, \ldots, L \\
& S_{1 k} \geq r_{i} \cdot x_{i k}, \quad \quad i=1,2, \ldots, n, \quad k=1,2, \ldots, L \tag{3}\\
& C_{1 k}=S_{1 k}+s+\sum_{i=1}^{n} x_{i k} \cdot p_{i}, \quad k=1,2, \ldots, L \\
& S_{2 k} \geq C_{1 k}+T, \quad k=1,2, \ldots, L \\
& C_{2 k}=S_{2 k}+P, \quad k=1,2, \ldots, L \\
& C_{1 k}-C_{1 f}+P^{f}+s-\left(1-y_{k f}\right) M \leq 0, \quad k=1,2, \ldots, L, f=1,2, \ldots, L, k \neq f \tag{6}\\
& z_{k f}+z_{f k}=1, \quad k=1,2, \ldots, L, f=1,2, \ldots, L, \quad k \neq f \tag{7}\\
& C_{\max } \geq C_{2 k}, \quad k=1,2, \ldots, L \tag{8}
\end{align*}
$$

2 Supply Chain Scheduling with Non-identical Inh Cizor and Release Times
 Mixed integer programming model (1)

$$
\begin{equation*}
\text { Minimize } C_{\max } \tag{1}
\end{equation*}
$$

Subject to
$\sum_{k=1}^{L} x_{i k}=1, \quad i=1,2, \ldots, n$

$$
\begin{equation*}
\sum_{i=1}^{n} s_{i} \cdot x_{i z} \leq c, \quad k=1,2, \ldots, L \tag{3}
\end{equation*}
$$

$$
S_{1 k} \geq r_{i} \cdot x_{i k}, \quad i=1,2, \ldots, n, \quad k=1,2, \ldots, L
$$

$$
C_{1 k}=S_{1 k}+s+\sum_{i=1}^{n} x_{i k} \cdot p_{i}, \quad k=1,2, \ldots, L
$$

$$
S_{2 k} \geq C_{1 k}+T, \quad k=1,2, \ldots, L
$$

$$
C_{2 k}=S_{2 k}+P, \quad k=1,2, \ldots, L
$$

$$
C_{1 k}-C_{1 f}+P^{f}+s-\left(1-y_{k f}\right) M \leq 0, \quad k=1,2, \ldots, L, f=1,2, \ldots, L, k \neq f
$$

$$
\begin{equation*}
z_{\text {k }}+z_{f k}=1, \quad k=1,2, \ldots, L, f=1,2, \ldots, L, \quad k \neq f \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
C_{\max } \geq C_{2 k}, \quad k=1,2, \ldots, L \tag{10}
\end{equation*}
$$

2 Supply Chain Scheduling with Non-identical Inh Cizos and Release Times
 Mixed integer programming model (1)

$$
\begin{align*}
& \text { Minimize } C_{\max } \tag{1}\\
& \text { Subject to } \\
& \sum_{k=1}^{L} x_{i k}=1, \quad \quad i=1,2, \ldots, n \tag{2}\\
& \sum_{i=1}^{n} s_{i} \cdot x_{i k} \leq c, \quad \quad k=1,2, \ldots, L \tag{3}\\
& S_{1 k} \geq r_{i} \cdot x_{i k}, \quad \quad \quad i=1,2, \ldots, n, \quad k=1,2, \ldots, L \tag{4}\\
& C_{1 k}=S_{1 k}+s+\sum_{i=1}^{n} x_{i k} \cdot p_{i}, \quad k=1,2, \ldots, L \tag{5}\\
& S_{2 k} \geq C_{1 k}+T, \quad \quad k=1,2, \ldots, L \tag{6}\\
& C_{2 k}=S_{2 k}+P, \quad k=1,2, \ldots, L \tag{7}\\
& C_{1 k}-C_{1 f}+P^{f}+s-\left(1-y_{k f}\right) M \leq 0, \quad k=1,2, \ldots, L, f=1,2, \ldots, L, k \neq f \tag{8}\\
& z_{k f}+z_{f k}=1, \quad k=1,2, \ldots, L, f=1,2, \ldots, L, \quad k \neq f \tag{9}\\
& C_{\max } \geq C_{2 k}, \quad k=1,2, \ldots, L \tag{10}
\end{align*}
$$

2 Supply Chain Scheduling with Non-identical Ionh (izac and Release Times
 Mixed integer programming model (1)

$$
\begin{align*}
& \text { Minimize } C_{\max } \tag{1}\\
& \text { Subject to } \\
& \sum_{k=1}^{L} x_{i k}=1, \quad \quad i=1,2, \ldots, n \tag{2}\\
& \sum_{i=1}^{n} s_{i} \cdot x_{i k} \leq c, \quad k=1,2, \ldots, L \tag{3}\\
& S_{1 k} \geq r_{i} \cdot x_{i k}, \quad \quad i=1,2, \ldots, n, \quad k=1,2, \ldots, L \tag{4}\\
& C_{1 k}=S_{1 k}+s+\sum_{i=1}^{n} x_{i k} \cdot p_{i}, \quad k=1,2, \ldots, L \tag{5}\\
& S_{2 k} \geq C_{1 k}+T, \quad \quad k=1,2, \ldots, L \tag{6}\\
& C_{2 k}=S_{2 k}+P, \quad \quad k=1,2, \ldots, L \tag{7}\\
& C_{1 k}-C_{1 f}+P^{f}+s-\left(1-y_{k f}\right) M \leq 0, \quad k=1,2, \ldots, L, f=1,2, \ldots, L, k \neq f \tag{8}\\
& z_{k f}+z_{f k}=1, \quad k=1,2, \ldots, L, f=1,2, \ldots, L, \quad k \neq f \tag{9}
\end{align*}
$$

$C_{\max } \geq C_{2 k}, \quad k=1,2, \ldots, L$

2 Supply Chain Scheduling with Non-identical Job Sizes and Release Times

Theorem 2.1.1 The problem $S \rightarrow M \mid r_{i}, \sum_{J_{i} \in b_{k}} s_{i} \leq c, s-$ batch, $p-$ batch, $T \mid C_{\text {max }}$

 is strongly NP-hard.Proof: 3-PARTITION problem.

2 Supply Chain Scheduling with Non-identical Job Sizes and Release Times

General problem

Lemma 2.1.1. The solution of any schedule remains unchanged when any two jobs are swapped in a batch.

Corollary 2.1.1. If the jobs within a batch are processed on the supplier's machine in nondecreasing order of release time, then the updated schedule still remains optimal.

Jobs sequencing argument

2 Supply Chain Scheduling with Non-identical Job Sizes and Release Times

General problem

Lemma 2.1.2. There exists an optimal schedule such that all batches are processed on the supplier's machine in non-decreasing order of ready time, which is equal to the largest release time of jobs contained in the batch.

Batches sequencing argument

2 Supply Chain Scheduling with Non-identical Job Sizes and Release Times

General problem

Lemma 2.1.3. Given a schedule $G, G=\left\{\cdots, b_{k}, b_{k+1}, \cdots\right\}$, if $\quad b_{k+1}=\left\{J_{j}\right\}(j=1,2, \cdots, n)$, $S_{1 k}<r_{j}<S_{1 k}+s$, and $\sum_{J_{i} \in b_{k}} s_{i}+s_{j} \leq c$, then the solution of the schedule can be improved after J_{j} is placed into b_{k}.

Lemma 2.1.4. Suppose any two neighbor batches b_{k} and b_{f} are processed on the supplier's machine in an optimal schedule π^{*}. If $S_{1 k}>S_{1 f}$, then $S_{2 k}>S_{2 f}$.

> Jobs batching argument

2 Supply Chain Scheduling with Non-identical Job Sizes and Release Times

Identical-release-time case

Lemma 2.1.5. For the identical-release-time case, if there exist L^{*} batches in an optimal schedule π^{*}, then $C_{\max }\left(\pi^{*}\right)=r+L^{*} \cdot s+\sum_{i=1}^{n} p_{i}+T+P$.

Corollary 2.1.3. For the identical-release-time case, if there exist L batches in a feasible schedule π, then $C_{\max }(\pi) \geq r+L \cdot s+\sum_{i=1}^{n} p_{i}+T+P$.

Corollary 2.1.4. For the identical-release-time case, $C_{\max } \geq r+\left\lceil\sum_{i=1}^{n} \frac{s_{i}}{c}\right\rceil \cdot s+\sum_{i=1}^{n} p_{i}+T+P$

Relationship between the number of batches and the makespan

2 Supply Chain Scheduling with Non-identical Job Sizes and Release Times

Identical-release-time case

Lemma 2.1.6. For the identical-release-time case, there exists a feasible schedule π with no additional idle time during the production and transportation. The less the number of batches is, the better the solution is.

Relationship between the number of batches and the makespan

2 Supply Chain Scheduling with Non-identical Job Sizes and Release Times

Identical-release-time case

Corollary 2.1.5. For the identical-release-time case, the optimal schedule should have the minimum number of batches among all feasible schedules.

Lemma 2.1.7. For the identical-release-time case, considering any two batches in an optimal schedule, the solution remains unchanged after these two batches are swapped on the supplier's machine.

Relationship between the number of batches and the makespan

2 Supply Chain Scheduling with Non-identical Job Sizes and Release Times

A two-phase heuristic algorithm

Phase 1:
Step 1 : Set $k=1, \quad B=\phi, \quad S^{1}=0, \quad S_{11}=r_{1}, P^{1}=0, \quad t=r_{1}, \quad U(t)=J \quad$ step 5 : Judge whether eachjob in $K(t)$ is placed into b_{k} as the job sequence. If there exists $A(t)=\left\{J_{i} \mid r_{i}=t\right\}$, and $K(t)=U(t) \backslash A(t)$. Index jobs in $U(t), A(t)$, and a job satisfying that $S^{k}+s_{i} \leq c$ and $r_{i} \leq \alpha s+t$, where $0 \leq \alpha \leq 1$, then go to step 6 . $K(t)$ as rule $E R T-D S-L P T$, respectively. Otherwise, go to step 7.4

Step 2: If $t \geq r_{\max }$, go to phase 2. Otherwise, go to step 3.
Step 3: Judge whether each job in $A(t)$ is placed into b_{k} as the job sequence until the last job. If $S^{k}+s_{i} \leq c$, then $b_{k}=b_{k} \cup\left\{J_{i}\right\}, S^{k}=S^{k}+s_{i}$, and $P^{k}=P^{k}+p_{i}$. Update $U(t), A(t)$, and $K(t)$

Step 4: If $S^{k}=c$, go to step 7. Otherwise, go to tep 5.

Set $b_{k}=b_{k} \cup\left\{J_{i}\right\}, S^{k}=S^{k}+s_{i}, P^{k}=P^{k}+p_{i}$, and $S_{1 k}=t$. Update $U(t)$, and go to step 8.

Process batch $b_{k}, B=B \cup b$. Set $t=t+s+P^{k}$, and $C_{1 k}=t$. If $U(t)=\phi$, then stop. Otherwise $e_{2} k=k+, b_{k}=\phi, S^{k}=0, P^{k}=0$, and go to step 8.

Step 8: Set $\left.t=\max \left\{\min /{ }_{i} \mid J_{i} \in U(t)\right\}, t\right\}, S_{1 k}=t$. Update $A(t)$ and $K(t)$, and go to step 2.

Based on structural properties

2 Supply Chain Scheduling with Non-identical Job Sizes and Release Times

A two-phase heuristic algorithm

Phase 2:
Step 1: Index jobs in $U(t)$ as rule DS-LPT. Set $Q=k$, and $k=k+1$. Place the firstjob of $U(t)$ into b_{k}, and update $U(t)$.

Step 2: If $U(t)=\phi$, stop. Otherwise, go to step 3.
Step 3: $i=i+1$. For the i-th job concemed, place it into the lowest indexed batch, in which the sum size of the jobs does not exceed $c-s_{i}$ and the index is larger than Q. Update $U(t)$, go to step 2.

After all the jobs are fomed into batches in phase 1 and phase 2, the generated batches are processed as their generating sequence in bothphases based on Lemmas 2, 4, and 7.

2 Supply Chain Scheduling with Non-identical Job Sizes and Release Times

Computational experiments

$$
L B=\max \left\{L B_{1}, L B_{2}\right\}=\max \left\{r_{\min }+\left\lceil\sum_{i=1}^{n} s_{i} / c\right\rceil \cdot s+\sum_{i=1}^{n} p_{i}+T+P, r_{\min }+s+\min _{i=1,2, \ldots, n}\left\{p_{i}\right\}+T+\left\lceil\sum_{i=1}^{n} s_{i} / c\right\rceil \cdot P\right\}
$$

Performance Evaluation Index

2 Supply Chain Scheduling with Non-identical Job Sizes and Release Times

Computational experiments

Small size problems

Comparison of the average gap percentage on small-sive problems by difierent heuristics

$$
(C=25)
$$

2 Supply Chain Scheduling with Non-identical Inh Sizes and Release Times

Computational experiments

Large size problems

Comparison of the average gap percentage on large-sive problems by difierent heurisics

$$
(C=25)
$$

2 Supply Chain Scheduling with Non-identical Job Sizes and Release Times

Computational experiments

Small size problems

Comparison of the average gap percentage on small-size problems by different heuristics

$$
(C=35)
$$

2 Supply Chain Scheduling with Non-identical Job Sizes and Release Times

Computational experiments

Large size problems

Comparison of the average gap percentage on small-sive problems by difierent heuristics

$$
(C=35)
$$

3 Supply Chain Scheduling with Multiple Manufacturers

$$
M \rightarrow C, m\left|c_{j}=c, t_{k}=T_{j}, \sum_{J_{i} \in b_{k}} s_{i} \leq c\right| C_{\max }
$$

(1) In the manufacturing stage, jobs are processed on the serial batching machines of multiple manufacturers.
(2) In the transportation stage, all batches are transported by vehicles from multiple manufactures to the customer for further processing..

3 Supply Chain Scheduling with Multiple

Manufactavern

Mixed integer programming model (2)

3 Supply Chain Scheduling with Multiple Manufacturers

Lemma 2.2.1. There exists a schedule $\pi=\left(b_{1}, b_{2}, \cdots, b_{f}, \cdots, b_{g}, \cdots, b_{h}\right)$ for the problem ψ, in which the solutions remain unchanged when: (1) any two jobs in a batch are swapped; (2) any two batches processed on the same manufacturer's machine are swapped; (3) any two jobs in different batches processed on the same manufacturer's machine are swapped.

Jobs sequencing and batches sequencing argument

3 Supply Chain Scheduling with Multiple Manufacturers

Corollary 2.2.1. The maximum completion time of all jobs on the machine of the manufacturer is
$C^{j}=\sum_{k=1}^{h_{j}} P_{k}+t \cdot h_{j}(j=1,2, \cdots, m)$.
Lemma 2.2.2. The sum of maximum completion time of all jobs on the machines of all manufacturers is $\sum_{j=1}^{m} C^{j}=t \cdot h+\sum_{i=1}^{N} p_{i}$.

Relationship between the number of batches and the makespan

3 Supply Chain Scheduling with Multiple

Modified
 Gravitational

Search
Algorithm

3 Supply Chain Scheduling with Multiple Manufacturers

Batching mechanism DP-H

Step 1: Initialize the job set $J_{s \text { sec }}^{j}(j=1,2, \ldots, m)$ of all jobs to be processed in each maxufacturer according to the position sequence values of the objects. The number of the jobs in $J_{s \text { sec }}^{j}$ is represented by $n_{s o c}^{j}(j=1,2, \ldots, m), \sum_{j=1}^{m} n_{s a c}^{j}=N$. Calculate the jobs number $n_{i}^{j}(l=1,2, \ldots, n, j=1,2, \ldots, m)$ of each type to be processed in the j-th manufacturer. $q=0$, $j=1$.

Step 2: $q=q+1$. Apply dynamic programming algonithm to obtain an optimal combination O_{q} from $J_{s s e c}^{j}$ as a batch. The finction value of the maximm used capacity of the machine capacity v within the first i jobs is denoted by $g(i, v)$, which is attained from those partial schedules associated with state (i, v) for $1 \leq i \leq n_{v u}^{j}$ and $1 \leq v \leq c$. The details of dynamic programming

algorithm areas follow.

- Iritialization:

For each i from 1 up to $n_{s e s}^{j}$ do
For each v from 1 up to c do

$$
g(i, v)=0
$$

Recursive equations:
For each i from 1 up to $n_{\text {ssee }}^{j}$ do

For each v from 1 up to c do

$$
g(i, v)= \begin{cases}g(i-1, v), & s_{i}>v \\ \max \left\{g(i-1, v), g\left(i-1, v-s_{i}\right)+s_{i}\right\}, & \text { else }\end{cases}
$$

The optimal sohution value is equal to $g\left(n_{s a s}^{j}, c\right)$, and the corresponding schedule can be found by backtracking.

Step 3: Calculate the jobs number of each type in O_{\uparrow}, respectively. Denote the number as $k_{i}^{t}(l=1,2, \ldots, n)$

Step 4: Calculate the executionnumber d_{q} of the combination O_{q}.

$$
d_{i}=\min _{t=1.2 *}\left\lfloor n_{t}^{j} / k_{i}^{t}\right\rfloor
$$

Step 5: Update $J_{\sec }^{j} n_{\text {exe }}^{j}$, and $n_{i}^{j}(l=1,2, \ldots, n)$

$$
\begin{aligned}
& J_{\text {ase }}^{j}=J_{\text {ased }}^{j} / J^{i} \text {, where the set } J^{i} \text { represents the jobs of all combinations of } O_{q} \\
& n_{=0<}^{j}=n_{=\ll}^{j}-d_{i} \sum_{i=1}^{n} k_{i}^{d}
\end{aligned}
$$

For each l from 1 up to n do

$$
n_{t}^{j}=n_{i}^{j}-d_{q} \cdot k_{q}^{t}
$$

Step 6: If $J_{\operatorname{sac}}^{j}=\phi$, go to step 7; otherwise, go to step 2.
Step 7: Output the result matrix φ_{j} of the batches, where the first column $O_{x}(x=1,2, \ldots, q)$ denotes the jobs combination of the x th iteration and the second column $d_{x}(x=1,2, \ldots, q)$ represents thenumber of the jobs combination of the x-thiteration

3 Supply Chain Scheduling with Multiple Manufacturers

Batching mechanism DP-H

3 Supply Chain Scheduling with Multiple Manufacturers

Computational experiments

$$
L B=\frac{\sum_{i=1}^{N} p_{i}+t \cdot\left\lceil\sum_{i=1}^{N} s_{i} / c\right\rceil+\min _{j=1,2, \cdots, m} T_{j}}{m}
$$

$$
\operatorname{Gap}_{H}=\frac{C_{\max }^{H}-L B}{L B} \times 100 \%
$$

Performance Evaluation Index

3 Supply Chain Scheduling with Multiple Manufacturers

Computational experiments

The average error ratios for each problem with different number of jobs type

3 Supply Chain Scheduling with Multiple Manufacturers

Computational experiments

The maximum error ratios for each problem with different number of jobs type

3 Supply Chain Scheduling with Multiple Manufacturers

Computational experiments

3 Supply Chain Scheduling with Multiple Manufacturers

Computational experiments

4 Supply Chain Scheduling with Arbitrary Machine Breakdown

$$
S \rightarrow M \mid r_{i}, \sum_{J_{i} \in b_{k}} s_{i} \leq c, s-\text { batch, ua, } T \mid C_{\max }
$$

(1) There is a set of jobs to be processed in two parallel manufacturers and then transported to a customer.
(2) Machine breakdown may occur during the scheduling period, and the information of the breakdown will be transmitted to the center of production management immediately by RFID based on IoT.

4 Supply Chain Scheduling with Arbitrary Machine Breakdown

Mixed integer programming model (3)

Minimize
$C_{\text {max }}$
Subject to

$$
\begin{equation*}
\sum_{k=1}^{h} x_{i k}=1, \quad i=1,2, \cdots, n \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i=1}^{n} s_{i} \cdot x_{i k} \leq c, \quad k=1,2, \cdots, h \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{j=1}^{2} z_{k j}=1, \quad k=1,2, \cdots, h \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
h_{j}=\sum_{k=1}^{h} z_{k j}, \quad j=1,2 \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
h=\sum_{j=1}^{2} h_{j} \tag{6}
\end{equation*}
$$

4 Supply Chain Scheduling with Arbitrary Machine Breakdown

Mixed integer programming model (3)

$$
\begin{align*}
& S_{1 k j} \geq \max _{J_{i} b_{k}}\left\{r_{i}\right\}+g_{k} S, \quad k=1,2, \cdots, h, j=1,2 \tag{7}\\
& C_{1 k j} \geq S_{1 k j}+\sum_{i=1}^{n} x_{i k} \cdot p_{i}, \quad k=1,2, \cdots, h, j=1,2 \tag{8}\\
& v_{k j l}\left(d_{j l}-S_{1 k j}\right)\left(C_{1 k j}-e_{j l}\right) \geq 0, \quad k=1,2, \cdots, h, j=1,2, \quad l=1,2, \cdots, m_{j} \tag{9}\\
& C_{2 k j}=C_{1 k j}+g_{k} T, \quad k=1,2, \cdots, h, j=1,2 \tag{10}\\
& g_{f} C_{1 k j}-C_{1 f j}+P_{f}+g_{f} s-\left(1-y_{k f j}\right) M \leq 0, \\
& \quad k=1,2, \cdots, h, \quad f=1,2, \cdots, h, \quad j=1,2, k \neq f \tag{11}
\end{align*}
$$

$$
\begin{align*}
& C^{j} \geq s \cdot h_{j}+\sum_{k=1}^{h} z_{k j} \cdot P_{k}+\sum_{l=1}^{m_{j}}\left(e_{j l}-d_{j l}\right), \quad j=1,2 \tag{12}\\
& C_{\max } \geq C^{j}+T, \quad j=1,2 \tag{13}\\
& x_{i k}, y_{k f j}, z_{k j}, v_{k j l} \in\{0,1\}, \quad \forall i, k, f, j, l \tag{14}
\end{align*}
$$

4 Supply Chain Scheduling with Arbitrary Machine Breakdown

Lemma 2.3.1. For all schedules, the solution remains unchanged when any two jobs in a batch are swapped.

Lemma 2.3.2. There exists an optimal schedule such that all jobs in each batch are processed in non-decreasing order of their arrival times on the machines of both manufacturers m_{1} and m_{2}.

Jobs and batches sequencing argument

4 Supply Chain Scheduling with Arbitrary Machine Breakdown

Lemma 2.3.3 In a schedule of the problem ψ, each batch is processed in non-decreasing order of ready time, which is equal to the arrival time of the last job in the batch. There exists a batch $b_{k}=\left\{J_{i}, \cdots, J_{i+x}, J_{i+x+1}, \cdots, J_{i+n_{k}-1}\right\}$ processed in the manufacturer $m_{j}(j=1,2)$, where $n_{k} \geq 2$ and $r_{i} \geq C_{1(k-1) j \text {. If }} r_{i+n_{k}-1}>r_{i+x}+s$, then the solution can be improved.

The improvement condition

4 Supply Chain Scheduling with Arbitrary Machine Breakdown

Lemma 2.3.4. The maximum completion time of all jobs on the machine of the manufacturer j is $C^{j} \geq \sum_{k=1}^{h_{j}} P_{k}+s \cdot h_{j}+\min _{i=1, \cdots, n}\left\{r_{i}\right\}+\sum_{l=1}^{m_{j}}\left(e_{j l}-d_{j l}\right)(j=1,2)$.

Lemma 2.3.5. The sum of maximum completion time of all jobs on the machines of both manufacturers is $\sum_{j=1}^{2} C^{j} \geq \sum_{i=1}^{n} p_{i}+s \cdot h+2 \min _{i=1, \cdots, n}\left(r_{i}\right)+\sum_{j=1}^{2} \sum_{l=1}^{m_{j}}\left(e_{j l}-d_{j l}\right)(j=1,2)$.

The result of the job completion times

4 Supply Chain Scheduling with Arbitrary Machine Rreakdown

4 Supply Chain Scheduling with Arbitrary Machine Breakdown

Computational experiments

Computational results for $\mathrm{Ag}=0.05$ and $\mathrm{MIPTR}=12$
MTBF and MTTR denoting the mean time of the intervals between the machine breakdowns and repairing the machines, and $\mathrm{Ag}=\mathrm{MTTR} /(\mathrm{MTTR}+\mathrm{MTBF})$

4 Supply Chain Scheduling with Arbitrary Machine Breakdown

Computational experiments

4 Supply Chain Scheduling with Arbitrary Machine Breakdown

Computational experiments

Computational resultis for $A g=0.1$ and $M P T P R=12$

4 Supply Chain Scheduling with Arbitrary Machine Breakdown

Computational experiments

Thank you!

