Robust Optimization and Learning in Approximate Dynamic Programming Using Kernels

Theodore B. Trafalis

School of Industrial and Systems Engineering University of Oklahoma

Talk 2nd Winter School on Data Analytics (WSDA 2017) Nizhny Novgorod,Russia November 03-04, 2017

イロト イポト イヨト イヨト

æ

- challenging and sometimes even impossible to calculate
- lacking computation efficiency
- requiring off-line calculations
- ignoring uncertainty within the problem parameters

ヘロト ヘアト ヘビト ヘビト

- challenging and sometimes even impossible to calculate
- lacking computation efficiency
- requiring off-line calculations
- ignoring uncertainty within the problem parameters

ヘロト ヘアト ヘビト ヘビト

- challenging and sometimes even impossible to calculate
- lacking computation efficiency
- requiring off-line calculations
- ignoring uncertainty within the problem parameters

- challenging and sometimes even impossible to calculate
- lacking computation efficiency
- requiring off-line calculations
- ignoring uncertainty within the problem parameters

ヘロン 人間 とくほ とくほ とう

• find optimal and near optimal policies

- make computation more efficient
- search for policies on-line
- Incorporate robustness to get stable policies

- find optimal and near optimal policies
- make computation more efficient
- search for policies on-line
- Incorporate robustness to get stable policies

- find optimal and near optimal policies
- make computation more efficient
- search for policies on-line
- Incorporate robustness to get stable policies

- find optimal and near optimal policies
- make computation more efficient
- search for policies on-line
- Incorporate robustness to get stable policies

・ 同 ト ・ 国 ト ・ 国 ト …

Outline

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ヘ ○

- The agent needs to take an action given the actual state and the reward from taking that action.
- The action taken does not need to increase the immediate reward but the expected cumulative reward.
- The rewards are used to evaluate how well the action taken will help achieve the already set goal.

・ 回 ト ・ ヨ ト ・ ヨ ト

- The agent needs to take an action given the actual state and the reward from taking that action.
- The action taken does not need to increase the immediate reward but the expected cumulative reward.
- The rewards are used to evaluate how well the action taken will help achieve the already set goal.

・ 回 ト ・ ヨ ト ・ ヨ ト

- The agent needs to take an action given the actual state and the reward from taking that action.
- The action taken does not need to increase the immediate reward but the expected cumulative reward.
- The rewards are used to evaluate how well the action taken will help achieve the already set goal.

伺き くほき くほう

- S, a state space.
- A, an action space.
- \mathcal{P} , a transition probability distribution, where: $\mathcal{P}_{ss'}^{a} = \Pr \{ s_{t+1} = s' | s_t = s, a_t = a \}.$
- $g_{ss'}^a$ immediate reward/cost.
- *π*, the policy that the agent needs to find, is a mapping from *S* to *A*.

・ 回 ト ・ ヨ ト ・ ヨ ト

- S, a state space.
- A, an action space.
- \mathcal{P} , a transition probability distribution, where: $\mathcal{P}_{ss'}^{a} = \Pr \{ s_{t+1} = s' | s_t = s, a_t = a \}.$
- $g_{ss'}^a$ immediate reward/cost.
- *π*, the policy that the agent needs to find, is a mapping from *S* to *A*.

く 同 と く ヨ と く ヨ と

- S, a state space.
- A, an action space.
- \mathcal{P} , a transition probability distribution, where: $\mathcal{P}_{ss'}^a = \Pr \{ s_{t+1} = s' | s_t = s, a_t = a \}.$
- $g_{ss'}^a$ immediate reward/cost.
- *π*, the policy that the agent needs to find, is a mapping from *S* to *A*.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- S, a state space.
- A, an action space.
- \mathcal{P} , a transition probability distribution, where: $\mathcal{P}_{ss'}^{a} = \Pr \{ s_{t+1} = s' | s_t = s, a_t = a \}.$
- $g^a_{ss'}$ immediate reward/cost.
- π, the policy that the agent needs to find, is a mapping from S to A.

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

- S, a state space.
- A, an action space.
- \mathcal{P} , a transition probability distribution, where: $\mathcal{P}_{ss'}^{a} = \Pr \{ s_{t+1} = s' | s_t = s, a_t = a \}.$
- $g^a_{ss'}$ immediate reward/cost.
- π, the policy that the agent needs to find, is a mapping from S to A.

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣 ─ ∽ � � �

To evaluate how good a particular policy is, the agent needs to evaluate $\mathcal{J}_{\pi}(s)$ and $Q^{\pi}(s, a)$.

• The state-value function:

$$\mathcal{J}_{\pi}(s) = \mathcal{E}_{\pi} \left\{ \sum_{k=t}^{\infty} \gamma^{k-t} g_{s_k s_{k+1}}^{\pi(s_k)} | s_t = s
ight\}$$

Where (0 < γ < 1).

• the action-value function:

$$Q_{\pi}(s,a) = E_{\pi} \left\{ \sum_{k=t}^{\infty} \gamma^{k-t} g_{s_k s_{k+1}}^{\pi(s_k)} | s_t = s, a_t = a \right\}$$

 $\mathbb{E}_{\pi}\left\{
ight\}$ is the expected value achieved following the policy π_{\cdot}

ヘロト ヘアト ヘビト ヘビト

э.

To evaluate how good a particular policy is, the agent needs to evaluate $\mathcal{J}_{\pi}(s)$ and $Q^{\pi}(s, a)$.

• The state-value function:

$$\mathcal{J}_{\pi}(s) = E_{\pi} \left\{ \sum_{k=t}^{\infty} \gamma^{k-t} g_{s_k s_{k+1}}^{\pi(s_k)} | s_t = s
ight\}$$

Where (0 < γ < 1).

• the action-value function:

$$Q_{\pi}(s,a) = E_{\pi} \left\{ \sum_{k=t}^{\infty} \gamma^{k-t} g_{s_k s_{k+1}}^{\pi(s_k)} | s_t = s, a_t = a
ight\}$$

 \mathbb{E}_{π} {} is the expected value achieved following the policy π .

ヘロン 人間 とくほ とくほ とう

E DQC

Value Functions -continued-

• The value functions \mathcal{J}_{π} satisfies a recursive relationship:

$$\mathcal{J}_{\pi}(s) = \sum_{a \in \mathcal{A}(s)} \pi(s, a) \sum_{s'} \mathcal{P}^{a}_{ss'} \left[g^{a}_{ss'} + \gamma \mathcal{J}_{\pi}(s') \right]$$

• The optimal policy π^* is the one that maximizes \mathcal{J}^{π}

$$\mathcal{J}^*(s) = \max_{\pi} \mathcal{J}^{\pi}(s)$$

• The optimal action-value function *Q*^{*} is defined by:

$$Q^*(s,a) = \max_{\pi} Q^{\pi}(s,a)$$

(同) くほり くほう

Value Functions -continued-

• The value functions \mathcal{J}_{π} satisfies a recursive relationship:

$$\mathcal{J}_{\pi}(s) = \sum_{a \in \mathcal{A}(s)} \pi(s, a) \sum_{s'} \mathcal{P}^{a}_{ss'} \left[g^{a}_{ss'} + \gamma \mathcal{J}_{\pi}(s') \right]$$

• The optimal policy π^* is the one that maximizes \mathcal{J}^{π}

$$\mathcal{J}^*(s) = \max_{\pi} \mathcal{J}^{\pi}(s)$$

• The optimal action-value function *Q*^{*} is defined by:

$$Q^*(s,a) = \max_{\pi} Q^{\pi}(s,a)$$

Value Functions -continued-

• The value functions \mathcal{J}_{π} satisfies a recursive relationship:

$$\mathcal{J}_{\pi}(s) = \sum_{a \in \mathcal{A}(s)} \pi(s, a) \sum_{s'} \mathcal{P}^{a}_{ss'} \left[g^{a}_{ss'} + \gamma \mathcal{J}_{\pi}(s') \right]$$

• The optimal policy π^* is the one that maximizes \mathcal{J}^{π}

$$\mathcal{J}^*(s) = \max_{\pi} \mathcal{J}^{\pi}(s)$$

• The optimal action-value function *Q*^{*} is defined by:

$$Q^*(s,a) = \max_{\pi} Q^{\pi}(s,a)$$

(同) くほり くほり

The value function \mathcal{J}_{π} has the following properties:

• \mathcal{J}_{π} is the unique solution to:

$$\mathcal{J}_{\pi} = \mathcal{T}_{\pi} \mathcal{J}_{\pi}$$

• The operator \mathcal{T}_{π} is defined by:

$$\mathcal{T}_{\pi}\mathcal{J}=\boldsymbol{g}_{\pi}+\gamma\mathcal{P}_{\pi}\mathcal{J}$$

• The optimal value function $\mathcal{J}^* = \min_{\pi} \mathcal{J}_{\pi}$ is the unique solution to Bellman's equation:

$$\mathcal{J}^* = \mathcal{T}\mathcal{J}^*$$

• where the operator \mathcal{T} is:

$$\mathcal{T}\mathcal{J} = \min_{\pi} \mathcal{T}_{\pi}\mathcal{J}$$

The value function \mathcal{J}_{π} has the following properties:

• \mathcal{J}_{π} is the unique solution to:

$$\mathcal{J}_{\pi} = \mathcal{T}_{\pi} \mathcal{J}_{\pi}$$

• The operator \mathcal{T}_{π} is defined by:

$$\mathcal{T}_{\pi}\mathcal{J} = \boldsymbol{g}_{\pi} + \gamma \mathcal{P}_{\pi}\mathcal{J}$$

• The optimal value function $\mathcal{J}^* = \min_{\pi} \mathcal{J}_{\pi}$ is the unique solution to Bellman's equation:

$$\mathcal{J}^* = \mathcal{T}\mathcal{J}^*$$

• where the operator \mathcal{T} is:

$$\mathcal{T}\mathcal{J} = \min_{\pi} \mathcal{T}_{\pi}\mathcal{J}$$

ヘロト ヘアト ヘビト ヘビト

The value function \mathcal{J}_{π} has the following properties:

• \mathcal{J}_{π} is the unique solution to:

$$\mathcal{J}_{\pi} = \mathcal{T}_{\pi} \mathcal{J}_{\pi}$$

• The operator \mathcal{T}_{π} is defined by:

$$\mathcal{T}_{\pi}\mathcal{J} = \boldsymbol{g}_{\pi} + \gamma \mathcal{P}_{\pi}\mathcal{J}$$

• The optimal value function $\mathcal{J}^* = \min_{\pi} \mathcal{J}_{\pi}$ is the unique solution to Bellman's equation:

$$\mathcal{J}^* = \mathcal{T}\mathcal{J}^*$$

• where the operator T is:

$$\mathcal{T}\mathcal{J} = \min_{\pi} \mathcal{T}_{\pi}\mathcal{J}$$

くぼう くほう くほう

E DQC

The value function \mathcal{J}_{π} has the following properties:

• \mathcal{J}_{π} is the unique solution to:

$$\mathcal{J}_{\pi} = \mathcal{T}_{\pi} \mathcal{J}_{\pi}$$

• The operator \mathcal{T}_{π} is defined by:

$$\mathcal{T}_{\pi}\mathcal{J} = \boldsymbol{g}_{\pi} + \gamma \mathcal{P}_{\pi}\mathcal{J}$$

• The optimal value function $\mathcal{J}^* = \min_{\pi} \mathcal{J}_{\pi}$ is the unique solution to Bellman's equation:

$$\mathcal{J}^* = \mathcal{T}\mathcal{J}^*$$

where the operator T is:

$$\mathcal{T}\mathcal{J} = \min_{\pi} \mathcal{T}_{\pi}\mathcal{J}$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

э.

- This approach aims to decrease the complexity of the problem by reducing the number of states
- Many real life problems have states that are similar or closed to each other
- This similarity yields the same or similar value function
- \Rightarrow calculate the value function just for one of the similar states
- To determine similar states we will use clustering

- This approach aims to decrease the complexity of the problem by reducing the number of states
- Many real life problems have states that are similar or closed to each other
- This similarity yields the same or similar value function
- $\bullet \Rightarrow$ calculate the value function just for one of the similar states
- To determine similar states we will use clustering

ヘロト ヘアト ヘビト ヘビト

- This approach aims to decrease the complexity of the problem by reducing the number of states
- Many real life problems have states that are similar or closed to each other
- This similarity yields the same or similar value function
- ⇒ calculate the value function just for one of the similar states
- To determine similar states we will use clustering

ヘロン 人間 とくほ とくほ とう

э.

- This approach aims to decrease the complexity of the problem by reducing the number of states
- Many real life problems have states that are similar or closed to each other
- This similarity yields the same or similar value function
- \Rightarrow calculate the value function just for one of the similar states
- To determine similar states we will use clustering

ヘロン 人間 とくほ とくほ とう

E DQC

- This approach aims to decrease the complexity of the problem by reducing the number of states
- Many real life problems have states that are similar or closed to each other
- This similarity yields the same or similar value function
- $\bullet \Rightarrow$ calculate the value function just for one of the similar states
- To determine similar states we will use clustering

ヘロン 人間 とくほ とくほ とう

E DQC

- We need to construct a subset S using clustering. The value function will be calculated for the elements in S only
- $\{S_1, S_2, \ldots, S_l\}$ be a partition of *S*
- \overline{s}_i , an element of S_i , be the **state representative** for the cluster S_i
- $\overline{S} = \{\overline{s}_1, \overline{s}_2, \dots, \overline{s}_l\}$

(ロ) (同) (三) (三) (三) (○)

- We need to construct a subset S using clustering. The value function will be calculated for the elements in S only
- $\{S_1, S_2, \dots, S_l\}$ be a partition of S
- \overline{s}_i , an element of S_i , be the **state representative** for the cluster S_i
- $\overline{S} = \{\overline{s}_1, \overline{s}_2, \dots, \overline{s}_l\}$

(ロ) (同) (三) (三) (三) (○)

- We need to construct a subset S using clustering. The value function will be calculated for the elements in S only
- $\{S_1, S_2, \ldots, S_l\}$ be a partition of *S*
- \overline{s}_i , an element of S_i , be the **state representative** for the cluster S_i
- $\overline{S} = \{\overline{s}_1, \overline{s}_2, \dots, \overline{s}_l\}$

(ロ) (同) (三) (三) (三) (○)

- We need to construct a subset S using clustering. The value function will be calculated for the elements in S only
- $\{S_1, S_2, \ldots, S_l\}$ be a partition of *S*
- \overline{s}_i , an element of S_i , be the **state representative** for the cluster S_i

•
$$\overline{S} = \{\overline{s}_1, \overline{s}_2, \dots, \overline{s}_l\}$$

▲ 圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

E DQC

Reduced States' Set

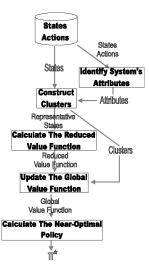


Figure: Reduced States' set diagram

ヘロト ヘワト ヘビト ヘビト

э

• Consider an example of a city evacuation plan.

• There are few possible exits from the city.

The Objective: Draft a policy that will guide the evacuees to get out of the city.

ヘロト 人間 ト ヘヨト ヘヨト

æ

- Consider an example of a city evacuation plan.
- There are few possible exits from the city.
- The Objective: Draft a policy that will guide the evacuees to get out of the city.

ヘロト ヘアト ヘビト ヘビト

э.

- Consider an example of a city evacuation plan.
- There are few possible exits from the city.

The Objective: Draft a policy that will guide the evacuees to get out of the

city.

ヘロト ヘアト ヘビト ヘビト

э.

Reduced States' Set Experiments and results -City representation-

- To simplify the modeling, we suppose that there are 256 blocks (16 columns and 16 rows).
- At each intersection we can go on all 4 directions.
- The only available exits from the city are the north-west and south-east blocks.

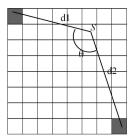


Figure: Simplified city representation with two exists

イロト イポト イヨト イヨト

Reduced States' Set Experiments and results -City representation-

- To simplify the modeling, we suppose that there are 256 blocks (16 columns and 16 rows).
- At each intersection we can go on all 4 directions.
- The only available exits from the city are the north-west and south-east blocks.

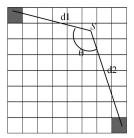


Figure: Simplified city representation with two exists

ヘロト 人間 ト ヘヨト ヘヨト

- To simplify the modeling, we suppose that there are 256 blocks (16 columns and 16 rows).
- At each intersection we can go on all 4 directions.
- The only available exits from the city are the north-west and south-east blocks.

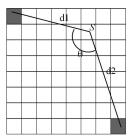


Figure: Simplified city representation with two exists

ヘロト ヘアト ヘビト ヘビト

- 254 states and 2 terminal ones.
- The reward to go from one block to another is -1.
- The reward to get to one of the terminal states is 0.

• 3 attributes: d_1 , d_2 , and θ .

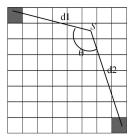


Figure: Attributes

・ 同 ト ・ ヨ ト ・ ヨ ト …

- 254 states and 2 terminal ones.
- The reward to go from one block to another is -1.
- The reward to get to one of the terminal states is 0.

• 3 attributes: d_1 , d_2 , and θ .

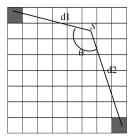


Figure: Attributes

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

- 254 states and 2 terminal ones.
- The reward to go from one block to another is -1.
- The reward to get to one of the terminal states is 0.

• 3 attributes: d_1 , d_2 , and θ .

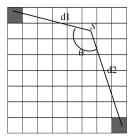


Figure: Attributes

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● の Q ()~

- 254 states and 2 terminal ones.
- The reward to go from one block to another is -1.
- The reward to get to one of the terminal states is 0.
- 3 attributes: d_1 , d_2 , and θ .

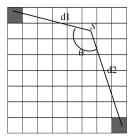


Figure: Attributes

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● の Q ()~

- The accuracy rate is introduced to compare the different policies obtained:
 - $A_r = \frac{\text{number of accurate states}}{\text{number of states (256)}}$

	Optimal	Reduced	Reduced
# of clusters	256	73	56
Time (sec)	211	70	33
# of accurate states	256	256	196
Ar	1	1	.77

Table: Comparing Computation Time and Accuracy

ヘロト ヘアト ヘビト ヘビト

Curse of dimensionality

- Consider finite sets with fixed cardinality for the states and actions.
- Need huge amount of resources to find an optimal policy.
- Need off-line algorithms.
- However
 - In real world problems, the environment might change and include new states or actions.
- A policy that was optimal for a previous environment might not be optimal anymore.
- Use the reduced states' set method in an on-line framework.

ヘロア ヘビア ヘビア・

Curse of dimensionality

- Consider finite sets with fixed cardinality for the states and actions.
- Need huge amount of resources to find an optimal policy.
- Need off-line algorithms.
- However
 - In real world problems, the environment might change and include new states or actions.
- A policy that was optimal for a previous environment might not be optimal anymore.
- Use the reduced states' set method in an on-line framework.

・ロト ・ 理 ト ・ ヨ ト ・

э

Curse of dimensionality

- Consider finite sets with fixed cardinality for the states and actions.
- Need huge amount of resources to find an optimal policy.
- Need off-line algorithms.
- However

In real world problems, the environment might change and include new states or actions.

- A policy that was optimal for a previous environment might not be optimal anymore.
- Use the reduced states' set method in an on-line framework.

・ロト ・ 理 ト ・ ヨ ト ・

Curse of dimensionality

- Consider finite sets with fixed cardinality for the states and actions.
- Need huge amount of resources to find an optimal policy.
- Need off-line algorithms.
- However

In real world problems, the environment might change and include new states or actions.

- A policy that was optimal for a previous environment might not be optimal anymore.
- Use the reduced states' set method in an on-line framework.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Curse of dimensionality

- Consider finite sets with fixed cardinality for the states and actions.
- Need huge amount of resources to find an optimal policy.
- Need off-line algorithms.
- However

In real world problems, the environment might change and include new states or actions.

- A policy that was optimal for a previous environment might not be optimal anymore.
- Use the reduced states' set method in an on-line framework.

ヘロン 人間 とくほとくほとう

Curse of dimensionality

- Consider finite sets with fixed cardinality for the states and actions.
- Need huge amount of resources to find an optimal policy.
- Need off-line algorithms.
- However

In real world problems, the environment might change and include new states or actions.

- A policy that was optimal for a previous environment might not be optimal anymore.
- Use the reduced states' set method in an on-line framework.

ヘロン 人間 とくほど 人 ほとう

э.

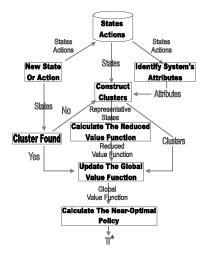


Figure: On-line Reduced States' set diagram

・ 同 ト ・ ヨ ト ・ ヨ ト

- Some blocks in the city might be inaccessible or some of the actions might become impossible to take.
- Due to the congestion, one of the emergency exits might be temporarily disabled.
- The emergency services might succeed in increasing the number of emergency exits.
- To make the problem feasible, we assume that during the whole horizon, there is at least one terminal state.
- The reward to get to an inaccessible block is $-\infty$.

ヘロア ヘビア ヘビア・

- Some blocks in the city might be inaccessible or some of the actions might become impossible to take.
- Due to the congestion, one of the emergency exits might be temporarily disabled.
- The emergency services might succeed in increasing the number of emergency exits.
- To make the problem feasible, we assume that during the whole horizon, there is at least one terminal state.
- The reward to get to an inaccessible block is $-\infty$.

ヘロン ヘアン ヘビン ヘビン

- Some blocks in the city might be inaccessible or some of the actions might become impossible to take.
- Due to the congestion, one of the emergency exits might be temporarily disabled.
- The emergency services might succeed in increasing the number of emergency exits.
- To make the problem feasible, we assume that during the whole horizon, there is at least one terminal state.
- The reward to get to an inaccessible block is $-\infty$.

・ロト ・ 理 ト ・ ヨ ト ・

- Some blocks in the city might be inaccessible or some of the actions might become impossible to take.
- Due to the congestion, one of the emergency exits might be temporarily disabled.
- The emergency services might succeed in increasing the number of emergency exits.
- To make the problem feasible, we assume that during the whole horizon, there is at least one terminal state.
- The reward to get to an inaccessible block is $-\infty$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

- Some blocks in the city might be inaccessible or some of the actions might become impossible to take.
- Due to the congestion, one of the emergency exits might be temporarily disabled.
- The emergency services might succeed in increasing the number of emergency exits.
- To make the problem feasible, we assume that during the whole horizon, there is at least one terminal state.
- The reward to get to an inaccessible block is $-\infty$.

ヘロト 人間 とくほ とくほ とう

э.

On-line Reinforcement Learning using Kernels Experiments and results

	Optimal Reduced			Reduced			
Events	time	time	clusters	Ar	time	clusters	Ar
	(sec)	(sec)			(sec)		
- 1 block	220	75	74	1	36	57	.769
- 1 block	220	80	75	1	1	57	.762
- 1 exit	350	170	75	1	62	57	.773
- 1 block	345	1	75	1	1	57	.754
+ 1 block	347	1	75	1	1	57	.754
+ 1 exit	219	76	75	1	35	57	.773
+ 1 block	222	72	74	1	33	56	.773
+ 1 block	221	73	74	1	1	56	.766
Total	2144	548	-	-	170	-	-

Table: Comparing Computation Time and Accuracy for On line Reduced states' set

ヘロト ヘアト ヘビト ヘビト

æ

• We used a Modified Asynchronous Policy Iteration:

The value iterations are executed according to the following updates:

$$\mathcal{J}_{k+1}(s) = \left\{egin{array}{ll} (\mathcal{T}_{\pi_k}\mathcal{J}_k)\,(s), ext{ if } s\in\overline{S},\ \mathcal{J}_{k+1}(s_i), ext{ s.t. } s\in S_i, ext{ otherwise}, \end{array}
ight.$$

the policy is kept unchanged by setting $\pi_{k+1} = \pi_k$

• The policy iterations are executed according to the following updates:

$$\pi_{k+1}(s) = \begin{cases} \operatorname{argmin}_{a \in A(s)} \sum_{s'=0}^{|S|} \mathcal{P}_{ss'}^{a} \left(g_{ss'}^{a} + \mathcal{J}_{k}(s') \right), \text{ if } s \in \overline{S}, \\ \pi_{k+1}(s_{i}), \text{ s.t. } s \in S_{i}, \text{ otherwise}, \end{cases}$$

the value function estimates are kept unchanged by setting $\mathcal{J}_{k+1} = \mathcal{J}_k$

ヘロン 人間 とくほ とくほ とう

э.

- We used a Modified Asynchronous Policy Iteration:
- The value iterations are executed according to the following updates:

$$\mathcal{J}_{k+1}(oldsymbol{s}) = \left\{egin{array}{ll} (\mathcal{T}_{\pi_k}\mathcal{J}_k)\,(oldsymbol{s}), \ ext{if} \ oldsymbol{s} \in \overline{oldsymbol{S}}, \ \mathcal{J}_{k+1}(oldsymbol{s}_i), \ ext{s.t.} \ oldsymbol{s} \in oldsymbol{S}_i, \ ext{otherwise}, \end{array}
ight.$$

the policy is kept unchanged by setting $\pi_{k+1} = \pi_k$

The policy iterations are executed according to the following updates:

$$\pi_{k+1}(s) = \begin{cases} \operatorname{argmin}_{a \in A(s)} \sum_{s'=0}^{|S|} \mathcal{P}_{ss'}^{a} \left(g_{ss'}^{a} + \mathcal{J}_{k}(s') \right), \text{ if } s \in \overline{S}, \\ \pi_{k+1}(s_{i}), \text{ s.t. } s \in S_{i}, \text{ otherwise}, \end{cases}$$

the value function estimates are kept unchanged by setting $\mathcal{J}_{k+1} = \mathcal{J}_k$

ヘロト 人間 とくほ とくほ とう

E DQC

- We used a Modified Asynchronous Policy Iteration:
- The value iterations are executed according to the following updates:

$$\mathcal{J}_{k+1}(oldsymbol{s}) = \left\{egin{array}{ll} (\mathcal{T}_{\pi_k}\mathcal{J}_k)\,(oldsymbol{s}), & ext{if }oldsymbol{s}\in\overline{oldsymbol{S}}, \ \mathcal{J}_{k+1}(oldsymbol{s}_i), & ext{s.t. }oldsymbol{s}\inoldsymbol{S}_i, & ext{otherwise}, \end{array}
ight.$$

the policy is kept unchanged by setting $\pi_{k+1} = \pi_k$

• The policy iterations are executed according to the following updates:

$$\pi_{k+1}(s) = \begin{cases} \operatorname{argmin}_{a \in A(s)} \sum_{s'=0}^{|S|} \mathcal{P}_{ss'}^{a} \left(g_{ss'}^{a} + \mathcal{J}_{k}(s') \right), \text{ if } s \in \overline{S}, \\ \pi_{k+1}(s_{i}), \text{ s.t. } s \in S_{i}, \text{ otherwise}, \end{cases}$$

the value function estimates are kept unchanged by setting $\mathcal{J}_{k+1} = \mathcal{J}_k$

(ロ) (同) (三) (三) (三) (○)

• Let $s \in \overline{S}_i$ and $s \notin \overline{S}$, let $s' \in \overline{S}_j$.

• Let $\mathcal{P}_{ss'}^{\pi_k(s)} > 0$ and $s'' \in \overline{S}_j$ such that: 1. $\mathcal{P}_{\overline{s}_i s''}^{\pi_k(\overline{s}_i)} > 0$ and $\left| \mathcal{P}_{ss'}^{\pi_k(s)} - \mathcal{P}_{\overline{s}_i s''}^{\pi_k(\overline{s}_i)} \right| \le \epsilon_1$ 2. $\left| g_{ss'}^{\pi_k(s)} - g_{\overline{s}_i s''}^{\pi_k(\overline{s}_i)} \right| \le \epsilon_2$

• then $\exists \epsilon \geq 0$ such that:

 $|(\mathcal{T}_{\pi_k}\mathcal{J}_k)(s) - \mathcal{J}_{k+1}(s)| \leq \epsilon \ \forall \ s \notin S.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへ(?)

• Let
$$s \in \overline{S}_i$$
 and $s \notin \overline{S}$, let $s' \in \overline{S}_j$.
• Let $\mathcal{P}_{ss'}^{\pi_k(s)} > 0$ and $s'' \in \overline{S}_j$ such that:
1. $\mathcal{P}_{\overline{s}_i s''}^{\pi_k(\overline{s}_i)} > 0$ and $\left| \mathcal{P}_{ss'}^{\pi_k(s)} - \mathcal{P}_{\overline{s}_i s''}^{\pi_k(\overline{s}_i)} \right| \le \epsilon_1$
2. $\left| g_{ss'}^{\pi_k(s)} - g_{\overline{s}_i s''}^{\pi_k(\overline{s}_i)} \right| \le \epsilon_2$

• then $\exists \epsilon \geq 0$ such that: $|(\mathcal{T}_{\pi_k}\mathcal{J}_k)(s) - \mathcal{J}_{k+1}(s)| \leq \epsilon \ \forall \ s \notin \overline{S}.$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

• Let
$$s \in \overline{S}_i$$
 and $s \notin \overline{S}$, let $s' \in \overline{S}_j$.
• Let $\mathcal{P}_{ss'}^{\pi_k(s)} > 0$ and $s'' \in \overline{S}_j$ such that:
1. $\mathcal{P}_{\overline{s}_i s''}^{\pi_k(\overline{s}_i)} > 0$ and $\left| \mathcal{P}_{ss'}^{\pi_k(s)} - \mathcal{P}_{\overline{s}_i s''}^{\pi_k(\overline{s}_i)} \right| \le \epsilon_1$
2. $\left| g_{ss'}^{\pi_k(s)} - g_{\overline{s}_i s''}^{\pi_k(\overline{s}_i)} \right| \le \epsilon_2$

• then $\exists \epsilon \geq 0$ such that: $|(\mathcal{T}_{\pi_k}\mathcal{J}_k)(s) - \mathcal{J}_{k+1}(s)| \leq \epsilon \ \forall \ s \notin \overline{S}.$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → の Q (>

Conduct a set of experiments on the class of shortest path problems.

- Compare the time it takes to find an optimal policy using our algorithm and without reducing the states' set cardinality.
- Define the following two percentages:

$$A = \frac{Clustering Time + Reduced Time}{Optimal Time} \times 100,$$
$$B = \frac{Reduced Time}{Optimal Time} \times 100.$$

ヘロト ヘアト ヘビト ヘビト

- Conduct a set of experiments on the class of shortest path problems.
- Compare the time it takes to find an optimal policy using our algorithm and without reducing the states' set cardinality.
- Define the following two percentages:

$$A = \frac{Clustering \ Time + Reduced \ Time}{Optimal \ Time} \times 100,$$
$$B = \frac{Reduced \ Time}{Optimal \ Time} \times 100.$$

ヘロト ヘアト ヘビト ヘビト

æ

- Conduct a set of experiments on the class of shortest path problems.
- Compare the time it takes to find an optimal policy using our algorithm and without reducing the states' set cardinality.
- Define the following two percentages:

$$A = \frac{Clustering \ Time + Reduced \ Time}{Optimal \ Time} \times 100,$$
$$B = \frac{Reduced \ Time}{Optimal \ Time} \times 100.$$

イロト イ押ト イヨト イヨトー

æ

Theoretical Proof Experiments and Results

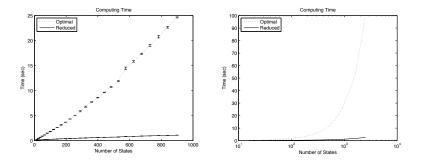


Figure: Optimal Vs Reduced Computation Times

< < >> < </>

→ E > < E >

э

Theoretical Proof Experiments and Results

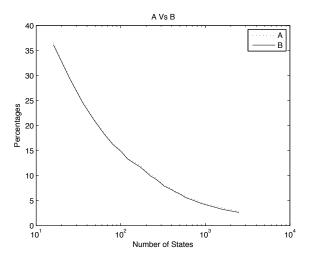


Figure: The Impact of the Clustering Time

< 🗇 ▶

æ

- Kernel methods play a major role in Machine Learning.
- They provide a simple framework for manipulating nonlinear relationships.
- Instantaneous adaptation of former linear algorithms.
- Require modest computational resources.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Kernel Based Reinforcement Learning

- A kernel is a continuous symmetric real-valued function defined on compact subsets of ℝⁿ, k : (x, y) → k(x, y).
- A Mercer kernel is a nonnegative definite kernel.
- The domain of a Mercer kernel is called the input space.
- The quantity *k*(*x*, *y*) can be used to represent measures of angle and measures of distance.
- Angles and distances are between inputs mapped in a higher dimensional Hilbert space.
- The Hilbert space is called the feature space.

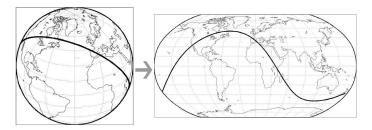
Kernel Based Reinforcement Learning

- Mercer's theorem suggests a particular decomposition of Mercer kernels.
- A Mercer kernel can be expressed as a dot product between two inputs mapped in the feature space, k(x, y) = ⟨φ(x) ⋅ φ(y)⟩.
- Explicit knowledge of the map φ and the feature space is not required. The only thing of importance is the kernel itself.
- With k we can calculate angles and distances between elements in the feature space without knowing the map φ.

ヘロト 人間 ト ヘヨト ヘヨト

Kernel Based Reinforcement Learning Purpose of Kernel Methods

- Kernel methods simplify the representation of nonlinear patterns in the input space.
- The intersection between hyperplanes and the manifold has a non-trivial reciprocal image in the input space.
- Instead of searching complex patterns in the input space, we use kernel methods.



- Use Linear approximate dynamic programming to speed up the algorithm.
- Incorporate robustness to get stable policies.
- Use kernels to define the concept of the neighborhood of a state.
- Combine all the above techniques to generate an on-line robust RL algorithm.

ヘロン 人間 とくほ とくほ とう

E DQC

RORLK: Algorithm Diagram

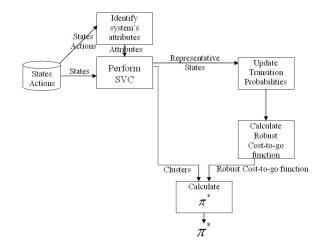


Figure: Robust On-line RL using Kernels diagram

ヘロト ヘワト ヘビト ヘビト

3

RORLK: Algorithm Diagram

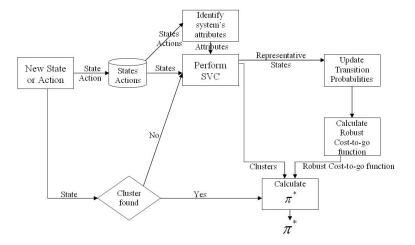


Figure: Robust On-line RL using Kernels diagram

ヘロト ヘワト ヘビト ヘビト

3

- This approach aims to decrease the complexity of the problem by reducing the number of states.
- Many real life problems have states that are similar or closed to each other.
- This similarity yields the same or similar value function.
- ⇒ calculate the value function just for one of the similar states.
- To determine similar states we will use clustering.

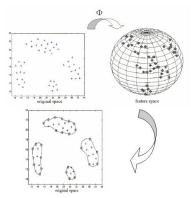
ヘロン 人間 とくほ とくほ とう

E DQC

- Clustering is a part of data mining that consists of grouping a set of data according to various attributes.
- Many methods have been developed.
- The effectiveness of each approach depends on the nature of the data.
- Ben-Hur (2001) derived SVC from SVM.

(4 個) とくほう くほう …

- Map data points to a feature space.
- Search for the smallest sphere enclosing all data points.
- Map the sphere back and generate clusters.



- ${X_i}_{1 \le i \le n}$ a data set of *n* points in the input space.
- $X_i \in \mathbb{R}^d$ and *d* is the number of attributes.
- We need to find the smallest sphere with radius *R*.
- The optimization formulation is the following:

$$R^2 + C \sum_i \xi_i$$

$$\|\Phi(X_i) - a\|^2 \le R^2 + \xi_i, \quad i = 1 \cdots n$$

$$\xi_i \ge 0$$

• To solve this optimization problem, we right the Lagrangian:

$$L(\mathbf{R}, \mathbf{a}, \mu, \beta, \xi) = \mathbf{R}^2 - \sum_i \left(\mathbf{R}^2 + \xi_i - \|\Phi(\mathbf{X}_i) - \mathbf{a}\|^2 \right) \beta_i - \sum_i \xi_i \mu_i + C \sum_i \xi_i$$

Where $\beta_i \ge 0$ and $\mu_i \ge 0$ are the Lagrange multipliers.

• Using the Karush-Kuhn-Tucker complementary slackness conditions, the Lagrangian becomes:

$$L(\beta) = \sum_{i} \Phi(X_{i})^{2} \beta_{i} - \sum_{ij} \beta_{i} \beta_{j} \Phi(X_{i}) \cdot \Phi(X_{j})$$

With the constraints $0 \le \beta_i \le C$.

• Replacing the dot product with the Gaussian kernel function:

$$K(X_i, X_j) = e^{-q ||X_i - X_j||^2}$$

Where *q* is the width parameter.

• we get:

$$\begin{array}{ll} \max_{\beta} & \sum_{i} K(X_{i}, X_{i})\beta_{i} - \sum_{ij} \beta_{i}\beta_{j}K(X_{i}, X_{j}) \\ \text{Subject to:} & \\ 0 \leq \beta_{i} \leq C, \quad i = 1 \cdots n \\ \sum_{i} \beta_{i} = 1 \end{array}$$

ヘロン 人間 とくほ とくほ とう

3

• The distance of each image in the feature space from the sphere center *a*:

$$\begin{array}{lll} R^{2}(X) &= & \|\Phi(X_{i}) - a\|^{2} \\ &= & K(X,X) - 2\sum_{i}\beta_{i}K(X_{i},X) + \sum_{ij}\beta_{i}\beta_{j}K(X_{i},X_{j}) \end{array}$$

• The radius of the sphere is as follows: $R_{Sphere} = \frac{\sum_{X_i \text{ is } SV} R(X_i)}{Number \text{ of } SVs}$

• clusters are defined as the connected components of the graph induced by *A*, where *A* is the adjacency matrix defined by:

$$A_{ij} = \begin{cases} 1, \text{ if for all } y \in (X_i, X_j), \ R(y) \le R_{sphere} \\ 0, \text{ Otherwise} \end{cases}$$

ヘロン 人間 とくほ とくほ とう

э.

Reduced States' Set

Reduced States' set Diagram

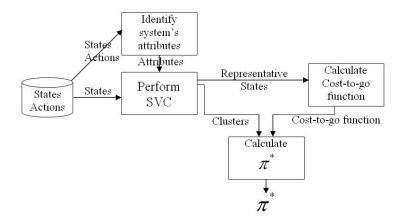


Figure: Reduced States' set diagram

ヘロン ヘアン ヘビン ヘビン

ъ

Linear Dynamic Programming

Bellman's equation can be solved using the following Linear Dynamic Programming (LDP): max $c^T \mathcal{J}$

subject to :
$$g_s^a + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^a \mathcal{J}(s') \ge \mathcal{J}(s), \ \forall s \in S, \forall a \in A(s)$$

ヘロン 人間 とくほ とくほ とう

э

Reduced Linear Dynamic Programming

Reduced Linear Dynamic Programming

Using the partitioning $S = \{S_1, S_2, ..., S_l\}$ we can reduced the LDP to: max $\sum_{i=1}^{l} \overline{c}_i \mathcal{J}(\overline{s}_i)$

subject to :
$$g_{\overline{s}_j}^a + \gamma \sum_{i=1}^l |S_i| \mathcal{P}_{s\overline{s}_i}^a \mathcal{J}(\overline{s}_i) \geq \mathcal{J}(\overline{s}_j), \forall j = 1 \cdots l, \forall a \in A(\overline{s}_j)$$

where
$$\overline{c}_i = \sum_{s \in S_i} c_s$$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

 \mathcal{J}^\ast is approximated using a linear combination of preselected basis functions:

$$\phi_{k}: \mathcal{S} \mapsto \mathbb{R}, \ k = 1, \dots, K$$

 \Rightarrow Generate a weight vector $\tilde{r} \in \mathbb{R}^{K}$, such that:

$$\mathcal{J}^*(\boldsymbol{s}) pprox \sum_{k=0}^{K} \phi_k(\boldsymbol{s}) \tilde{r}$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Using the vector \tilde{r} we get the Linear Approximate DP (LADP): max $C^{T} \Phi r$ subject to

$$g_{ss''}^{a} + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^{a}(\Phi r)(s') \ge (\Phi r)(s), \ \forall s \in S, \forall a \in A(s)$$

where $\Phi = \begin{bmatrix} \phi_1(1) & \cdots & \phi_K(1) \\ \vdots & \vdots \\ \phi_1(|S|) & \cdots & \phi_K(|S|) \end{bmatrix}$

(日本) (日本) (日本)

Reduced Linear Approximate Dynamic Programming

Reduced Linear Approximate Dynamic Programming

Using the partitioning $S = \{S_1, S_2, \dots, S_l\}$ we can reduced the LADP to: max $\overline{c}^T \overline{\Phi} r$

subject to
$$g_{\overline{s}_{j}}^{a} + \gamma \sum_{i=1}^{l} |S_{i}| \mathcal{P}_{\overline{s}_{j}\overline{s}_{i}}^{a} (\overline{\Phi}r) (\overline{s}_{i}) \ge (\overline{\Phi}r) (\overline{s}_{j}), \forall j = 1 \cdots l, \forall a \in A(\overline{s}_{j}),$$

where $\overline{\Phi} = \begin{bmatrix} \phi_{1}(\overline{s}_{1}) & \cdots & \phi_{K}(\overline{s}_{1}) \\ \vdots & \vdots \\ \phi_{1}(\overline{s}_{l}) & \cdots & \phi_{K}(\overline{s}_{l}) \end{bmatrix}.$

• The LADP yields good approximation to the value function

- How to choose the basis function and K
- We propose to use the partitioning *S* = {*S*₁, *S*₂, ..., *S*_{*l*}} and set:

$$\phi_k(s) = \kappa(s, \overline{s}_k), \ \forall \ k = 1 \dots l$$

- The approximation will be done using the system's parameters
- K = I is the number of clusters

ヘロン 人間 とくほ とくほ とう

э.

- The LADP yields good approximation to the value function
- How to choose the basis function and K
- We propose to use the partitioning $S = \{S_1, S_2, \dots, S_l\}$ and set:

$$\phi_k(s) = \kappa(s, \overline{s}_k), \ \forall \ k = 1 \dots l$$

- The approximation will be done using the system's parameters
- K = I is the number of clusters

ヘロン 人間 とくほ とくほ とう

E DQC

- The LADP yields good approximation to the value function
- How to choose the basis function and K
- We propose to use the partitioning $S = \{S_1, S_2, \dots, S_l\}$ and set:

$$\phi_k(\boldsymbol{s}) = \kappa(\boldsymbol{s}, \overline{\boldsymbol{s}}_k), \; \forall \; k = 1 \dots I$$

- The approximation will be done using the system's parameters
- K = I is the number of clusters

ヘロン 人間 とくほ とくほ とう

э.

- The LADP yields good approximation to the value function
- How to choose the basis function and K
- We propose to use the partitioning $S = \{S_1, S_2, \dots, S_l\}$ and set:

$$\phi_k(\boldsymbol{s}) = \kappa(\boldsymbol{s}, \overline{\boldsymbol{s}}_k), \ \forall \ k = 1 \dots l$$

- The approximation will be done using the system's parameters
- K = I is the number of clusters

- The LADP yields good approximation to the value function
- How to choose the basis function and K
- We propose to use the partitioning $S = \{S_1, S_2, \dots, S_l\}$ and set:

$$\phi_k(\boldsymbol{s}) = \kappa(\boldsymbol{s}, \overline{\boldsymbol{s}}_k), \ \forall \ k = 1 \dots l$$

- The approximation will be done using the system's parameters
- K = I is the number of clusters

The LADP becomes Kernelized LADP: max $c^T \mathcal{K} r$

subject to
$$g_s^a + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^a(\mathcal{K}r)(s') \ge (\mathcal{K}r)(s), \ \forall s \in S, \forall a \in \mathcal{A}(s),$$

where

$$\mathcal{K} = \begin{bmatrix} \kappa(\mathbf{s}_1, \overline{\mathbf{s}}_1) & \cdots & \kappa(\mathbf{s}_1, \overline{\mathbf{s}}_l) \\ \vdots & & \vdots \\ \kappa(\mathbf{s}_{|\mathcal{S}|}, \overline{\mathbf{s}}_1) & \cdots & \kappa(\mathbf{s}_{|\mathcal{S}|}, \overline{\mathbf{s}}_l) \end{bmatrix}$$

ヘロト ヘアト ヘビト ヘビト

E DQC

The RLADP becomes Kernelized RLADP: max $\overline{c}^T \overline{\mathcal{K}} r$

subject to
$$g_{\overline{s}_j}^a + \gamma \sum_{i=1}^{l} |S_i| \mathcal{P}_{\overline{s}_j \overline{s}_i}^a(\overline{\mathcal{K}}r)(\overline{s}_i) \ge (\overline{\mathcal{K}}r)(\overline{s}_j), \forall j = 1 \cdots l, \forall a \in \mathcal{A}(\overline{s}_j)$$

where

$$\overline{\mathcal{K}} = \begin{bmatrix} \kappa(\overline{\mathbf{s}}_1, \overline{\mathbf{s}}_1) & \cdots & \kappa(\overline{\mathbf{s}}_1, \overline{\mathbf{s}}_l) \\ \vdots & & \vdots \\ \kappa(\overline{\mathbf{s}}_l, \overline{\mathbf{s}}_1) & \cdots & \kappa(\overline{\mathbf{s}}_l, \overline{\mathbf{s}}_l) \end{bmatrix}$$

ヘロト 人間 ト ヘヨト ヘヨト

3

Experiments and Results

• We used the same shortest path problems used in section

- The reduce linear dynamic programming did not find the optimal policies all the time
- We introduce the reduction in this experiments:

$$R_r = \frac{|S| - |\overline{S}|}{|S|}$$

イロト イポト イヨト イヨト

- We used the same shortest path problems used in section
- The reduce linear dynamic programming did not find the optimal policies all the time
- We introduce the reduction in this experiments:

$$R_r = \frac{|S| - |\overline{S}|}{|S|}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

- We used the same shortest path problems used in section
- The reduce linear dynamic programming did not find the optimal policies all the time
- We introduce the reduction in this experiments:

$$R_r = rac{|S| - |\overline{S}|}{|S|}$$

・聞き ・ヨト ・ヨト

Experiments and Results Computation Time

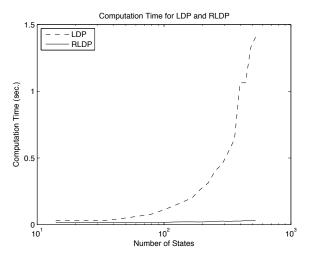


Figure: Computation Time -LDP Vs RLDP-

< ∃→

э

Experiments and Results

Accuracy and Reduction Rates

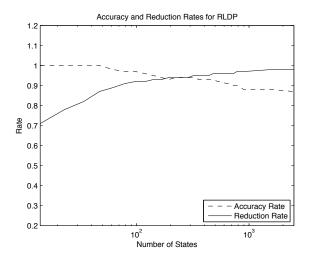


Figure: Accuracy and Reduction Rates -LDP Vs RLDP-

Theodore B. Trafalis Robust Optimization and Learning in Approximate Dynamic Prog

▶ < ∃ >

ъ

- Most developed algorithms ignore the uncertainty within the transition probability matrices.
- **However**, the DP optimal solution is sensitive to perturbation in transition matrices and in the cost/reward.
- Therefore, we need to account for the uncertainty.
- Different approaches have been developed.

ヘロト 人間 ト ヘヨト ヘヨト

- Most developed algorithms ignore the uncertainty within the transition probability matrices.
- **However**, the DP optimal solution is sensitive to perturbation in transition matrices and in the cost/reward.
- **Therefore**, we need to account for the uncertainty.
- Different approaches have been developed.

ヘロト 人間 ト ヘヨト ヘヨト

- Most developed algorithms ignore the uncertainty within the transition probability matrices.
- **However**, the DP optimal solution is sensitive to perturbation in transition matrices and in the cost/reward.
- Therefore, we need to account for the uncertainty.
- Different approaches have been developed.

ヘロト ヘアト ヘビト ヘビト

- Most developed algorithms ignore the uncertainty within the transition probability matrices.
- However, the DP optimal solution is sensitive to perturbation in transition matrices and in the cost/reward.
- Therefore, we need to account for the uncertainty.
- Different approaches have been developed.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Uncertainty within the transition probability matrices has been studied extensively
- But not the uncertainty within the reward/cost values
- We have augmented the LDP to make the policies robust with respect to the reward/cost values
- We have used Bertsimas and Sim's robust formulation to mitigate the effect of uncertainty within the transition probability matrices

- Uncertainty within the transition probability matrices has been studied extensively
- But not the uncertainty within the reward/cost values
- We have augmented the LDP to make the policies robust with respect to the reward/cost values
- We have used Bertsimas and Sim's robust formulation to mitigate the effect of uncertainty within the transition probability matrices

ヘロト 人間 ト ヘヨト ヘヨト

- Uncertainty within the transition probability matrices has been studied extensively
- But not the uncertainty within the reward/cost values
- We have augmented the LDP to make the policies robust with respect to the reward/cost values
- We have used Bertsimas and Sim's robust formulation to mitigate the effect of uncertainty within the transition probability matrices

ヘロト ヘアト ヘビト ヘビト

э.

- Uncertainty within the transition probability matrices has been studied extensively
- But not the uncertainty within the reward/cost values
- We have augmented the LDP to make the policies robust with respect to the reward/cost values
- We have used Bertsimas and Sim's robust formulation to mitigate the effect of uncertainty within the transition probability matrices

ヘロン 人間 とくほ とくほ とう

э.

Consider the following linear optimization problem:

 $\max c^{T} x$ subject to : Ax < b

• Each element b_i of b can take a finite number of values $\{b_i^1, \ldots, b_i^q\}$

In practice, a convex combination of the {b_i¹,..., b_i^q} is used as the expected value for b_i

• We assume that probability $(b_i = b_i^w) = \frac{1}{a}, \forall w = 1 \cdots q$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Consider the following linear optimization problem:

 $\max c^{T} x$ subject to : Ax < b

- Each element b_i of b can take a finite number of values $\{b_i^1, \ldots, b_i^q\}$
- In practice, a convex combination of the {b_i¹,..., b_i^q} is used as the expected value for b_i
- We assume that probability $(b_i = b_i^w) = \frac{1}{q}, \forall w = 1 \cdots q$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Consider the following linear optimization problem:

 $\max c^{T} x$ subject to : $Ax \leq b$

- Each element b_i of b can take a finite number of values $\{b_i^1, \ldots, b_i^q\}$
- In practice, a convex combination of the {b_i¹,..., b_i^q} is used as the expected value for b_i
- We assume that probability $(b_i = b_i^w) = \frac{1}{q}, \forall w = 1 \cdots q$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Augmented Linear Dynamic Programming

- For each realization b^w_i we associate the decision variable x^w_i.
- Hence, $E \{\max c^T x^w | Ax^w \le b^w\}$ is equivalent to:

subject to :
$$\sum_{ij,j\neq i} \frac{a_{ij}}{q} \sum_{v=1}^{q} x_j^v + a_{ii}x_i^w \le b_i^w, \ \forall \ i, w$$

• The linear dynamic formulation becomes:

$$\max \sum_{s} \frac{c_s}{q} \sum_{v=1}^{P} \mathcal{J}(s^v)$$

subject to :
$$g_{s^w}^a + \gamma \sum_{s' \in S, s' \neq s^w} \frac{\mathcal{P}_{s^w s'}^a}{q} \sum_{v=1}^q \mathcal{J}(s^{'v}) \ge (1 - \gamma \mathcal{P}_{s^w s^w}^a) \mathcal{J}(s^w), \forall s^w, a, w$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Augmented Linear Dynamic Programming

 $\max \sum_{i} \frac{c_i}{q} \sum_{i=1}^{q} x_i^{\nu}$

- For each realization b^w_i we associate the decision variable x^w_i.
- Hence, $E \{\max c^T x^w | Ax^w \le b^w\}$ is equivalent to:

subject to :
$$\sum_{ij,j\neq i} \frac{a_{ij}}{q} \sum_{v=1}^{q} x_j^v + a_{ii}x_i^w \le b_i^w, \ \forall \ i, w$$

• The linear dynamic formulation becomes:

subject to :
$$g_{s^w}^a + \gamma \sum_{s' \in S, s' \neq s^w} \frac{\mathcal{P}_{s^w s'}^a}{q} \sum_{v=1}^q \mathcal{J}(s^{'v}) \ge (1 - \gamma \mathcal{P}_{s^w s^w}^a) \mathcal{J}(s^w), \forall s^w, a, w$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Augmented Linear Dynamic Programming

 $\max \sum_{i} \frac{c_i}{q} \sum_{\nu=1}^{q} x_i^{\nu}$

- For each realization b^w_i we associate the decision variable x^w_i.
- Hence, $E \{\max c^T x^w | A x^w \le b^w\}$ is equivalent to:

subject to :
$$\sum_{ij,j\neq i} \frac{a_{ij}}{q} \sum_{v=1}^{q} x_j^v + a_{ii} x_i^w \le b_i^w, \ \forall \ i, w$$

The linear dynamic formulation becomes:

$$\max \sum_{s} \frac{c_{s}}{q} \sum_{\nu=1}^{q} \mathcal{J}(s^{\nu})$$

subject to:
$$g_{s^w}^a + \gamma \sum_{s' \in S, s' \neq s^w} \frac{\mathcal{P}_{s^w s'}^a}{q} \sum_{v=1}^q \mathcal{J}(s^{'v}) \ge (1 - \gamma \mathcal{P}_{s^w s^w}^a) \mathcal{J}(s^w), \forall s^w, a, w$$

(ロ) (同) (三) (三) (三) (○)

- Use Bertsimas and Sim's formulation to account for uncertainty within the transition probability matrices
- We assume that each entry \$\mathcal{P}_{ss'}^a\$ is modeled as a symmetric and bounded random variable \$\tilde{\mathcal{P}}_{ss'}^a\$, such that:

$$ilde{\mathcal{P}}^{a}_{ss'} \in \left[\mathcal{P}^{a}_{ss'} - \hat{\mathcal{P}}^{a}_{ss'}, \mathcal{P}^{a}_{ss'} + \hat{\mathcal{P}}^{a}_{ij}
ight]$$

• We set
$$\alpha^{a}_{s^{w}s'w'} = (1 - \delta_{s^{w}s'w'}) \frac{\delta_{s^{w}s'w'} - \gamma \mathcal{P}^{a}_{s^{w}s'w'}}{q + (1 - q)\delta_{s^{w}s'w'}}$$
 and
 $\hat{\alpha}^{a}_{s^{w}s'w'} = (1 - \delta_{s^{w}s'w'}) \frac{\gamma \hat{\mathcal{P}}^{a}_{s}}{q + (1 - q)\delta_{s^{w}s'w'}}$

(個) (日) (日) (日)

- Use Bertsimas and Sim's formulation to account for uncertainty within the transition probability matrices
- We assume that each entry \$\mathcal{P}^a_{ss'}\$ is modeled as a symmetric and bounded random variable \$\tilde{\mathcal{P}}^a_{ss'}\$, such that:

$$\tilde{\mathcal{P}}^{a}_{ss'} \in \left[\mathcal{P}^{a}_{ss'} - \hat{\mathcal{P}}^{a}_{ss'}, \mathcal{P}^{a}_{ss'} + \hat{\mathcal{P}}^{a}_{ij}\right]$$

• We set
$$\alpha^{a}_{s^{w}s'w'} = (1 - \delta_{s^{w}s'w'}) \frac{\delta_{s^{w}s'w'} - \gamma \mathcal{P}^{a}_{s^{w}s'w'}}{q + (1 - q)\delta_{s^{w}s'w'}}$$
 and
 $\hat{\alpha}^{a}_{s^{w}s'w'} = (1 - \delta_{s^{w}s'w'}) \frac{\gamma \hat{\mathcal{P}}^{a}_{s^{w}s'w'}}{q + (1 - q)\delta_{s^{w}s'w'}}$

▲ 圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

- Use Bertsimas and Sim's formulation to account for uncertainty within the transition probability matrices
- We assume that each entry \$\mathcal{P}^a_{ss'}\$ is modeled as a symmetric and bounded random variable \$\tilde{\mathcal{P}}^a_{ss'}\$, such that:

$$\tilde{\mathcal{P}}^{a}_{ss'} \in \left[\mathcal{P}^{a}_{ss'} - \hat{\mathcal{P}}^{a}_{ss'}, \mathcal{P}^{a}_{ss'} + \hat{\mathcal{P}}^{a}_{ij}\right]$$

• We set
$$\alpha^{a}_{s^{w}s'w'} = (1 - \delta_{s^{w}s'w'}) \frac{\delta_{s^{w}s'w'} - \gamma \mathcal{P}^{a}_{s^{w}s'w'}}{q + (1 - q)\delta_{s^{w}s'w'}}$$
 and
 $\hat{\alpha}^{a}_{s^{w}s'w'} = (1 - \delta_{s^{w}s'w'}) \frac{\gamma \hat{\mathcal{P}}^{a}_{s^{w}s'w'}}{q + (1 - q)\delta_{s^{w}s'w'}}$

通 とうきょう うちょう

The Robust Linear Dynamic Programming is the following:

$$\begin{array}{ll} \max \quad c_{\omega}^{T}\mathcal{J}_{\omega} & (1) \\ \text{subject to} : \sum_{j=1}^{|S|} \sum_{\nu=1}^{q} \alpha_{s^{w}s_{j}^{\nu}}^{a}\mathcal{J}(s_{j}^{\nu}) + z_{s}^{aw}\Gamma_{s}^{aw} + \sum_{j=1}^{|S|} \sum_{\nu=1}^{q} p_{s^{w}s_{j}^{\nu}} \leq g_{s^{w}}^{a}, \forall \; s^{w}, a \\ & (2) \\ z_{s}^{aw} + p_{s^{w}s_{j}^{\nu}} \geq \hat{\alpha}_{s^{w}s_{j}^{\nu}}^{a}y_{j}^{\nu}, \; \forall \; s^{w}, a, j, \nu \\ & (3) \\ - y_{j}^{\nu} \leq \mathcal{J}(s_{j}^{\nu}) \leq y_{j}^{\nu}, \; \forall \; j, \nu \\ p_{s^{w}s_{j}^{\nu}} \geq 0, \; \forall \; s^{w}, j, \nu \\ z \geq 0 \\ y \geq 0. \end{array}$$

伺き くほき くほう

The Reduced Robust Linear Dynamic Programming is the following:

$$\max \sum_{i=1}^{l} \frac{\overline{c}_{i}}{q} \sum_{\nu=1}^{q} \mathcal{J}(\overline{s}_{i})$$

$$subject to : \sum_{j=1}^{l} \sum_{\nu=1}^{q} |\overline{S}_{j}| \alpha_{\overline{s}_{i}^{w} \overline{s}_{j}^{\nu}}^{a} \mathcal{J}(\overline{s}_{j}^{\nu}) + z_{\overline{s}_{i}}^{aw} \Gamma_{\overline{s}_{i}}^{aw} + \sum_{j=1}^{l} \sum_{\nu=1}^{q} p_{s^{w} s_{j}^{\nu}} \leq g_{\overline{s}_{i}^{w}}^{a}, \forall \overline{s}_{i}^{w}, a$$

$$(9)$$

$$z_{\overline{s}_{i}}^{aw} + p_{\overline{s}_{i}^{w} \overline{s}_{j}^{\nu}} \geq \hat{\alpha}_{\overline{s}_{i}^{w} \overline{s}_{j}^{\nu}}^{a} y_{j}^{\nu}, \forall \overline{s}_{i}^{w}, a, j, \nu$$

$$(10)$$

$$- y_{i}^{\nu} \leq \mathcal{J}(\overline{s}_{i}^{\nu}) \leq y_{i}^{\nu}, \forall j, \nu$$

$$(11)$$

$$p_{\overline{s}_{i}^{w} \overline{s}_{j}^{\nu}} \geq 0, \forall \overline{s}_{i}^{w}, j, \nu$$

$$(12)$$

$$z \geq 0$$

$$(13)$$

$$y \ge 0. \tag{14}$$

・ 回 ト ・ ヨ ト ・ ヨ ト

- An option is the right to engage in a future transaction on some underlying security for a certain prescribed price known as the exercise or strike price
- There are two basic types of options: American and European options
- There are two kinds of American options: call options and put options

ヘロト ヘアト ヘビト ヘビト

- An option is the right to engage in a future transaction on some underlying security for a certain prescribed price known as the exercise or strike price
- There are two basic types of options: American and European options
- There are two kinds of American options: call options and put options

ヘロン 人間 とくほ とくほ とう

э.

- An option is the right to engage in a future transaction on some underlying security for a certain prescribed price known as the exercise or strike price
- There are two basic types of options: American and European options
- There are two kinds of American options: call options and put options

ヘロン 人間 とくほ とくほ とう

E DQC

• K is the strike price

- T is the expiration date
- *x_t* is the price of the underlying asset at *t*
- r is the risk free interest rate
- σ is the volatility
- The intrinsic value of a put option for the holder is:

$$f(x_t) = \begin{cases} K - x_t, \text{ if } x_t \leq K \text{ and } t \leq T \\ 0, \text{ otherwise} \end{cases}$$

- K is the strike price
- T is the expiration date
- *x_t* is the price of the underlying asset at *t*
- r is the risk free interest rate
- σ is the volatility
- The intrinsic value of a put option for the holder is:

$$f(x_t) = \begin{cases} K - x_t, \text{ if } x_t \leq K \text{ and } t \leq T \\ 0, \text{ otherwise} \end{cases}$$

- K is the strike price
- T is the expiration date
- *x_t* is the price of the underlying asset at *t*
- r is the risk free interest rate
- σ is the volatility
- The intrinsic value of a put option for the holder is:

$$f(x_t) = \begin{cases} K - x_t, \text{ if } x_t \leq K \text{ and } t \leq T \\ 0, \text{ otherwise} \end{cases}$$

- K is the strike price
- T is the expiration date
- *x_t* is the price of the underlying asset at *t*
- r is the risk free interest rate
- σ is the volatility
- The intrinsic value of a put option for the holder is:

$$f(x_t) = \begin{cases} K - x_t, \text{ if } x_t \leq K \text{ and } t \leq T \\ 0, \text{ otherwise} \end{cases}$$

- K is the strike price
- T is the expiration date
- x_t is the price of the underlying asset at t
- r is the risk free interest rate
- σ is the volatility
- The intrinsic value of a put option for the holder is:

$$f(x_t) = \begin{cases} K - x_t, \text{ if } x_t \leq K \text{ and } t \leq T \\ 0, \text{ otherwise} \end{cases}$$

- K is the strike price
- T is the expiration date
- x_t is the price of the underlying asset at t
- r is the risk free interest rate
- σ is the volatility
- The intrinsic value of a put option for the holder is:

$$f(x_t) = \begin{cases} K - x_t, \text{ if } x_t \leq K \text{ and } t \leq T \\ 0, \text{ otherwise} \end{cases}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

- American options can be exercised at any time before maturity
- It is important to set exercising strategies that maximize the profit
- American options can be implemented as optimal stopping problems (OSPs)
- OSPs can be written in the form of a Bellman equation (DP)

ヘロン ヘアン ヘビン ヘビン

æ

- American options can be exercised at any time before maturity
- It is important to set exercising strategies that maximize the profit
- American options can be implemented as optimal stopping problems (OSPs)
- OSPs can be written in the form of a Bellman equation (DP)

・ロト ・ 理 ト ・ ヨ ト ・

3

- American options can be exercised at any time before maturity
- It is important to set exercising strategies that maximize the profit
- American options can be implemented as optimal stopping problems (OSPs)
- OSPs can be written in the form of a Bellman equation (DP)

(ロ) (同) (三) (三) (三) (○)

- American options can be exercised at any time before maturity
- It is important to set exercising strategies that maximize the profit
- American options can be implemented as optimal stopping problems (OSPs)
- OSPs can be written in the form of a Bellman equation (DP)

(ロ) (同) (三) (三) (三) (○)

• The value function is the expected value of the intrinsic value under the risk neutral assumption:

$$\mathcal{J}(x_t) = \max_{t \in [0,T]} E_{\pi} \left\{ e^{-rt} f(x_t) \right\}$$

• The evolution of *x_t* is simulated using the Binomial Options Pricing Model (BOPM)

$$x_{t+1} = \begin{cases} ux_t, \text{ with probability } p \\ dx_t, \text{ with probability } 1 - p \end{cases}$$

ヘロン 人間 とくほど 人 ほとう

3

• The value function is the expected value of the intrinsic value under the risk neutral assumption:

$$\mathcal{J}(x_t) = \max_{t \in [0,T]} E_{\pi} \left\{ e^{-rt} f(x_t) \right\}$$

 The evolution of x_t is simulated using the Binomial Options Pricing Model (BOPM)

$$x_{t+1} = \begin{cases} ux_t, \text{ with probability } p \\ dx_t, \text{ with probability } 1 - p \end{cases}$$

ヘロン 人間 とくほ とくほ とう

Example: Strategy for American Options

The Binomial Options Pricing Model

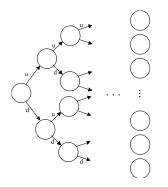


Figure: The Binomial Options Pricing Model

< 🗇 🕨

(E) ► < E >

Example: Strategy for American Options

Robust Binomial Options Pricing Model

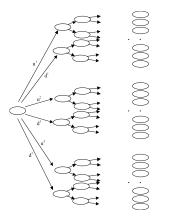


Figure: The Robust Binomial Options Pricing Model

The parameters used are:

	<i>K</i> = 1	<i>x</i> ₀ = .5	$e^{-r} = .99$	
	Low Volatility	Moderate Volatility	High Volatility	Average
u	<u>13</u> 12	<u>8</u> 6	<u>9</u> 5	1.406
d	<u>12</u> 13	<u>6</u> 8	<u>5</u> 9	.711

Table: Parameters Used for the Exercising Strategy

Example: Strategy for American Options

The intrinsic value for this example is:

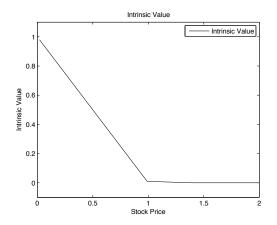


Figure: The Intrinsic Value for the Put Option

э

Example: Strategy for American Options Results

Time	Low Volatility	Moderate Volatility	High Volatility	Average
1	0.393	0.281	0.154	0.253
2	0.393	0.281	0.154	0.253
3	0.393	0.281	.278	0.253
4	0.393	0.281	.278	0.356
5	0.426	0.375	.278	0.356
6	0.426	0.375	.278	0.356
7	0.461	0.375	.278	0.356
8	0.5	0.5	0.5	0.5
9	0.7	0.7	0.7	0.7
10	1	1	1	1

Table: Exercising Strategies -Robust Vs Average-

くロト (過) (目) (日)

Example: Strategy for American Options Exercising Strategies

The intrinsic value for this example is:

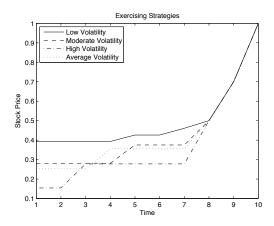


Figure: Exercising Strategies for the Robust Formulation and the Average

- This work was motivated by the "curse of dimensionality" in reinforcement learning and dynamic programming
- Coped with this problem using clustering
- Conducted a mathematical analysis to support the results obtained
- Developed an on line dynamic programming procedure
- Presented a novel LP algorithm to mitigate uncertainties within the transition probability matrices and the cost/reward

ヘロン 人間 とくほ とくほ とう

- This work was motivated by the "curse of dimensionality" in reinforcement learning and dynamic programming
- Coped with this problem using clustering
- Conducted a mathematical analysis to support the results obtained
- Developed an on line dynamic programming procedure
- Presented a novel LP algorithm to mitigate uncertainties within the transition probability matrices and the cost/reward

ヘロン 人間 とくほ とくほ とう

- This work was motivated by the "curse of dimensionality" in reinforcement learning and dynamic programming
- Coped with this problem using clustering
- Conducted a mathematical analysis to support the results obtained
- Developed an on line dynamic programming procedure
- Presented a novel LP algorithm to mitigate uncertainties within the transition probability matrices and the cost/reward

ヘロン 人間 とくほど 人 ほとう

3

- This work was motivated by the "curse of dimensionality" in reinforcement learning and dynamic programming
- Coped with this problem using clustering
- Conducted a mathematical analysis to support the results obtained
- Developed an on line dynamic programming procedure
- Presented a novel LP algorithm to mitigate uncertainties within the transition probability matrices and the cost/reward

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

- This work was motivated by the "curse of dimensionality" in reinforcement learning and dynamic programming
- Coped with this problem using clustering
- Conducted a mathematical analysis to support the results obtained
- Developed an on line dynamic programming procedure
- Presented a novel LP algorithm to mitigate uncertainties within the transition probability matrices and the cost/reward

(ロ) (同) (三) (三) (三) (○)

- Develop a linear dynamic programming that uses multicriteria optimization (state relevant weight)
- Find a good trade off between the reduction and the accuracy rates
- Develop the concept presented in this talk for an infinite horizon and for continuous states' space

ヘロト 人間 ト ヘヨト ヘヨト

- Develop a linear dynamic programming that uses multicriteria optimization (state relevant weight)
- Find a good trade off between the reduction and the accuracy rates
- Develop the concept presented in this talk for an infinite horizon and for continuous states' space

ヘロト ヘアト ヘビト ヘビト

- Develop a linear dynamic programming that uses multicriteria optimization (state relevant weight)
- Find a good trade off between the reduction and the accuracy rates
- Develop the concept presented in this talk for an infinite horizon and for continuous states' space

|田子 (日子)(日子)

Thank you

ヘロト 人間 とくほとくほとう

2