
Tensor networks and deep learning

I. Oseledets
Skoltech, INM RAS, Moscow

3 November 2017



Deep, Deep Trouble

Michael Elad, SIAM News, 01.05.2017

I am really confused. I keep changing my opinion on a
daily basis, and I cannot seem to settle on one solid view
of this puzzle. I am talking about ... deep learning.

For the sake of brevity, consider the classic image
processing task of denoising — removing noise from an
image. Researchers developed beautiful and deep
mathematical ideas with tools …. In 2012, Harold
Burger, Christian Schuler, and Stefan Harmeling decided
to throw deep learning into this problem. The end result
was a network that performed better than any known
image denoising algorithm at that time.



Deep learning

▶ The general paradigm is to parametrize your favourite
algorithm as a (deep) neural network

▶ Prepare a training set of true answers
▶ The problem is non-convex and it is difficult to lie

mathematical foundations, i.e. “guarantees” in any form



Approximation of multivariate functions

Given a training set (𝑥𝑖, 𝑦𝑖), 𝑖 = 1, … , 𝑁 , 𝑥𝑖 ∈ ℝ𝑑

we want to build a model 𝑓(𝑥, 𝑤)
Such that

𝑓(𝑥𝑖, 𝑤) = ̂𝑦𝑖 ≈ 𝑦𝑖

in the sense of a certain loss function
𝑁

∑
𝑖=1

ℒ( ̂𝑦𝑖, 𝑦𝑖) → min .

Classification and regression are multivariate function interpolation



Classification

Suppose that we have a classification problem and a dataset of
pairs {(𝑋(𝑏), 𝑦(𝑏))}𝑁

𝑏=1. Let us assume that each object 𝑋(𝑏)

is represented as a sequence of vectors

𝑋(𝑏) = (x1, x2, … x𝑑), x𝑘 ∈ ℝ𝑛,



Example

41 32
5 …6



Example

Consider {𝑓𝜃ℓ
∶ ℝ𝑛 → ℝ}𝑚

ℓ=1, which are organized into a
representation map

𝑓𝜃 ∶ ℝ𝑛 → ℝ𝑚.
A typical choice for such a map is

𝑓𝜃(x) = 𝜎(𝐴x + 𝑏),



Connection between tensors and deep learning

Score functions considered in Cohen et. al, 2016 can be written in
the form

𝑙𝑦(𝑋) = ⟨𝒲𝑦, Φ(𝑋)⟩,
where

Φ(𝑋)𝑖1𝑖2…𝑖𝑑 = 𝑓𝜃𝑖1
(x1)𝑓𝜃𝑖2

(x2) … 𝑓𝜃𝑖𝑑
(x𝑑),



Connection between tensors and deep learning

𝑙𝑦(𝑋) = ⟨𝒲𝑦, Φ(𝑋)⟩,
We put low-rank constraints on 𝒲 and get different neural

networks.



Canonical format and shallow network

N. Cohen, A. Shashua et. al provided an interpretation of the
canonical format as a shallow neural network with a product

pooling

𝐴(𝑖1, … , 𝑖𝑑) ≈
𝑟

∑
𝛼=1

𝑈1(𝑖1, 𝛼)𝑈2(𝑖2, 𝛼) … 𝑈𝑑(𝑖𝑑, 𝛼).



H-Tucker as a deep neural network with product
pooling



Tensor-train

TT-decomposition is defined as

𝐴(𝑖1, … , 𝑖𝑑) = 𝐺1(𝑖1) … 𝐺𝑑(𝑖𝑑),
𝐺𝑘(𝑖𝑘) is 𝑟𝑘−1 × 𝑟𝑘, 𝑟0 = 𝑟𝑑.

Known for a long time as matrix product state in solid state
physics.



Tensor-train as recurrent neural network

𝐴(𝑖1, … , 𝑖𝑑) = 𝐺1(𝑖1) … 𝐺𝑑(𝑖𝑑),



Expressive power result

We prove that given a random 𝑑-dimensional tensor in the TT
format with ranks r and modes 𝑛, with probability 1 this tensor

will have exponentially large CP-rank.



Lemma

Let 𝒳𝑖1𝑖2…𝑖𝑑 and

rank𝐶𝑃 𝒳 = 𝑟.

Then for any matricization 𝒳(𝑠,𝑡)

rank𝒳(𝑠,𝑡) ≤ 𝑟,
where ordinary matrix rank is assumed.



Theorem

Suppose that 𝑑 = 2𝑘 is even. Define the following set

𝐵 = {𝒳 ∈ ℳr ∶ rank𝐶𝑃 𝒳 < 𝑞 𝑑
2 },

where 𝑞 = min{𝑛, 𝑟}.
Then

𝜇(𝐵) = 0,
where 𝜇 is the standard Lebesgue measure on ℳr.



Idea of the proof

We would like to show that that for 𝑠 = {1, 3, … 𝑑 − 1},
𝑡 = {2, 4, … 𝑑} the following set

𝐵(𝑠,𝑡) = {𝒳 ∈ ℳr ∶ rank𝒳(𝑠,𝑡) ≤ 𝑞 𝑑
2 − 1},

has measure 0.

We have

𝐵 ⊂ 𝐵(𝑠,𝑡),
so if 𝜇(𝐵(𝑠,𝑡)) = 0 then 𝜇(𝐵) = 0 as well.



Idea of the proof

▶ To show that 𝜇(𝐵(𝑠,𝑡)) = 0 it is sufficient to find at least
one 𝒳 such that rank 𝒳(𝑠,𝑡) ≥ 𝑞 𝑑

2 .
▶ This follows from the fact that 𝐵(𝑠,𝑡) is an algebraic subset

of the irreducible algebraic variety ℳr, so it is either equal to
ℳr or has measure 0.



Example of a tensor

𝐺𝑖1𝛼1
1 = 𝛿𝑖1𝛼1

, 𝐺1 ∈ ℝ1×𝑛×𝑟

𝐺𝛼𝑘−1𝑖𝑘𝛼𝑘
𝑘 = 𝛿𝑖𝑘𝛼𝑘−1

, 𝐺𝑘 ∈ ℝ𝑟×𝑛×1, 𝑘 = 2, 4, 6, … , 𝑑 − 2
𝐺𝛼𝑘−1𝑖𝑘𝛼𝑘

𝑘 = 𝛿𝑖𝑘𝛼𝑘
, 𝐺𝑘 ∈ ℝ1×𝑛×𝑟, 𝑘 = 3, 5, 7, … , 𝑑 − 1

𝐺𝛼𝑑−1𝑖𝑑
𝑑 = 𝛿𝑖𝑑𝛼𝑑−1

, 𝐺𝑑 ∈ ℝ𝑟×𝑛×1

(1)



Connection

Table: Correspondence between languages of Tensor Analysis and Deep
Learning.

Tensor Decompositions Deep Learning
CP-decomposition shallow network
TT-decomposition RNN
HT-decomposition CNN

rank of the decomposition width of the network



Expressive power

Table: Comparison of the expressive power of various networks. Given a
network, specified in a column, rows correspond to the upper bound on
the width of the equivalent network of other type.

TT-Network (𝑟) HT-Network (𝑟) CP-Network (𝑟)
TT-Network 𝑟 𝑟log2 𝑑 𝑟
HT-Network 𝑟2 𝑟 𝑟
CP-Network ≥ 𝑟 𝑑

2 ≥ 𝑟 𝑑
2 𝑟



Why tensor networks are good

Low-rank tensor decompositions (and problems with them) can be
solved using efficient linear algebra tools.



Simplest tensor network

The simplest tensor network is matrix factorization:

𝐴 = 𝑈𝑉 ⊤.



Why matrix factorization is great

𝐴 ≈ 𝑈𝑉 ⊤

▶ Best factorization by SVD
▶ Riemannian manifold structure
▶ Nice convex relaxation (nuclear norm)
▶ Cross approximation / skeleton decomposition



Cross approximation / skeleton decomposition

One of underestimated matrix facts:

If a matrix is rank 𝑟, it can be represented as

𝐴 = 𝐶𝐴−1𝑅,

where 𝐶 are some 𝑟 columns of 𝐴, 𝑅 are some rows of 𝐴, 𝐴 is a
submatrix on the intersection.



Maximum-volume principle

Goreinov, Tyrtyshnikov, 2001 have shown:

If 𝐴 has maximal volume, then

‖𝐴 − 𝐴𝑠𝑘𝑒𝑙‖𝐶 ≤ (𝑟 + 1)𝜎𝑟+1.

Way to compare submatrices!



Riemannian framework

Low-rank matrices form a manifold

Standard: 𝐹(𝑋) = 𝐹(𝑈𝑉 ⊤) → min

Riemannian:



Riemannian word embedding

Example: Riemannian Optimization for Skip-Gram Negative
Sampling A Fonarev, O Hrinchuk, G Gusev, P Serdyukov

arXiv:1704.08059, ACL 2017.

We treated SGNS as implicit matrix factorization and solved in
using Riemannian optimization.



Negative sampling

Words and context (nearby words)

𝑋 = 𝑊𝐶𝑇 = (𝑥𝑤𝑐), 𝑥𝑤𝑐 = ⟨w, c⟩
ℳ𝑑 = {𝑋 ∈ ℝ𝑛×𝑚 ∶ rank(𝑋) = 𝑑}

𝐹(𝑋) = ∑
𝑤∈𝑉𝑊

∑
𝑐∈𝑉𝐶

(#(𝑤, 𝑐)(log 𝜎(𝑥𝑤𝑐)+

+𝑘#(𝑤)#(𝑐)
|𝐷| log 𝜎(−𝑥𝑤𝑐))) → max𝑋∈ℳ𝑑



Results

usa
SGD-SGNS SVD-SPPMI RO-SGNS

Neighbors Dist. Neighbors Dist. Neighbors Dist.
akron 0.536 wisconsin 0.700 georgia 0.707

midwest 0.535 delaware 0.693 delaware 0.706
burbank 0.534 ohio 0.691 maryland 0.705
nevada 0.534 northeast 0.690 illinois 0.704
arizona 0.533 cities 0.688 madison 0.703

uk 0.532 southwest 0.684 arkansas 0.699
youngstown 0.532 places 0.684 dakota 0.690

utah 0.530 counties 0.681 tennessee 0.689
milwaukee 0.530 maryland 0.680 northeast 0.687

headquartered 0.527 dakota 0.674 nebraska 0.686

Table: Examples of the semantic neighbors for “usa”.



Tensor factorization

Tensor factorization: we want numerical tools of the
same quality



Classical attempt

Matrix case:

𝐴(𝑖, 𝑗) =
𝑟

∑
𝛼=1

𝑈(𝑖, 𝛼)𝑉 (𝑗, 𝛼).

CP-decomposition:

𝐴(𝑖, 𝑗, 𝑘) =
𝑟

∑
𝛼=1

𝑈(𝑖, 𝛼)𝑉 (𝑗, 𝛼)𝑊(𝑘, 𝛼)

Tucker decomposition:

𝐴(𝑖, 𝑗, 𝑘) =
𝑟

∑
𝛼,𝛽,𝛾=1

𝐺(𝛼, 𝛽, 𝛾)𝑈(𝑖, 𝛼)𝑉 (𝑗, 𝛽)𝑊(𝑘, 𝛾)



CP-decomposition has bad properties!

▶ Best rank-𝑟 approximation may not exist
▶ Algorithms may converge very slowly (swamp behaviour)
▶ No finite-step completion procedure.



Example where CP decomposition is not known

Consider a 9 × 9 × 9 tensor A with slices

𝐴𝑖 = 𝐸𝑖 ⊗ 𝐼3, 𝑖 = 1, … , 9,
and 𝐸3 has only one identity element.

It is known that CP-rank of A is ≤ 23 and ≥ 20.



Example where CP decomposition does not exist

Consider

𝑇 = 𝑎 ⊗ 𝑏 ⊗ … ⊗ 𝑏 + … + 𝑏 ⊗ … ⊗ 𝑎.

Then,

𝑃(𝑡) = ⊗𝑑
𝑘=1(𝑏+𝑡𝑎), 𝑃 ′(0) = 𝑇 = 𝑃(ℎ) − 𝑃(0)

ℎ +𝒪(ℎ).

Can be approximated with rank-2 with any accuracy, but no exact
decomposition of rank less than 𝑑 exist!



Our idea

Our idea was to build tensor decompositions using
well-established matrix tools.



Reshaping tensor into matrix

Let reshape an 𝑛 × 𝑛 × … × 𝑛 tensor into a 𝑛𝑑/2 × 𝑛𝑑/2

matrix 𝐴:

𝔸(ℐ, 𝒥) = 𝐴(𝑖1 … 𝑖𝑘; 𝑖𝑘+1 … 𝑖𝑑)
and compute low-rank factorization of 𝔸:

𝔸(ℐ, 𝒥) ≈
𝑟

∑
𝛼=1

𝑈(ℐ, 𝛼)𝑉 (𝒥, 𝛼).



Recursion

If we do it recursively, we get 𝑟log 𝑑 complexity

If we do it smart, we get 𝑑𝑛𝑟3 complexity:
▶ Tree-Tucker format (Oseledets, Tyrtyshnikov, 2009)
▶ H-Tucker format (Hackbusch, Kuhn, Grasedyck, 2011)
▶ Simple but powerful version: Tensor-train format (Oseledets,

2009)



Properties of the TT-format

▶ TT-ranks are ranks of matrix unfoldings
▶ We can do basic linear algebra
▶ We can do rounding
▶ We can recover a low-rank tensor from 𝒪(𝑑𝑛𝑟2) elements
▶ Good for rank-constrained optimization
▶ There are classes of problems where 𝑟𝑘 ∼ log𝑠 𝜀−1

▶ We have MATLAB, Python and Tensorflow toolboxes!



TT-ranks are matrix ranks

Define unfoldings:
𝐴𝑘 = 𝐴(𝑖1 … 𝑖𝑘; 𝑖𝑘+1 … 𝑖𝑑), 𝑛𝑘 × 𝑛𝑑−𝑘 matrix



TT-ranks are matrix ranks

Define unfoldings:
𝐴𝑘 = 𝐴(𝑖1 … 𝑖𝑘; 𝑖𝑘+1 … 𝑖𝑑), 𝑛𝑘 × 𝑛𝑑−𝑘 matrix Theorem:

there exists a TT-decomposition with TT-ranks

𝑟𝑘 = rank 𝐴𝑘



TT-ranks are matrix ranks

The proof is constructive and gives the TT-SVD algorithm!



TT-ranks are matrix ranks

No exact ranks in practice – stability estimate!



TT-ranks are matrix ranks

Physical meaning of ranks of unfoldings is entanglement: we split
the system into two halves, and if rank is 1, they are independent.



Approximation theorem

If 𝐴𝑘 = 𝑅𝑘 + 𝐸𝑘, ||𝐸𝑘|| = 𝜀𝑘

||A − TT||𝐹 ≤
√√√
⎷

𝑑−1
∑
𝑘=1

𝜀2
𝑘.



TT-SVD

Suppose, we want to approximate:
𝐴(𝑖1, … , 𝑖𝑑) ≈ 𝐺1(𝑖1)𝐺2(𝑖2)𝐺3(𝑖3)𝐺4(𝑖4)

1. 𝐴1 is an 𝑛1 × (𝑛2𝑛3𝑛4) reshape of A.
2. 𝑈1, 𝑆1, 𝑉1 = SVD(𝐴1), 𝑈1 is 𝑛1 × 𝑟1 — first core
3. 𝐴2 = 𝑆1𝑉 ∗

1 , 𝐴2 is 𝑟1 × (𝑛2𝑛3𝑛4).
Reshape it into a (𝑟1𝑛2) × (𝑛3𝑛4) matrix

4. Compute its SVD:
𝑈2, 𝑆2, 𝑉2 = SVD(𝐴2),
𝑈2 is (𝑟1𝑛2) × 𝑟2 — second core, 𝑉2 is 𝑟2 × (𝑛3𝑛4)

5. 𝐴3 = 𝑆2𝑉 ∗
2 ,

6. Compute its SVD:
𝑈3𝑆3𝑉3 = SVD(𝐴3), 𝑈3 is (𝑟2𝑛3) × 𝑟3, 𝑉3 is
𝑟3 × 𝑛4



Fast and trivial linear algebra

Addition, Hadamard product, scalar product, convolution
All scale linear in 𝑑



Fast and trivial linear algebra

𝐶(𝑖1, … , 𝑖𝑑) = 𝐴(𝑖1, … , 𝑖𝑑)𝐵(𝑖1, … , 𝑖𝑑)

𝐶𝑘(𝑖𝑘) = 𝐴𝑘(𝑖𝑘) ⊗ 𝐵𝑘(𝑖𝑘),
ranks are multiplied



Tensor rounding

A is in the TT-format with suboptimal ranks.
How to reapproximate?



Tensor rounding

𝜀-rounding can be done in 𝒪(𝑑𝑛𝑟3) operations



Cross approximation

Recall the cross approximation

Rank-𝑟 matrix can be recovered from 𝑟 columns and 𝑟 rows



TT-cross approximation

Tensor with TT-ranks 𝑟𝑘 ≤ 𝑟 can be recovered from 𝒪(𝑑𝑛𝑟2)
elements.

There are effective algorithms for computing those points in active
learning fashion.

They are based on the computation of maximum-volume
submatrices.



Making everything a tensor: the QTT

Let 𝑓(𝑥) be a univariate function (say, 𝑓(𝑥) = sin 𝑥).

Let 𝑣 be a vector of values on a uniform grid with 2𝑑 points.

Transform 𝑣 into a 2 × 2 × … × 2 𝑑-dimensional tensor.

Compute TT-decomposition of it!

And this is the QTT-format



Making everything a tensor: the QTT

If 𝑓(𝑥) is such that

𝑓(𝑥 + 𝑦) =
𝑟

∑
𝛼=1

𝑢𝛼(𝑥)𝑣𝛼(𝑦),

then QTT-ranks are bounded by 𝑟
Corollary:

▶ 𝑓(𝑥) = exp(𝜆𝑥)
▶ 𝑓(𝑥) = sin(𝛼𝑥 + 𝛽)
▶ 𝑓(𝑥) is a polynomial
▶ 𝑓(𝑥) is a rational function



Optimization with low-rank constraints

Tensors can be given implicitly as a solution of a certain
optimization

𝐹(𝑋) → min, 𝑟𝑘 ≤ 𝑟.
The set of low-rank tensors is non-convex, but has efficient

Riemannian structure and many fabulous unstudied geometrical
properties.



Software

▶ http://github.com/oseledets/TT-Toolbox – MATLAB
▶ http://github.com/oseledets/ttpy – Python
▶ https://github.com/Bihaqo/t3f – Tensor Train in Tensorflow

(Alexander Novikov)



Application of tensors

▶ High-dimensional, smooth functions
▶ Computational chemistry (electronic and molecular

computations, spin systems)
▶ Parametric PDEs, high-dimensional uncertainty quantification
▶ Scale-separated multiscale problems
▶ Recommender systems
▶ Compression of convolutional layers in deep neural networks
▶ TensorNet (Novikov et. al) – very compact dense layers



Type of problems we can solve

▶ Active tensor learning by the cross method
▶ Solution of high-dimensional linear systems: 𝐴(𝑋) = 𝐹
▶ Solution of high-dimensional eigenvalue problems

𝐴(𝑋) = 𝜆𝑋
▶ Solution of high-dimensional time-dependent problems

𝑑𝐴
𝑑𝑡 = 𝐹(𝐴) (very efficient integrator).



Examples

Some examples of using tensor methods from different areas.



Vibrational states

Realistic Hamiltonian of CH3CN
[P. Thomas, T. Carrington, 2015]

𝒜 = 1
2

12
∑
𝑖=1

𝜔𝑖 (− 𝜕2

𝜕𝑞2
𝑖

+ 𝑞2
𝑖 ) + 1

6
12
∑
𝑖=1

12
∑
𝑗=1

12
∑
𝑘=1

𝜙(3)
𝑖𝑗𝑘𝑞𝑖𝑞𝑗𝑞𝑘

+ 1
24

12
∑
𝑖=1

12
∑
𝑗=1

12
∑
𝑘=1

12
∑
𝑙=1

𝜙(4)
𝑖𝑗𝑘𝑙𝑞𝑖𝑞𝑗𝑞𝑘𝑞𝑙.

TT-rank = [1, 5, 9, 14, 21, 25, 26, 24, 18, 15, 8, 5, 1]



Block eigensolvers in the the TT-format

0 10 20 30 40 50 60 70 80
Eigenvalue number

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

𝐸
−

𝐸 𝑟
𝑒𝑓

,c
m

−1

H-RRBPM, basis-3
MP SII, 𝑟 = 25
MP SII, 𝑟 = 40

Figure: The 𝐸ref are energies obtained by Smolyak quadratures
[Carrington, 2011]. H-RRBPM method [Carrington, 2015].

M. Rakhuba and I. Oseledets. Calculating vibrational spectra of molecules using
tensor train decomposition J. Chem. Phys. 145, 124101 (2016)



Orbital-free DFT solver

Orbital-free DFT equation
Nonlinear eigenvalue problem:

(−1
2∆ + 𝐶𝐹 𝜙4/3 − ∑

𝛼

𝑍𝛼
|r − R𝛼| + ∫

ℝ3

𝜙2(r′)
|r − r′| 𝑑r′ + 𝑉𝑥𝑐(𝜙2)) 𝜙 = 𝜇𝜙

▶ For regular clusters of molecules density is of low QTT rank
▶ Standard iteration (SCF) in tensor formats is as difficult as

initial problem ⟹ preconditioned gradient descent
▶ Derivative-free formulas to control accuracy



Some results about DL

▶ Generalization properties of DNN
▶ Adversarial examples



Generalization properties

Work by Daniil Merkulov on experimental study of generalization
properties of DNN.



”Understanding Deep Learning requires rethinking
generalization” - Chiyuan Zhang et al. 2016

We have firstly investigated behaviour of our simple CNN in terms
of robustness to shuffling of the labels. Here, we just corrupted
part of labels by defining any random number between 0 and 9

randomly.



There are ”sad” local minima on loss surfaces of NN

0 250 500 750 1000 1250 1500 1750 2000

Steps x100

10 4

10 3

10 2

10 1

100

101

Loss

0 250 500 750 1000 1250 1500 1750 2000

Steps x100

0.0

0.2

0.4

0.6

0.8

1.0

Accuracy

Train Test

0 250 500 750 1000 1250 1500 1750 2000

Steps x100

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Train

Usual Train

Final Test

0 250 500 750 1000 1250 1500 1750 2000

Steps x100

0

50

100

150

200

250

Distance from initial point

0 25 50 75 100 125 150 175 200

Steps x1000

0

1

2

3

4

5

6

Gradient size



Properties of ”sad” points (obtained so far)
▶ Even 𝑙2 regularization won’t hide them if we try to find them relatively far from

initial point.
▶ They are unstable (if we start stochastic algorithm with them, it will jump from

such local minimum)

▶ Robustness of learning algorithms to the noise in labels have the same form for
different learning models



Adversarial examples (joint with Valentin Khrulkov)

Suppose that we have a standard feed-forward DNN which takes a
vector 𝑥 as the input, and outputs a vector of probabilities 𝑝(𝑥)
for class labels. Our goal is given parameters 𝑞 ≥ 1 and 𝐿 > 0

produce a vector 𝜀 such that

��� max 𝑝(𝑥) ≠ ��� max 𝑝(𝑥 + 𝜀), ‖𝜀‖𝑞 = 𝐿,
for as many 𝑥 in a dataset as possible. Efficiency of the given

universal adversarial perturbation 𝜀 for the dataset 𝑋 of the size
𝑁 is called the fooling rate and is defined as

|{𝑥 ∈ 𝑋 ∶ ��� max 𝑝(𝑥) ≠ ��� max 𝑝(𝑥 + 𝜀)}|
𝑁 .



Our construction

Let us denote the outputs of the 𝑖-th hidden layer of the network
by 𝑓𝑖(𝑥). Then we have

𝑓𝑖(𝑥 + 𝜀) − 𝑓𝑖(𝑥) ≈ 𝐽𝑖(𝑥)𝜀,
where

𝐽𝑖(𝑥) = 𝜕𝑓𝑖
𝜕𝑥 ∣

𝑥
,

Thus, for any 𝑞
‖𝑓𝑖(𝑥 + 𝜀) − 𝑓𝑖(𝑥)‖𝑞 ≈ ‖𝐽𝑖(𝑥)𝜀‖𝑞, (2)



Generalized singular values

𝑦 = ��� max
‖𝐴𝑦‖𝑞
‖𝑦‖𝑝

.

We can use generalized power method to compute it.



Singular vectors

0 25 50 75 100 125 150 175 200

0

25

50

75

100

125

150

175

200

block2_conv1

0 25 50 75 100 125 150 175 200

0

25

50

75

100

125

150

175

200

block2_conv2

0 25 50 75 100 125 150 175 200

0

25

50

75

100

125

150

175

200

block2_pool

0 25 50 75 100 125 150 175 200

0

25

50

75

100

125

150

175

200

block3_conv1

(a) VGG-16

0 25 50 75 100 125 150 175 200

0

25

50

75

100

125

150

175

200

block2_conv1

0 25 50 75 100 125 150 175 200

0

25

50

75

100

125

150

175

200

block2_conv2

0 25 50 75 100 125 150 175 200

0

25

50

75

100

125

150

175

200

block2_pool

0 25 50 75 100 125 150 175 200

0

25

50

75

100

125

150

175

200

block3_conv1

(b) VGG-19

0 25 50 75 100 125 150 175 200

0

25

50

75

100

125

150

175

200

conv1

0 25 50 75 100 125 150 175 200

0

25

50

75

100

125

150

175

200

res2a_branch2a

0 25 50 75 100 125 150 175 200

0

25

50

75

100

125

150

175

200

bn2a_branch2a

0 25 50 75 100 125 150 175 200

0

25

50

75

100

125

150

175

200

activation_476

(c) ResNet50

Figure: Universal adversarial perturbations constructed using various
layers of various DNNs



Fooling rates

Layer name block2_pool block3_conv1 block3_conv2 block3_conv3

Singular value 1165.74 2200.08 3146.66 6282.64
Fooling rate 0.52 0.39 0.50 0.50

Table: Fooling rates for VGG-16

Layer name block2_pool block3_conv1 block3_conv2 block3_conv3

Singular value 784.82 1274.99 1600.77 3063.72
Fooling rate 0.60 0.33 0.50 0.52

Table: Fooling rates for VGG-19

Layer name conv1 res3c_branch2a bn5a_branch2c activation_8

Singular value 59.69 19.21 138.81 15.55
Fooling rate 0.44 0.35 0.34 0.34

Table: Fooling rates for ResNet50


