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Autocorrelation (periodic and aperiodic)
• The periodic autocorrelation function associated to a finite sequence

A = [a0, . . . , an−1] of length n is defined as

PA(s) =

n−1∑
k=0

akak+s, s = 0, . . . , n− 1,

where k + s is taken modulo n, when k + s > n.

• The aperiodic autocorrelation function associated to a finite sequence

A = [a0, . . . , an−1] of length n is defined as

NA(s) =

n−1−s∑
k=0

akak+s, s = 0, . . . , n− 1,

We are mostly concerned with binary {−1,+1}, ternary {−1, 0,+1} and

quaternionic {±1,±i} sequences.

Note that for sequences with complex number elements, ak+s is replaced by ak+s.
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Example: n = 7, A = [a1, . . . , a7]

PA(0) = a1
2 + a2

2 + a3
2 + a4

2 + a5
2 + a6

2 + a7
2

PA(1) = a1a2 + a2a3 + a3a4 + a4a5 + a5a6 + a6a7 + a7a1

PA(2) = a1a3 + a2a4 + a3a5 + a4a6 + a5a7 + a6a1 + a7a2

PA(3) = a1a4 + a2a5 + a3a6 + a4a7 + a5a1 + a6a2 + a7a3

PA(4) = a1a4 + a2a5 + a3a6 + a4a7 + a5a1 + a6a2 + a7a3

PA(5) = a1a3 + a2a4 + a3a5 + a4a6 + a5a7 + a6a1 + a7a2

PA(6) = a1a2 + a2a3 + a3a4 + a4a5 + a5a6 + a6a7 + a7a1

NA(0) = a1
2 + a2

2 + a3
2 + a4

2 + a5
2 + a6

2 + a7
2

NA(1) = a1a2 + a2a3 + a3a4 + a4a5 + a5a6 + a6a7

NA(2) = a1a3 + a2a4 + a3a5 + a4a6 + a5a7

NA(3) = a1a4 + a2a5 + a3a6 + a4a7

NA(4) = a1a5 + a2a6 + a3a7

NA(5) = a1a6 + a2a7

NA(6) = a1a7
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Unified description of combinatorial objects

number/type of sequences defining property name

2 binary aper. autoc. 0 Golay sequences

2 binary per. autoc. 0 Hadamard matrices

2 binary per. autoc. 2 D-optimal matrices

2 binary per. autoc. − 2 Hadamard matrices

2 ternary aper. autoc. 0 TCP

2 ternary per. autoc. 0 Weighing matrices

3 binary aper. autoc. const. Normal sequences

4 binary aper. autoc. 0 Base sequences

4 binary aper. autoc. 0 Turyn type sequences

4 ternary aper. autoc. 0 T-sequences

2 . . . 12 binary per. autoc. zero PCS
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Complementary Sequences
Definition:

Let {Ai}i=1,...,t be t sequences of length v with complex elements. The sequences

{Ai}i=1,...,t are called complementary, if

t∑
i=1

PAFAi = [α0, α, . . . , α︸ ︷︷ ︸
v−1 terms

]

with the convention:

PAFAi = [PAFAi(0), PAFAi(1), . . . , PAFAi(v − 1)].
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Optimization formalism
The search for complementary sequences can be formulated as an optimization

problem, via the concept of the PAF.

There are optimization algorithms that deal with problems with 20K (discrete)

variables.

We need symmetric matrices and certain vector/matrix products

min
x∈{0,1}n

xTAx

Let a = [a1, a2, . . . , an]
T be a column n× 1 vector, where a1, a2, . . . , an ∈ {−1,+1}

and consider the elements of the PAF vector PA(1), . . . , PA(m). Define the following

m = [n/2] symmetric matrices (which are independent of the sequence a)

Mi = (mjk), s.t.

 mjk = mkj =
1
2 , when ajak ∈ PA(i), j, k ∈ {1, . . . , n}

0, otherwise
, i = 1, . . . ,m

7



Lemma

The matrices Mi can be used to write the PAF equations in a matrix form:

• for n odd: aTMia = PA(i), i = 1, . . . ,m.

• for n even: aTMia = PA(i), i = 1, . . . ,m− 1 and aTMma = 1
2PA(m).

Example

Let n = 8, a = [a1, . . . , a8]. Then we have that m = 4 and

aTMia = PA(i), i = 1, 2, 3 and aTM4a =
1

2
PA(4)

(1) Ilias S. Kotsireas, Panos M. Pardalos, Oleg V. Shylo et al.

Periodic complementary binary sequences and combinatorial optimization

algorithms. J. Comb. Optim. 20 (2010), no. 1, 63-75.

(2) Ilias S. Kotsireas, Panos M. Pardalos

D-optimal matrices via quadratic integer optimization.

J. Heuristics 19(4), (2013) 617--627.
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Graphical representations of the four symmetric matrices M1,M2,M3,M4

Problem I Now suppose that we are looking for two {−1,+1} sequences A and B

of lengths n, such that

PA(i) + PB(i) = 2, i = 1, . . . ,m.

Via the previous lemma we can reformulate this problem as follows:

Problem II Find two binary sequences a, b, (viewed as n× 1 column vectors) such

that

aTMia+ bTMib = 2, i = 1, . . . ,m.
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The LABS problem I
• J. Phys. A, 29 (1996), S. Mertens

• J. Phys. A, 49 (2016), T. Packebusch & S. Mertens

communication engineering problems:

Binary {±1} sequences S = {s1, . . . , sN} with low off-peak autocorrelations

Ck(S) =

N−k∑
i=1

sisi+k, k = 1, . . . , N − 1

Physics

Consider binary sequences as one-dimensional systems of Ising-spins. In this

context, low-autocorrelation binary sequences appear as minima of the energy

E(S) =

N−1∑
k=1

C2
k(S) Bernasconi model

J. Bernasconi, J. Physique, 48, (1987)

Low autocorrelation binary sequences: statistical mechanics and configuration space analysis
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The LABS problem II
With periodic autocorrelation, instead of aperiodic, the construction of ground

states is possible for special values of N:

for N = 4n+ 3 prime, the modified Legendre sequence yields C2
k = 1, the

minimum possible value for odd N

Other ground states can be constructed from linear shift register sequences

based on primitive polynomials over Galois fields.

For the ground states of the Bernasconi model, no construction is known, even for

special values of N. Ground states are highly disordered!

The Legendre sequences are far from the true ground states

M. J. E. Golay, 1983 The merit factor of Legendre sequences IEEE Trans. Inf. Theory

The only exact results have been provided by exhaustive enumerations

Restricted to systems: N ≤ 32, (1996) N ≤ 66, (2016) exponential complexity

Partial enumerations allow larger values of N but are not guaranteed to yield true

ground states.
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Merit Factor
Finding the ground states of the Bernasconi model has turned out to be a hard

mathematical problem.

Golay has conjectured that the maximal merit factor F =
N2

2E
should obey

F < 12.32 for large N

However, heuristic searches (SA) among skew-symmetric

(odd N, sn+l = (−1)lsn−l, l = 1, . . . , n− 1)

sequences up to N ≤ 199 suggest F < 6 for long sequences

Beenker G F M, Claasen T A C M and Hermens P W C, 1985 Binary sequences with a maximally flat amplitude spectrum

Philips J. Res. 40 289-304

This large discrepancy indicates that the ground states, i.e. the sequences with high

merit factors 6 < F < 12, must be extremely isolated energy minima in

configuration space (boolean cube).

Exhaustive search seems to be the only approach!
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Algorithms
• Any algorithm that performs an exhaustive search for the ground state of the

Bernasconi model, has to cope with the enormous size 2N of the configuration space

• Methods to restrict the search to smaller subspaces without missing the true ground

state

• Symmetries can reduce the size of the search space by a factor of about an eighth

• combinatorial optimization: branch and bound

• parallelization
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Symmetries
• The correlations Ck(1) are unchanged when the sequence is complemented or reversed

• When alternate elements of the sequence are complemented, the even-indexed

correlations are not affected, the odd-indexed correlations only change sign

• Hence, with the exception of a small number of symmetric sequences, the 2N sequences

will come in classes of eight which are equivalent.

• The total number of non-equivalent sequences is slightly larger than 2N−3

• The m left-most and m right-most elements of the sequence can be used to parametrize

the symmetry-classes
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Branch and bound
• Branch and bound methods are commonly used in combinatorial optimization

• They solve a discrete optimization problem by breaking up its feasible set into

successively smaller subsets (branch), calculating bounds on the objective function

value over each subset and using these to discard certain subsets from further

consideration (bound)

• The procedure ends when each subset has either produced a feasible solution, or been

shown to contain no better solution that already in hand

• The best solution found during this procedure is a global optimum

• The idea is of course to discard many subsets as early as possible during the branching

process, i.e. to discard most of the feasible solutions before actually evaluating them

• The success of this approach, which depends upon the branching rule and (very

heavily) upon the quality of the bounds, can be quite dramatic
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Branch and bound for LABS
• In accordance with our symmetry classes, we specify a set of feasible solutions by fixing

the m left-most and m right-most elements of the sequence

• The N-2m centre elements are not specified, i.e. the set contains 2N−2m feasible

solutions

• Given a feasible set specified by the m border elements, four smaller sets are created by

fixing the elements sm+1 and sN−m to {±1}

• This is the branching rule. It is applied recursively until all elements have been fixed

• The energy of the resulting sequence is compared with the minimum energy found so far

• If it is lower, the sequence is kept as the potential ground state

• After all c(m)2N−2m sequences have been considered, the potential ground state has

turned into a true one
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Relaxation for LABS
• Lower bounds are usually obtained by replacing the original problem over a given

subset with an easier (relaxed) problem such that the solution value of the latter

bounds that of the former

• A good relaxation is one that (i) is easy and fast to solve and (ii) yields strong lower

bounds. (Most often these are conflicting goals)

• A relaxation for the LABS problem is given by adjusting the free elements (i.e. the

centre elements sm+1, . . . , sN−m) to minimize all values C2
k separately

• i.e. we replace the original problem

Emin = min
subset

(
N−1∑
k=1

C2
k

)
by the relaxed version

E⋆
min =

N−1∑
k=1

min
subset

(C2
k) ≤ Emin

• O(2N ) O(1.85N )
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# Ground states of the Bernasconi model with open boundary conditions
# ===================================================================
#
# (C) Copyright 1996-2001 S. Mertens, ITP, University of Magdeburg
#     stephan.mertens@physik.uni-magdeburg.de
#
# See J.Phys.A 29 L473 (1996) for the algorithm used.
# The values for N>48 have been found with an improved implementation due
# to Heiko Bauke (heiko.bauke@physik.uni-magdeburg.de)
#
# Configurations are given in run length notation, i.e. each figure indicates
# the number of consecutive elements with the same sign:
#     
#          2 5 2 2 1 1 1 2 1 = --+++++--++-+-++-
#
# N   Emin     configuration
  3      1     2 1 
  4      2     2 1 1 
  5      2     3 1 1 
  6      7     1 1 1 3 
  7      3     1 1 2 3 
  8      8     1 2 1 1 3 
  9     12     4 2 1 1 1 
 10     13     2 2 1 1 4 
 11      5     1 1 2 1 3 3 
 12     10     1 2 2 1 1 1 4 
 13      6     5 2 2 1 1 1 1 
 14     19     2 2 2 1 1 1 5 
 15     15     5 2 2 2 1 1 1 1 
 16     24     2 2 5 1 1 1 1 2 1 
 17     32     2 5 2 2 1 1 1 2 1 
 18     25     4 4 1 1 1 2 2 2 1 
 19     29     4 1 1 1 1 4 2 2 1 2 
 20     26     5 1 1 3 1 1 2 3 2 1 
 21     26     2 7 2 2 1 1 1 1 1 2 1 
 22     39     5 1 2 2 1 1 1 1 2 3 3 
 23     47     2 1 2 1 2 1 1 1 1 6 3 2 
 24     36     2 2 3 6 1 1 1 1 1 2 1 2 1 
 25     36     3 3 7 1 1 1 1 2 1 2 2 1 
 26     45     2 1 2 1 2 1 1 1 1 1 6 3 2 2 
 27     37     3 4 3 1 3 1 3 1 2 1 1 2 1 1 
 28     50     3 4 3 1 3 1 3 1 2 1 1 2 1 2 
 29     62     2 1 2 1 1 2 1 3 1 3 1 3 4 3 1 
 30     59     5 5 1 2 1 2 1 1 1 1 1 3 2 3 1 
 31     67     7 3 3 2 2 1 2 2 1 1 1 1 2 1 1 1 
 32     64     7 1 1 1 2 1 1 1 1 3 3 2 2 1 2 2 1 
 33     64     7 4 2 1 1 2 1 1 1 1 1 1 1 2 2 2 2 1 
 34     65     8 4 2 1 1 2 1 1 1 1 1 1 1 2 2 2 2 1 
 35     73     7 1 2 2 1 2 2 1 1 1 1 2 1 1 1 1 3 3 2 
 36     82     3 6 3 2 3 1 1 1 3 1 2 1 2 1 1 1 2 1 1 
 37     86     8 4 4 2 1 1 2 1 1 1 1 1 1 2 2 2 2 1 
 38     87     8 4 4 2 1 1 2 1 1 1 1 1 1 1 2 2 2 2 1 
 39     99     8 2 1 2 1 1 2 1 2 3 4 3 2 1 1 1 1 1 1 1 
 40    108     4 4 4 1 2 1 1 2 1 3 1 1 2 1 3 1 3 1 3 1 
 41    108     3 4 3 1 1 1 1 1 1 2 2 2 2 8 1 2 1 1 2 1 1 
 42    101     3 1 3 1 3 1 3 4 1 3 4 3 1 1 2 1 1 2 1 1 2 
 43    109     1 1 3 2 4 3 2 1 1 1 1 1 7 2 1 2 1 1 2 2 1 3 
 44    122     5 2 5 3 1 3 1 1 3 1 1 1 2 2 2 1 1 1 2 1 1 1 2 1 
 45    118     8 2 1 2 1 1 2 1 2 3 1 2 3 4 3 2 1 1 1 1 1 1 1 
 46    131     8 2 3 4 3 1 2 3 1 2 1 1 2 1 2 2 1 1 1 1 1 1 1 1 
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 47    135     9 2 3 4 3 1 2 3 1 2 1 1 2 1 2 2 1 1 1 1 1 1 1 1 
 48    140     3 1 1 1 1 1 1 8 3 2 1 4 3 2 1 2 2 2 1 1 2 1 1 2 1 
 49    136     2 1 5 1 3 1 3 1 1 2 2 4 1 1 2 2 4 1 1 4 1 1 4 1 
 50    153     2 1 5 1 3 1 3 1 1 2 2 4 1 1 2 2 4 1 1 4 1 1 4 2 
 51    153     2 3 4 3 2 1 1 1 1 4 1 3 1 3 1 1 6 2 1 2 1 1 2 1 2 1 
 52    166     5 1 1 6 1 2 1 2 1 2 1 1 1 1 1 3 1 2 2 3 1 2 3 3 3 2 
 53    170     4 5 1 1 3 1 1 1 3 3 2 5 1 3 1 2 2 2 1 1 1 2 1 1 1 1 2 1 
 54    175     3 5 6 2 2 5 1 4 1 2 1 2 1 1 2 2 2 2 1 1 1 1 1 1 1 2 1 
 55    171     9 2 1 2 1 2 3 2 1 2 1 1 4 3 2 1 2 3 3 2 1 1 1 1 1 1 1 1 
 56    192     7 6 1 2 2 3 1 1 2 3 2 4 1 1 1 1 1 3 2 1 1 2 1 2 2 1 1 1 
 57    188     3 3 2 3 2 6 3 1 1 1 1 1 2 7 1 2 1 1 1 1 2 2 1 2 2 1 2 1 1
 58    197     1 1 1 1 1 3 1 2 3 2 1 3 8 1 4 2 1 2 1 1 3 2 4 3 2 1 1 2
 59    205     7 7 2 4 1 2 2 4 2 1 1 2 2 3 1 1 2 2 1 1 1 1 1 2 1 1 1 1 1 1
 60    218     7 6 1 1 1 2 1 4 1 1 1 1 1 3 1 1 2 4 2 1 1 3 2 2 2 1 1 2 2 2



Future work, open problems

• find the ground states for N = 67, 68, 69, 70, . . .

• improve parallelization (symmetry classes)

• improve and further optimize algorithms implementations

• exploit/adapt the comb. optim. formulation of Pardalos et al.

• convert LABS to linear 0-1 and use cplex/gurobi, joint work with Pardalos

Is this now the limit of what we can do? it may very well be, but
certainly advances will not be made by people who think they cannot
succeed.

– Carl Pomerance
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