НИУ Высшая школа экономики – Нижний Новгород

Распознавание образов и приближенные множества

По материалам конференций:

 Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA 2017), г. Фару (Португалия), 20.06 - 23.06,

Web: http://www.ibpria.org/2017/

2. International Joint Conference on Rough Sets (IJCRS 2017), Ольштын (Польша),

03.07 - 07.07,

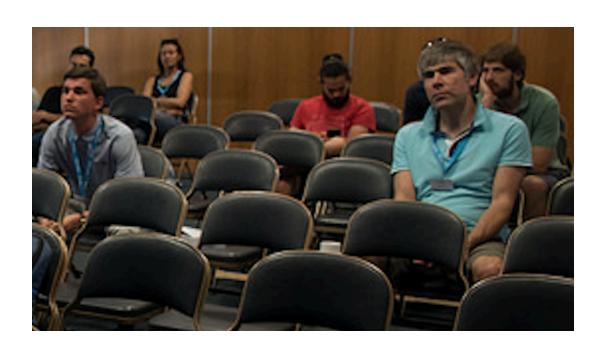
Web: http://ijcrs2017.uwm.edu.pl

1. IbPRIA 2017

2. IJCRS 2017

Weakly-supervised learning from images and video

Ivan Laptev
WILLOW, INRIA/ENS/CNRS, Paris



Задача weakly-supervised object detection

Training input

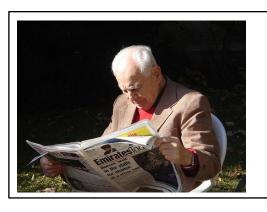
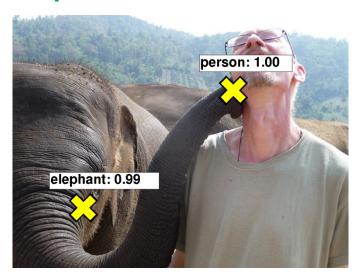


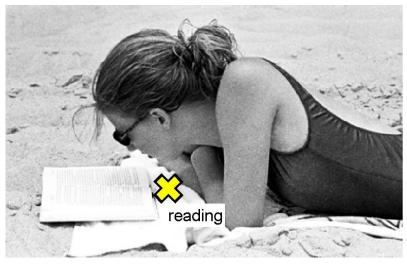
image-level labels:

- ✓ Person
- √ Chair
- Airplane
- Reading
- × Riding bike
- × Running

. . .

Test output

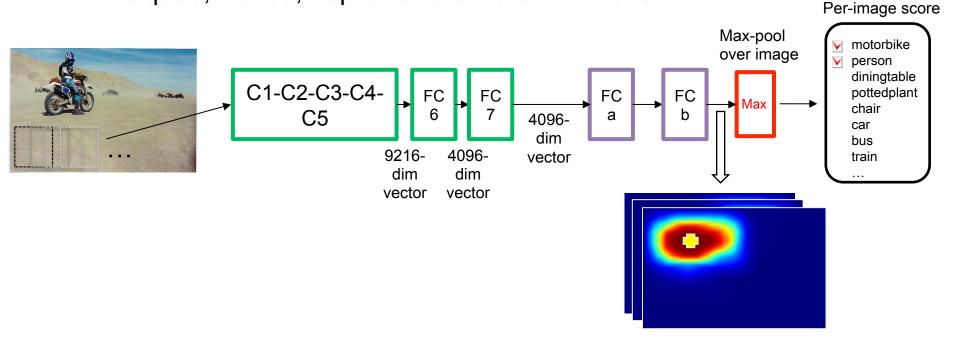




More details in http://www.di.ens.fr/willow/research/weakcnn/

Approach: search over object's location at the training time

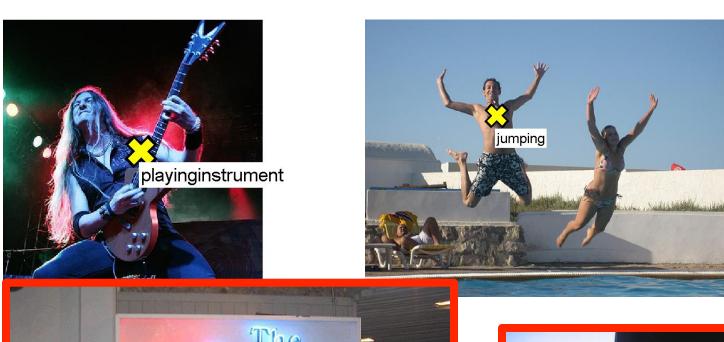
Oquab, Bottou, Laptev and Sivic CVPR 2015



- 1. Fully convolutional network
- 2. Image-level aggregation (max-pool)
- Multi-label loss function (allow multiple objects in image)

See also [Papandreou et al. '15, Sermanet et al. '14, Chaftield et al. '14]

Action recognition



Weak supervision from scripts: Joint Learning of Actors and Actions

[Bojanowski et al. ICCV 2013], [Miech, Alayrac, Bojanowski, Laptev, Sivic, 2017]

Person p p = Rich

appears in clip N:

Action a appears in Person p and clip N: Action a appe

Action a appear in clip N:

$$\sum_{n \in \mathcal{N}_i} z_{np} \ge 1 \qquad \sum_{n \in \mathcal{N}_i} t_{na} \ge 1 \qquad \sum_{n \in \mathcal{N}_i} z_{np} t_{na} \ge 1$$

Learning from narrated instruction videos

J.-B. Alayrac, P. Bojanowski, N. Agrawal, J. Sivic, I. Laptev and S. Lacoste-Julien

CVPR 2016

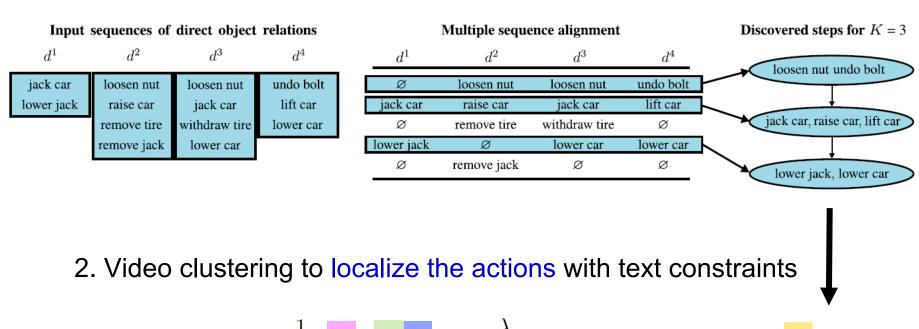
Given a set of narrated instruction videos of a task

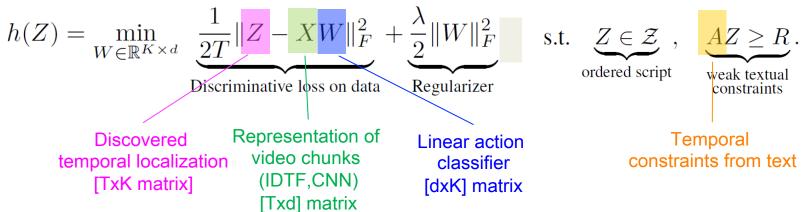
- Discover main steps
- Learn their visual and linguistic representation
- Temporally localize each step in input videos

"How to" instruction videos: changing tire

Approach: two linked clustering problems

1. Text clustering into a sequence of common steps

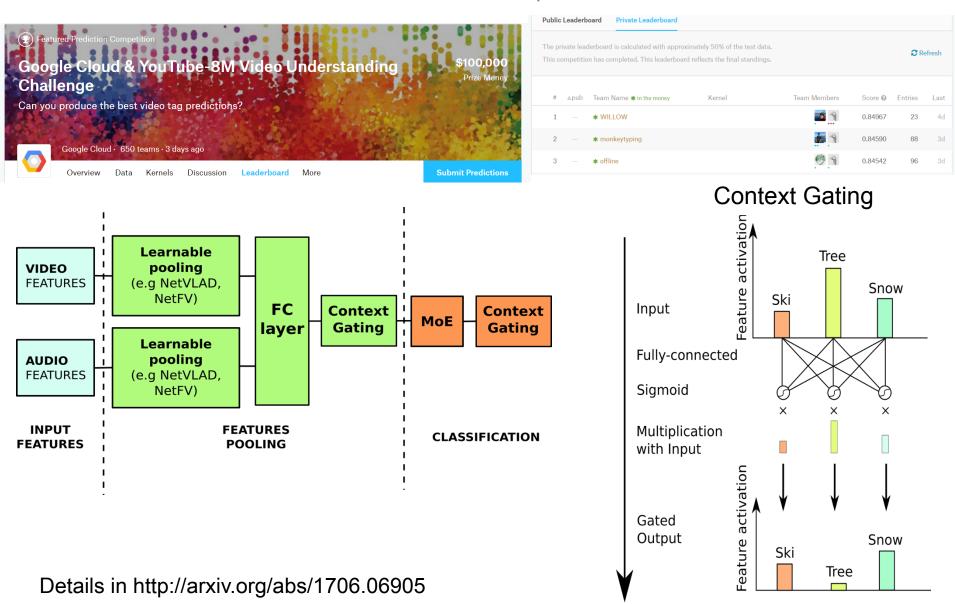




[Bach and Harchaoui'08, Xu et al.'04, Bojanowski et al.'13,'14,'15]

Large-scale video tagging

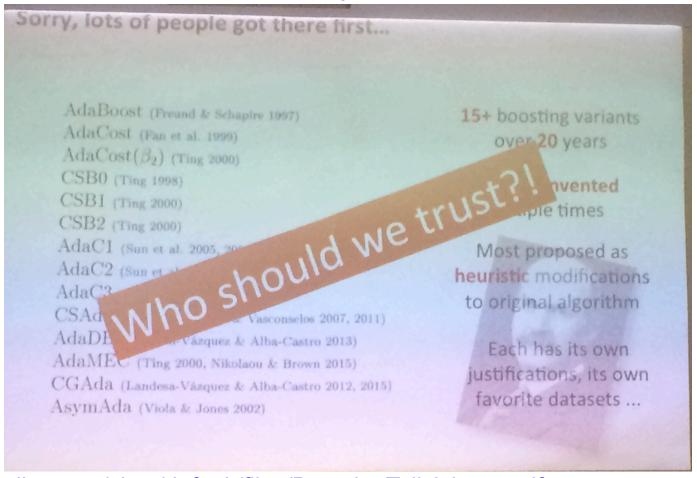
A. Miech, J. Sivic, I. laptev, 2017



Cost Sensitive Boosting Algorithms: Do we really need them?

Gavin Brown, University of Manchester

Cost sensitive problems – differing cost for a False Positive / False Negative



http://www.di.uoa.gr/sites/default/files/BoostingTalkAthens.pdf https://link.springer.com/article/10.1007/s10994-016-5572-x

Почему AdaBoost интересен?

- Functional Gradient Descent (Mason et al., 2000)
- Decision Theory (Freund & Schapire, 1997)
- Margin Theory (Schapire et al., 1998)
- Probabilistic Modeling (Lebanon & Lafferty 2001; Edakunni et al 2011)

Gödel Prize 2003

My new algorithm

Functional Gradient Descent

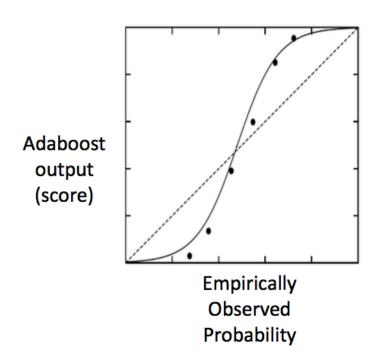
Decision Theory

Margin Theory

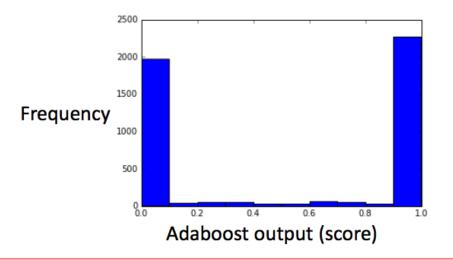
Probabilistic Modelling

"Does my new algorithm still follow from each?"

Калибровка оценок апостериорных вероятностей (1)



Adaboost tends to produce probability estimates close to 0 or 1.



Property: Calibrated estimates

Does the algorithm generate "calibrated" probability estimates?

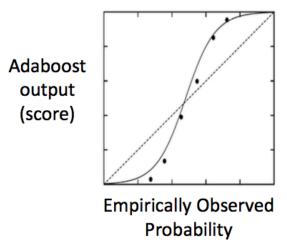
All algorithms produce uncalibrated probability estimates!

Калибровка оценок апостериорных вероятностей (2)

Platt scaling (logistic calibration)

(Platt, 1999)

Training: Reserve part of training data (here 50% -more on this later) to fit a sigmoid to correct the distortion:



$$\hat{p}(y=1|\mathbf{x}) = \frac{1}{1+e^{As(\mathbf{x})+B}}$$

Prediction: Apply sigmoid transformation to score (output of ensemble) to get probability estimate

Параметры А,В определяются с помощью метода максимума правдоподобия

Recognizing Activities of Daily Living from Egocentric Images

Alejandro Cartas, Juan Marın, Petia Radeva, Mariella Dimiccoli

University of Barcelona Drinking/eating alone Meeting

Egocentric (firstperson) wearable cameras

AlexNet Top 5

#	Activity	Score
1	Public Transport	0.1864
2	Cooking	0.1464
3	Eating together	0.1382
4	Drinking/eating alone	0.1223
5	Cleaning and chores	0.1067

AlexNet Top 5

#	Activity	Score
1	Talking	0.2034
2	Meeting	0.1701
3	Cooking	0.1090
4	Cleaning and chores	0.0903
5	Shopping	0.0878

AlexNet Top 5

#	Activity	Score
1	Drinking/eating alone	0.5002
2	Cleaning and chores	0.1511748880
3	Eating together	0.1263086796
4	Shopping	0.0589886233
5	Drinking together	0.0251834411

GoogLeNet Top 5

#	Activity	Score
1	Plane	0.2004
2	Public Transport	0.1943
3	Cleaning and chores	0.1450
4	Cooking	0.0925
5	Drinking/eating alone	0.0748

GoogLeNet Top 5

	Goog Lortor Top G		
#	Activity	Score	
1	Eating together	0.3065	
2	Talking	0.1215	
3	Socializing	0.1062	
4	Cleaning and chores	0.08126	
5	Meeting	0.0664	
			

GoogLeNet Top 5

#	Activity	Score
1	Cleaning and chores	0.4259
2	Eating together	0.1145323068
3	Drinking/eating alone	0.1137253270
4	Drinking together	0.0841688886
5	Reading	0.06203

The result of the ensembles AlexNet+RF on FC6 and GoogLeNet+RF on Pool5/7x7+prob is highlighted on color in its corresponding table.

The green and red colors means true positive and false positive classification

1. IbPRIA 2017

2. IJCRS 2017

Płk. Claus von Stauffenberg

8:00 Szef sztabu armii zapasowej płk.Claus von Stauffenberg wraz z adiutantem por. W. Heaftenem z lotniska Rangsdorf pod Berlinem samolotem udaje się na naradę do Wilczego Szańca. Ma tam przedstawić Hitlerowi koncepcje użycia armii rezerwowej na froncie

10:15 Samolot ląduje na lotnisku pod Kętrzynem, skąd samochodem obaj przyjeżdżają do kwatery.Stauffenberg ma w teczce dwie bomby z zapalnikami

cnomeznym.

11:30 Narada wstępna u feldmarszałka W.Keitela.

12:20 Stauffenberg przy pomocy adiutanta
uzbraja jedną bombę (drugiej nie zdążył) i udaje
się z nią do baraku narad. Tam teczkę z bombą.

20.VII.1944 - ZAMACH - ATTENTAT - ASSASINATION ATTEMPT

Barak narad po wybuchu

Blick in den Lagebsprechungsraum in der Lagebaracke nach dem Attentat am 20. Juli 1944

Przybliżone miejsca, zajmowane przez uczestników narady 20 lipca 1944 r.

- 2. Gen. Adolf Heusinger, szef oddziału operacyjnego wojsk lądowych
- 3. Gen. Gunther Korten, szef sztabu generalnego wojsk lądowych 4. Płk Heinz Brandt z-ca gen. Adolfa Heusingera 5. Gen. Kari Bodenschatz, przedstawiciel naczelnego dowództwa
- wojsk lądowych 6. Płk Heinz Waizenegger, adiutant feldmarszałka Keitla
- Situationsskizze der Lagebesprechung am 20. Juli 1944

- Adolf Hitler
 Generalleutnant A. Heusinger
 General der Flieger G. Körten 4 Oberst i.G. H. Brandt
- 5 General der Flièger K. H. Bodenschatz 6 Oberstleutnant G. H. Waizengger 7 Generalleutnant R. Schmundt

Zdjęcie drewnianego braraku obudowanego cegłą i betonem

Toward data-driven education (1)

Rakesh Agrawal, Microsoft

Задачи:

1. A study plan is the choice of concepts and the organization and sequencing of the concepts in an educational course. Task: Identify which concepts should be studied together and how students should move from one group of concepts to another.

A data-driven method, which given a list of concepts can automatically propose candidate plans to cover all the concepts.

[Journal of Educational Data Mining, 2016]

- 2. How to enhance the quality of the electronic textbooks? [ACM DEV 2010]
- 3. Grouping Students for Maximizing Learning from Peers [Educational Data Mining 2017]

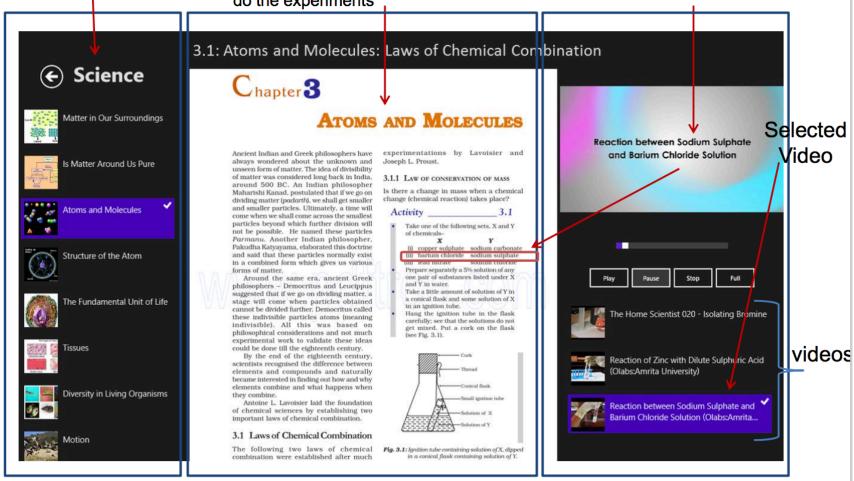
Toward data-driven education (2). Структурирование учебника

Video Augmentation: Make inaccessible accessible

Table of contents for navigating the book (automatically extracted)

Re-rendered section: This section, about the laws of chemical combination, prescribes an activity for the chemistry lab, but the school might lack the lab to do the experiments.

Augmentations panel: Video demonstrates the reaction for the second set of chemicals prescribed



Toward data-driven education (3). Dispersion of Key Concepts in Section

Many unrelated concepts -> Hard to understand section

- V = set of key concepts discussed in section s
- Terminological noun phrases: Linguistic pattern A*N+ (A: adjective; N: noun)
- "concepti" Wikipedia titles
- Related(x,y) = Concept x is related to concept y Cooccurrence
- true if Wikipedia article for x links to the article for y
- Dispersion(s):=Fraction of unrelated concept pairs
- (1 Edge Density) of the concept graph

Toward data-driven education (4)

Avoid repetition across sections:

$$\max \sum_{i \in I} \sum_{j \in S} x_{ij} \cdot \lambda_{ij}$$
 Relevance score of object i to section j

Total relevance score for the chapter: sum of relevance scores of objects assigned

s.t.

 $i \in I$

$$x_{ij} \in \{0, 1\} \ \forall i \in I \forall j \in S$$

$$\sum x_{ij} \le K_j \ \forall j \in S$$

$$\sum_{j \in S} x_{ij} \le 1 \ \forall i \in I$$

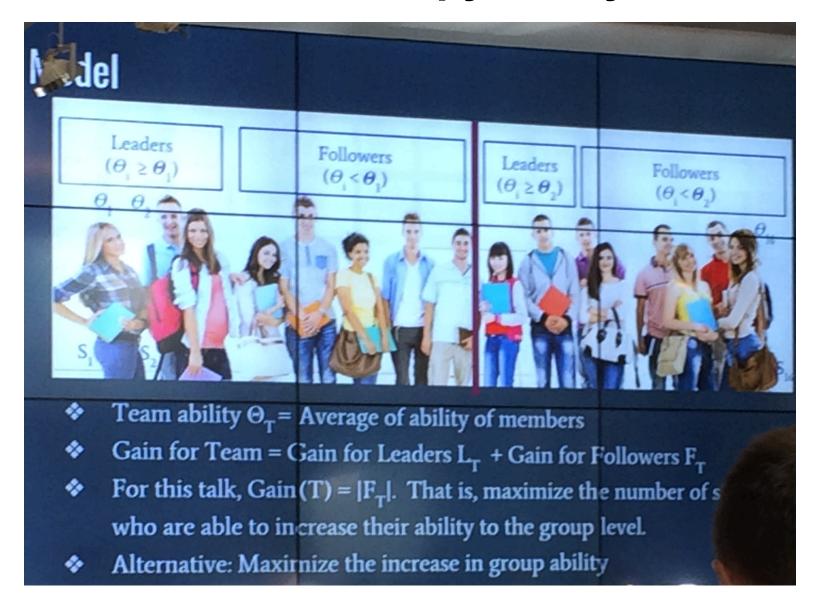
=1 if image *i* is selected for section *j* else 0

Constraint: At most K_j images can be assigned to section j

Constraint: An image can belong to at most one section

Can be solved optimally in polynomial time

Toward data-driven education (5). Выделение подгрупп студентов



Toward data-driven education (4)

off the Press [EDM June 2017]

Every student can gain from peer interactions

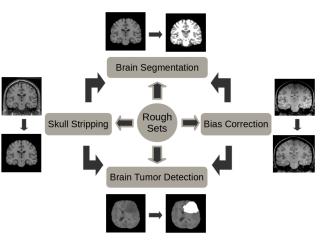
Gain_i = $(\theta_{ip} - \theta_i)$, where θ_{ip} is the score of the student at p percentile among higher ability peers of i in the team

Maximizing total gain be solved optimally in O(N log

N) time

Advances in Rough Set Based Hybrid Approaches for Medical Image Analysis

Pradipta Maji, Indian Statistical Institute

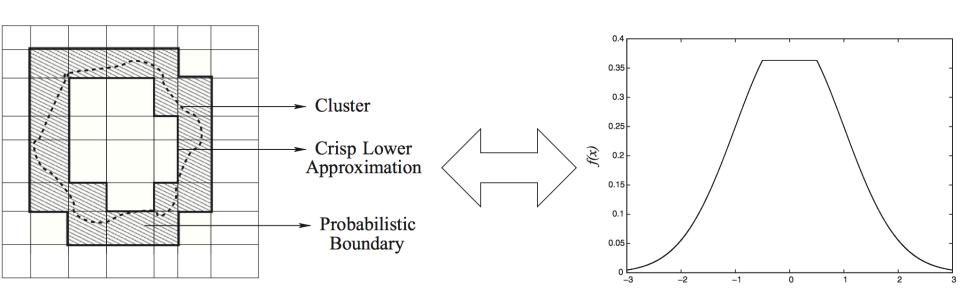


Stomped-t distribution: A. Banerjee, P. Maji/ Information Sciences 421 (2017) 104–125

$$f(y; \mu, \sigma^2, k) = \frac{1}{D} \frac{1}{\sigma} \phi(z), \ y \in \mathbb{R}; \quad \text{where } z = \begin{cases} k, & \text{if } |\frac{y - \mu}{\sigma}| < k \\ \frac{y - \mu}{\sigma}, & \text{otherwise,} \end{cases}$$
$$D = 2(1 - \Phi(k) + k\phi(k)).$$

 ϕ () and Φ () are, respectively, the pdf and probability distribution functions of standard normal distribution

Rough-probabilistic clustering



More with less: A new paradigm in modern Machine Learning

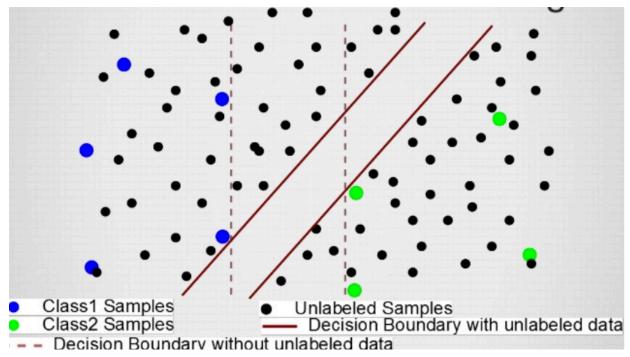
Nguyen Hung Son, University of Warsaw

Most of deep learning approaches:

- rely on the availability of huge amounts of data,
- often requiring millions of correctly labelled examples.

We will discuss the newest learning techniques for the case when we have

- a huge amount of data but
- very little amount of labelled data.



Big data analysis by rough sets and granular computing

Tianrui Li

Global Precedence (GP): People always recognize the large characters in the global level at first and then the small characters in the local level.

Lin Chen, 194	5~
Psychologists	

H H H H H H H H H H H H H	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
н н н н н н н н н н н н н н н н н н н н	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$

eep Lea	rning: An Implementation of GrC
A Hierarchical C	ompositional System for Rapid Object Detection
Processing	High level Level 4 Level 3 Level 2
	Low level Able to learn #parts at each level [Long Zhu, Alan L. Yuille, NIPS2005]

Three-way decisions (TWD)

Yiyu Yao, University of Regina (Canada)

Yiyu Yao, Three-way decisions with probabilistic rough sets, Information Sciences

"Rules constructed from the three regions are associated with different actions and decisions, which immediately leads to the notion of three-way decision rules. A **positive** rule makes a **decision of acceptance**, a **negative** rule makes a **decision of rejection**, and a **boundary** rule makes a **decision of abstaining**"

