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Autocorrelation (periodic and aperiodic)

e The periodic autocorrelation function associated to a finite sequence

A =lao,...,an—1] of length n is defined as

n—1
Pa(s) = g axarrs, s=0,...,n—1,
k=0

where k£ + s is taken modulo n, when k£ + s > n.

e The aperiodic autocorrelation function associated to a finite sequence

A =lao,...,an—1] of length n is defined as
Na(s) = Z axarrs, S=0,...,n—1,
k=0

We are mostly concerned with binary {—1,+1}, ternary {—1,0,41} and

quaternionic {+1,+i} sequences.

Note that for sequences with complex number elements, ax s is replaced by ax .



Example: n =17, A = [ay,...,a7]

Pa(0) =
P4 (1)
P4 (2)
P4 (3)
Py (4)
P, (5)
P4 (6)

N 4 (0)
N (1)
N A (2)
N A (3)
N 7 (4)
N A (5)
N 5 (6)

a12 + as? + az? + ay2 + a5 4+ ag? + ar?
ajag + agagz + agay + agag +asag + agay +aray
ajag + agayg +agzap + agag + agar +agal + ayag
ajaygq + agayg + agag + agay + aga] + agag + avasg
ajay + agas +agzag + agay + agal + agagz +aras
aiag + agayg + agayg + agag + agay + agay + avag
ajag + agagz + agay + agas +asag + agay +aray

012+ a92 + a3 + ag2 + as2 + ag2 + ar?2
aijag + agag + agayg + agas + asag + agary

ajag + agsay + agag + agag + agary
ajay + agayg + agag + agarg

ajas + agag + agary

ajag + agsary

= aiary



Unified description of combinatorial objects

number /type of sequences

defining property

INaime

2 binary
2 binary
2 binary
2 binary
2 ternary
2 ternary
3 binary
4 binary
4 binary
4 ternary

2...12 binary

aper. autoc. 0
per. autoc. 0
per. autoc. 2

per. autoc. — 2
aper. autoc. 0
per. autoc. 0

aper. autoc. const.
aper. autoc. 0
aper. autoc. 0

aper. autoc. 0

per. autoc. zero

Golay sequences
Hadamard matrices
D-optimal matrices
Hadamard matrices

TCP
Weighing matrices
Normal sequences

Base sequences

Turyn type sequences

T-sequences

PCS



Complementary Sequences

Definition:

Let {A;}i=1,...+ be t sequences of length v with complex elements. The sequences

{A;}i=1,. + are called complementary, if

with the convention:

PAFAZ. = [PAFAZ.(O),PAFAZ.(D, .. .,PAFAZ.(?} — 1)]



Optimization formalism

The search for complementary sequences can be formulated as an optimization
problem, via the concept of the PAF.

There are optimization algorithms that deal with problems with 20K (discrete)

variables.

We need symmetric matrices and certain vector/matrix products

min 2! Az
x€{0,1}"
Let a = [a1,as,...,a,]’ be a column n x 1 vector, where ay,as,...,a, € {—1,+1}

and consider the elements of the PAF vector P4(1),..., Pa(m). Define the following
m = [n/2] symmetric matrices (which are independent of the sequence a)

M, = (ma). st Mk = Mk = %, when a;ar € Pa(i), j,k €{1,...,n}
i = (M), s.t.
’ 0, otherwise

1=1,...



LEMMA

The matrices M; can be used to write the PAF equations in a matrix form:

e for n odd: al' Mya = Py(i), i=1,...,m.

e for n even: aTM;a = Ps(i), i =1,...,m—1and a” M,,a = 3 Pa(m).
Example
Let n =8, a = |a,...,as]. Then we have that m = 4 and

1
a’ Mia = P4(i), i=1,2,3 and a’ Mya = §PA(4)

(1) Ilias S. Kotsireas, Panos M. Pardalos, Oleg V. Shylo et al.
Periodic complementary binary sequences and combinatorial optimization
algorithms. J. Comb. Optim. 20 (2010), no. 1, 63-75.

(2) Ilias S. Kotsireas, Panos M. Pardalos

D-optimal matrices via quadratic integer optimization.
J. Heuristics 19(4), (2013) 617--627.



LT

Graphical representations of the four symmetric matrices My, Mo, Mg, My

Problem I Now suppose that we are looking for two {—1,+1} sequences A and B
of lengths n, such that

Pa(i)+ Pg(i)=2, i=1,...,m.

Via the previous lemma we can reformulate this problem as follows:

Problem II Find two binary sequences a, b, (viewed as n x 1 column vectors) such
that

CLTMiOJ—FbTMib:z, 221,,771



The LABS problem 1

o J. Phys. A, 29 (1996), S. Mertens
e J. Phys. A, 49 (2016), T. Packebusch & S. Mertens

communication engineering problems:

Binary {£1} sequences S = {s1,...,sny} with low off-peak autocorrelations
N—k
Ck(S):ZSZSZ-I—k? ]CIl,...,N—l
i=1
Physics

Consider binary sequences as one-dimensional systems of Ising-spins. In this
context, low-autocorrelation binary sequences appear as minima of the energy
N-1
E(S) = Z C3(S) Bernasconi model
k=1

J. Bernasconi, J. Physique, 48, (1987)
Low autocorrelation binary sequences: statistical mechanics and configuration space analysis
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The LABS problem 11

With periodic autocorrelation, instead of aperiodic, the construction of ground
states is possible for special values of N:

for N = 4n + 3 prime, the modified Legendre sequence yields C7 = 1, the
minimum possible value for odd N

Other ground states can be constructed from linear shift register sequences
based on primitive polynomials over Galois fields.

For the ground states of the Bernasconi model, no construction is known, even for
special values of N. Ground states are highly disordered!

The Legendre sequences are far from the true ground states

M. J. E. Golay, 1983 The merit factor of Legendre sequences IEEE Trans. Inf. Theory
The only exact results have been provided by exhaustive enumerations
Restricted to systems: N < 32, (1996) N < 66, (2016) exponential complexity

Partial enumerations allow larger values of N but are not guaranteed to yield true
ground states.

11



Merit Factor

Finding the ground states of the Bernasconi model has turned out to be a hard

mathematical problem.

N2
Golay has conjectured that the maximal merit factor F' = B should obey

F < 12.32 for large N

However, heuristic searches (SA) among skew-symmetric
(odd N, sy, = (=1)!sp_y,l=1,...,n —1)

sequences up to N < 199 suggest F' < 6 for long sequences

Beenker G F M, Claasen T A C M and Hermens P W C, 1985 Binary sequences with a maximally flat amplitude spectrum

Philips J. Res. 40 289-304

This large discrepancy indicates that the ground states, i.e. the sequences with high
merit factors 6 < F' < 12, must be extremely isolated energy minima in

configuration space (boolean cube).

Exhaustive search seems to be the only approach!

12



Algorithms

Any algorithm that performs an exhaustive search for the ground state of the

Bernasconi model, has to cope with the enormous size 2% of the configuration space

Methods to restrict the search to smaller subspaces without missing the true ground

state
Symmetries can reduce the size of the search space by a factor of about an eighth
combinatorial optimization: branch and bound

parallelization

13



Symmetries

The correlations Cy (1) are unchanged when the sequence is complemented or reversed

When alternate elements of the sequence are complemented, the even-indexed

correlations are not affected, the odd-indexed correlations only change sign

Hence, with the exception of a small number of symmetric sequences, the 2% sequences

will come in classes of eight which are equivalent.
The total number of non-equivalent sequences is slightly larger than 2 =3

The m left-most and m right-most elements of the sequence can be used to parametrize

the symmetry-classes

14



Branch and bound

Branch and bound methods are commonly used in combinatorial optimization

They solve a discrete optimization problem by breaking up its feasible set into
successively smaller subsets (branch), calculating bounds on the objective function
value over each subset and using these to discard certain subsets from further

consideration (bound)

The procedure ends when each subset has either produced a feasible solution, or been

shown to contain no better solution that already in hand
The best solution found during this procedure is a global optimum

The idea is of course to discard many subsets as early as possible during the branching

process, i.e. to discard most of the feasible solutions before actually evaluating them

The success of this approach, which depends upon the branching rule and (very

heavily) upon the quality of the bounds, can be quite dramatic

15



Branch and bound for LABS

In accordance with our symmetry classes, we specify a set of feasible solutions by fixing

the m left-most and m right-most elements of the sequence

The N-2m centre elements are not specified, i.e. the set contains 2 ~2™ feasible

solutions

Given a feasible set specified by the m border elements, four smaller sets are created by

fixing the elements s,,+1 and sy—_m, to {£1}

This is the branching rule. It is applied recursively until all elements have been fixed
The energy of the resulting sequence is compared with the minimum energy found so far
If it is lower, the sequence is kept as the potential ground state

After all ¢(m)2" 2™ sequences have been considered, the potential ground state has

turned into a true one

16



Relaxation for LABS

Lower bounds are usually obtained by replacing the original problem over a given
subset with an easier (relaxed) problem such that the solution value of the latter
bounds that of the former

A good relaxation is one that (i) is easy and fast to solve and (ii) yields strong lower

bounds. (Most often these are conflicting goals)

A relaxation for the LABS problem is given by adjusting the free elements (i.e. the

centre elements Sy, 41,...,SN_m) to minimize all values C; separately

i.e. we replace the original problem

by the relaxed version

O(2N) ~» O(1.85")

17
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(1996)

www-e.uni-mag deburg.de/mertens/research/labs/open.dat

Mertens,
stephan.mertens@physik.uni-magdeburg.de

for the algorithm used.
The values for N>48 have been found with an improved implementation due
to Heiko Bauke

ITP,

University of Magdeburg

(heiko.bauke@physik.uni-magdeburg.de)
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PR R R NRRRPRNR R R R

i.e.

=

NN RN W e

el S e

I = S SRS S NGRS

each figure indicates

=W

e

Ground states of the Bernasconi model with open boundary conditions
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Future work, open problems

e find the ground states for NV = 67, 68,69, 70, . ..

e improve parallelization (symmetry classes)

e improve and further optimize algorithms implementations

o exploit/adapt the comb. optim. formulation of Pardalos et al.

e convert LABS to linear 0-1 and use cplex/gurobi, joint work with Pardalos

Is this now the limit of what we can do? it may very well be, but
certainly advances will not be made by people who think they cannot
succeed.

— Carl Pomerance

18



