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For solving large dimensional problems, coordinate descent methods

are attractive, and now they are intensively developed and applied.

For conditional optimization problems, one can take marginal-based

bi-coordinate descent methods originally proposed in [1], [2]. More

flexible versions of bi-coordinate descent methods were presented in

papers [3], [4]. They describe a method of bi-coordinate variations

with special threshold control and tolerances for optimal resource

allocation problems with simplex type constraints.

In the present paper, we apply this approach to network equilibrium

problems with mixed demand, propose the corresponding modifica-

tion of the method for this problem, perform numerical calculations,

and show its efficiency in comparison with the conditional gradient

method.



Network equilibrium problems with fixed demand

Let us consider a network composed of a set of nodes V and a set

of directed links A.

W is a set of origin-destination (O/D) pairs (i, j), i, j ∈ V . For

each O/D-pair with index w ∈ W a set of paths Pw is known (each

path is a simple chain of links starting at the origin and ending at

the destination of O/D-pair) and a demand value yw > 0 is given,

which presents a flow outgoing from the origin and ingoing to the

destination. Usually it corresponds to the transport or information

flow. We denote I = 1, . . . , n, where n =
∑
w∈W |Pw|.

The problem is to distribute the required flows for all O/D pairs

among the set of paths by using a certain (equilibrium) criterion.

We denote by xp a value of flow passing along path p.



Then the feasible set for the path flow vectors is defined as follows:

X =

x ∑
p∈Pw

xp = yw, xp ≥ 0, p ∈ Pw, w ∈W

 . (1)

Paths and links are connected with the help of the incidence matrix
with elements

αpa =
{

1, if link a belongs to path p,

0, otherwise.

The flow value for each link a ∈ A is defined as the sum of the
corresponding path flows:

fa =
∑
w∈W

∑
p∈Pw

αpaxp (2)

For each link a a continuous cost function ca is given; it can depend
on all link flows in the general case. The summary cost function for
path p has the form:

gp(x) =
∑
a∈A

αpaca(f). (3)



The equilibrium condition for this network consists in finding an

element x∗ ∈ X such that

∀w ∈W, q ∈ Pw, x∗q > 0 =⇒ gq(x
∗) = min

p∈Pw
gp(x

∗), (4)

therefore, only paths with minimal costs have nonzero flows. It is

the Nash equilibrium based on the user-optimization principle: a

network equilibrium is established when no OD pair can decrease its

cost by making a unilateral decision to change its path flows.

It is well known that this problem is equivalent to the variational

inequality: Find a point x∗ ∈ X such that

〈G(x∗), x− x∗〉 ≥ 0 ∀x ∈ X, (5)

where the vector G is composed of components gp, p ∈ Pw, w ∈ W,
respectively.



Network equilibrium problems with elastic demand

In contrast to the network equilibrium problem with fixed demand,

in the problem with elastic demand, the demand values are variables.

Then the feasible set takes the form

K =

(x, y)
∑
p∈Pw

xp = yw, xp ≥ 0, p ∈ Pw, w ∈W

 .

Here y is a vector with variable components yw, w ∈W .

In this problem, for each O/D pair w ∈ W a continuous so-called

disutility function hw with respect to demand is given. In the general

case, it can depend on the whole demand vector y.

Therefore, the network equilibrium problem with elastic demand is

to find an element (x∗, y∗) ∈ K such that

〈G(x∗), x− x∗〉 − 〈H(y∗), y − y∗〉 ≥ 0 ∀(x, y) ∈ K . (6)



Here the vector H is composed of the components hw, respectively.

It is well known that equilibrium conditions for this problem have

the following form: a vector (x∗, y∗) ∈ K is a solution to problem

(6), if for all p ∈ Pw, w ∈W it holds that

gp(x
∗)

{
= hw(y∗) if x∗p > 0 ,

≥ hw(y∗) if x∗p = 0 .

In other words, at each equilibrium point the path costs (for nonzero

flows) are equal to the disutility function value for the associated

O/D pair.



Network equilibrium problems with mixed demand

At last, we consider the network equilibrium problem with mixed

demand originally proposed in [5]: Find a vector (x∗, y∗) ∈ U such

that

〈G(x∗), x− x∗〉 − 〈H(y∗), y − y∗〉 ≥ 0 ∀(x, y) ∈ U , (7)

where

U =

(x, y)
∑
p∈Pw

xp = yw + yconstw , xp ≥ 0, yw ≥ 0, p ∈ Pw, w ∈W

 .

In this problem, for each O/D-pair the variable yw and fixed yconstw

demands are simultaneously presented (yconstw ≥ 0, ∀w ∈W ).



It is known that equilibrium conditions for problem (7) are following:

a vector (x∗, y∗) ∈ U is a solution to problem (7) if and only if for

all p ∈ Pw, w ∈W it satisfies conditions

(a) if x∗p > 0, then gp(x∗) = minq∈Pw gq(x
∗),

(b) if x∗p > 0 and y∗w > 0, then gp(x∗) = hw(y∗),

(c) if x∗p = 0 or y∗w = 0, then gp(x∗) ≥ hw(y∗).



In what follows, we assume that each link cost function ca depends

on fa only, ∀a ∈ A, each disutility function hw depends on yw only,

∀w ∈W . Then the mappings G and H are potential, and there exist

functions

µa(fa) =

fa∫
0

ca(t)dt ∀a ∈ A , σw(yw) =

yw∫
0

hw(t)dt ∀w ∈W .

In this case, variational inequality (7) presents the optimality con-

dition for the following optimization problem:

min
u∈U

−→ ψ(u), (8)

where u = (x, y), ψ(x, y) =

{ ∑
a∈A

µa(fa)−
∑

w∈W
σw(yw)

}
, fa, ∀a ∈ A

are defined in (2). Therefore, each solution to problem (8) solves

problem (7). The reverse assertion is true, if, for example, the

mappings G and −H are monotone.



The method of bi-coordinate variations for network equilib-

rium problems with mixed demand

In papers [2], [3] a method of bi-coordinate variations with a spe-

cial threshold control and tolerances has been proposed for solving

resource allocation problems with simplex type constraints. Let us

explain the idea of this method applied to the network equilibrium

problem (8).

At the current iteration we have a point (x, y) ∈ U , which is not a

solution to problem (7). At first we define, which coordinates values

can decrease. The value is suitable to decreasing, if it exceeds a

certain threshold ε > 0. We remind that we have two groups of

variables: the path flows x and the variable demands y. We denote

the sets of ”active” indices by Iε(x) = {i = 1,2, . . . , n | xi ≥ ε},
Jε(y) = {j ∈W | yj ≥ ε}, respectively.



Further we note that at any optimal point of problem (7) for any w ∈
W in view of equilibrium condition (a) the values of corresponding

components of vector G with nonzero path flows are equal:

∀w ∈W, i, j ∈ Pw, x∗i > 0, x∗j > 0 =⇒ gi(x
∗) = gj(x

∗).

At the same time, due to equilibrium condition (b) for each nonzero

variable demand the cost values for paths p ∈ Pw with nonzero flows

are equal to the value of disutility function for this O/D-pair w ∈W :

if x∗p > 0 and d∗w > 0, then gp(x∗) = λw(d∗).

Therefore, it is reasonable to ”adjust” deviating values of path cost

functions and disutility functions, i.e. to decrease the great ones

and increase the small ones. Hence we can choose a pair of indices

(i, j) satisfying any of the following three rules.



gi(x)− hj(yj) ≤ −δk, i ∈ Pj, j ∈W,

gi(x)− hj(yj) ≥ δk, i ∈ Iεk(x), j ∈ Jεk(y), i ∈ Pj,

gi(x)− gj(x) ≥ δk, i ∈ Iεk(x), i, j ∈ Pw.

We note that in the bi-coordinate method it is sufficient to choose
one pair of indices, but we can choose more pairs, for example, one
pair for each w ∈W .

Hence, we formulated the principle of constructing a descent direc-
tion. We will use the inexact Armijo type line-search as the rule of
step choice.

The proposed method has the two-level scheme. On the inner level,
we minimize the objective function with fixed values of parameters ε
and δ, and on the upper level we decrease values of these parameters.



Method 1

Step 0. Choose a stop criterion and an accuracy value, an initial

point u0 ∈ U , sequences {εk} ↘ 0, {δk} ↘ 0, k = 1,2, . . ., parameters

β ∈ (0,1), θ ∈ (0,1). Set k = 1.

Step 1. Set l = 0, vl = uk−1.

Step 2. If for the point vl the stop criterion is fulfilled, then we

obtained the given accuracy, the iterative process stops. Otherwise

set (xl, yl) = vl.

Step 3. Choose at least one (or more) pair of indices, no more than

one pair for each w ∈W such that either

(i, n+ j) : gi(x
l)− hj(ylj) ≤ −δk, i ∈ Pj, j ∈W, (9)



(denote the sets of chosen indices by I+
l and J+

l , respectively) or

(i, n+ j) : gi(x
l)− hj(ylj) ≥ δk, i ∈ Iεk(x

l), j ∈ Jεk(y
l), i ∈ Pj, (10)

(denote the sets of chosen indices by I−l and J−l , respectively) or

(i, j) : gi(x
l)− gj(xl) ≥ δk, i ∈ Iεk(x

l), i, j ∈ Pw, (11)

(denote the sets of chosen indices by Il and Jl, respectively). If no
such pairs exist, set uk = (xl, yl), k = k + 1 and go to Step 1.

Step 4. Construct the descent direction d l with components

d ls =


1, if s ∈ I+

l ∪ J
+
l ∪ Jl,

−1, if s ∈ I−l ∪ J
−
l ∪ Il,

0, in all other cases.

Step 5. Find the smallest nonnegative integer b such that the con-
dition is fulfilled (the Armijo type inexact line-search)

ψ(vl + θbεkd
l)− ψ(vl) ≤ βθbεk〈ψ′(vl), d l〉 .



Set λl = εkθ
b, vl+1 = vl + λld

l, l = l + 1 and go to Step 2.

We note that for the network equilibrium problem with elastic de-
mand in Step 3 only conditions (9) and (10) should be applied.
In the network equilibrium problem with fixed demand, there are
variables x ∈ X only, and Step 3 is reduced to condition (11).

Now we establish the convergence properties of the proposed method.

Proposition 1 The line-search procedure at Step 5 of Method 1 is
finite.

Proposition 2 Let the function ψ be coercive on U . Then the inner
iterative process (Steps 2–5) of Method 1 is finite.

Theorem 1 Let the function ψ be coercive on U . Then the se-
quence {uk} generated by Method 1 has limit points, all of them
are solutions to VI (7). Provided that the function ψ is convex, they
are also solutions to optimization problem (8).



Numerical experiments

We compare the method of bi-coordinate variations (BCM) and the

ordinary conditional gradient method (CGM) and present the results

of preliminary numerical experiments for the network equilibrium

problem with fixed demand. In Example 1 we consider the following

network.
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Example 1, 22 nodes, 12 O/D pairs



We set link cost functions ca(fa) = 1 + 0.5fa for all a ∈ A, the fixed

demand dw = 5 for all w ∈ W. We use the stop criterion of the

conditional gradient method:

〈ψ′(x), x− x̄〉 < ∆, (12)

where 〈ψ′(x), x̄〉 = minz∈X〈ψ′(x), z〉.

∆ BCM CGM
0.1 116 it., 16 ms 885 it., 93 ms
0.01 137 it., 31 ms 11228 it., 141 ms
0.001 147 it., 47 ms 114961 it., 1076 ms

Table 1. Example 1, numbers of iterations and calculation time



In the following examples we used random data. We generated N

nodes and K O/D pairs.

The calculation results for several problems with a given error ∆ =

0.1 are presented in Table 2. Beside numbers of nodes and O/D-

pairs we adduce approximate dimensions of solutions, i.e., the value∑
w∈W |P̄w|.

N K
∑
w∈W |P̄w| BCM CGM

50 20 200 2715 it., 0.09 s 6302 it., 3.04 s
80 26 600 6143 it., 0.218 s 8254 it., 13.1 s
100 30 850 11029 it., 0.39 s 9516 it., 22.8 s
100 40 1000 13608 it., 0.515 s 11953 it., 32.34 s
200 50 2700 37719 it., 3.5 s 9896 it., 130.2 s

Table 2. Examples with different dimensions.

Numbers of iterations and calculation time



The dimension of the network equilibrium problem (the number of

feasible paths for all O/D pairs) is usually great, but the solution

often contains many zero values. Therefore in practice we use the

following ”trick”. Instead of sets Pw, w ∈ W we use their approxi-

mations P̄w. On the initial stage, we choose some nonempty subset

P̄w ⊂ Pw for all w ∈ W and at each iteration they can increase in-

cluding new shortest paths. At some moment, the subsets P̄w stop

to increase.

Presented results of preliminary numerical calculations show that

the proposed method of bi-coordinate variations for network equi-

librium problems has essential advantages in comparison with the

conditional gradient method and is promising for further investiga-

tions.
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