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Motivations and Objectives -Motivations-

Decision making is ubiquitous in science and engineering.
Dynamic Programming (DP) provides a structured approach,
but the CURSE OF DIMENSIONALITY makes finding an
optimal policy:

challenging and sometimes even impossible to calculate
lacking computation efficiency
requiring off-line calculations
ignoring uncertainty within the problem parameters
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Motivations and Objectives-Objectives-

Since similar situations require similar actions we propose to
use CLUSTERING (grouping). Therefore:

find optimal and near optimal policies
make computation more efficient
search for policies on-line
Incorporate robustness to get stable policies
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Outline
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Reinforcement Learning

The agent needs to take an action given the actual state
and the reward from taking that action.
The action taken does not need to increase the immediate
reward but the expected cumulative reward.
The rewards are used to evaluate how well the action
taken will help achieve the already set goal.
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Markov Decision Processes

An MDP is defined by:
S, a state space.
A, an action space.
P, a transition probability distribution, where:
Pa

ss0 = Pr {st+1 = s0|st = s, at = a}.
ga

ss0 immediate reward/cost.
⇡, the policy that the agent needs to find, is a mapping
from S to A.
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Value Functions

To evaluate how good a particular policy is, the agent needs to
evaluate J⇡(s) and Q⇡(s, a).

The state-value function:

J⇡(s) = E⇡

( 1X

k=t

�k�tg⇡(sk )
sk sk+1 |st = s

)

Where (0 < � < 1).
the action-value function:

Q⇡(s, a) = E⇡

( 1X

k=t

�k�tg⇡(sk )
sk sk+1 |st = s, at = a

)

E⇡ {} is the expected value achieved following the policy ⇡.

7/1 Theodore B. Trafalis Robust Optimization and Learning in Approximate Dynamic Programming Using Kernels



Value Functions

To evaluate how good a particular policy is, the agent needs to
evaluate J⇡(s) and Q⇡(s, a).

The state-value function:

J⇡(s) = E⇡

( 1X

k=t

�k�tg⇡(sk )
sk sk+1 |st = s

)

Where (0 < � < 1).
the action-value function:

Q⇡(s, a) = E⇡

( 1X

k=t

�k�tg⇡(sk )
sk sk+1 |st = s, at = a

)

E⇡ {} is the expected value achieved following the policy ⇡.

7/1 Theodore B. Trafalis Robust Optimization and Learning in Approximate Dynamic Programming Using Kernels



Value Functions -continued-

The value functions J⇡ satisfies a recursive relationship:

J⇡(s) =
X

a2A(s)

⇡(s, a)
X

s0
Pa

ss0
⇥
ga

ss0 + �J⇡(s0)
⇤

The optimal policy ⇡⇤ is the one that maximizes J ⇡

J ⇤(s) = max
⇡

J ⇡(s)

The optimal action-value function Q⇤ is defined by:

Q⇤(s, a) = max
⇡

Q⇡(s, a)
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Value Functions -continued-
Bellman’s equation

The value function J⇡ has the following properties:
J⇡ is the unique solution to:

J⇡ = T⇡J⇡

The operator T⇡ is defined by:

T⇡J = g⇡ + �P⇡J

The optimal value function J ⇤ = min
⇡

J⇡ is the unique
solution to Bellman’s equation:

J ⇤ = T J ⇤

where the operator T is:

T J = min
⇡

T⇡J
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Reduced States’ Set
Introduction

This approach aims to decrease the complexity of the
problem by reducing the number of states
Many real life problems have states that are similar or
closed to each other
This similarity yields the same or similar value function
) calculate the value function just for one of the similar
states
To determine similar states we will use clustering
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Reduced States’ Set
Notations

We need to construct a subset S using clustering. The
value function will be calculated for the elements in S only
{S1,S2, . . . ,Sl} be a partition of S
si , an element of Si , be the state representative for the
cluster Si

S = {s1, s2, . . . , sl}
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Reduced States’ Set

Figure: Reduced States’ set diagram
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Reduced States’ Set
Experiments and results

Consider an example of a city evacuation plan.
There are few possible exits from the city.

The Objective:
Draft a policy that will guide the evacuees to get out of the
city.
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Reduced States’ Set
Experiments and results -City representation-

To simplify the modeling, we suppose that there are 256
blocks (16 columns and 16 rows).
At each intersection we can go on all 4 directions.
The only available exits from the city are the north-west
and south-east blocks.

Figure: Simplified city representation with two exists
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Reduced States’ Set
Experiments and results -Attributes and rewards-

254 states and 2 terminal ones.
The reward to go from one block to another is -1.
The reward to get to one of the terminal states is 0.
3 attributes: d1, d2, and ✓.

Figure: Attributes
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Reduced States’ Set
Experiments and results -Results-

The accuracy rate is introduced to compare the different
policies obtained:
Ar =

number of accurate states
number of states (256)

Optimal Reduced Reduced
# of clusters 256 73 56
Time (sec) 211 70 33

# of accurate states 256 256 196
Ar 1 1 .77

Table: Comparing Computation Time and Accuracy
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On-line Reinforcement Learning using Kernels
Introduction

Curse of dimensionality
Consider finite sets with fixed cardinality for the states and
actions.
Need huge amount of resources to find an optimal policy.
Need off-line algorithms.
However
In real world problems, the environment might change and
include new states or actions.
A policy that was optimal for a previous environment might
not be optimal anymore.
Use the reduced states’ set method in an on-line
framework.
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On-line Reinforcement Learning using Kernels

Figure: On-line Reduced States’ set diagram
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On-line Reinforcement Learning using Kernels
Experiments and results -City representation-

Consider the same city example with the following changes:
Some blocks in the city might be inaccessible or some of
the actions might become impossible to take.
Due to the congestion, one of the emergency exits might
be temporarily disabled.
The emergency services might succeed in increasing the
number of emergency exits.
To make the problem feasible, we assume that during the
whole horizon, there is at least one terminal state.
The reward to get to an inaccessible block is �1.
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On-line Reinforcement Learning using Kernels
Experiments and results

Optimal Reduced Reduced
Events time time clusters Ar time clusters Ar

(sec) (sec) (sec)
- 1 block 220 75 74 1 36 57 .769
- 1 block 220 80 75 1 1 57 .762
- 1 exit 350 170 75 1 62 57 .773
- 1 block 345 1 75 1 1 57 .754
+ 1 block 347 1 75 1 1 57 .754
+ 1 exit 219 76 75 1 35 57 .773
+ 1 block 222 72 74 1 33 56 .773
+ 1 block 221 73 74 1 1 56 .766
Total 2144 548 - - 170 - -

Table: Comparing Computation Time and Accuracy for On line
Reduced states’ set
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Theoretical Proof
Modified Asynchronous Policy Iteration

We used a Modified Asynchronous Policy Iteration:
The value iterations are executed according to the following updates:

Jk+1(s) =
⇢

(T⇡k Jk ) (s), if s 2 S,

Jk+1(si), s.t. s 2 Si , otherwise,

the policy is kept unchanged by setting ⇡k+1 = ⇡k

The policy iterations are executed according to the following updates:

⇡k+1(s) =

8
><

>:
argmina2A(s)

|S|X

s0=0

Pa
ss0

�
ga

ss0 + Jk (s0)
�
, if s 2 S,

⇡k+1(si), s.t. s 2 Si , otherwise,

the value function estimates are kept unchanged by setting Jk+1 = Jk
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The value iterations are executed according to the following updates:

Jk+1(s) =
⇢

(T⇡k Jk ) (s), if s 2 S,

Jk+1(si), s.t. s 2 Si , otherwise,

the policy is kept unchanged by setting ⇡k+1 = ⇡k

The policy iterations are executed according to the following updates:

⇡k+1(s) =

8
><

>:
argmina2A(s)

|S|X

s0=0

Pa
ss0

�
ga

ss0 + Jk (s0)
�
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Theoretical Proof
Theorem

Let s 2 Si and s /2 S, let s0 2 Sj .

Let P⇡k (s)
ss0 > 0 and s00 2 Sj such that:

1. P⇡k (si )
si s00

> 0 and
���P⇡k (s)

ss0 � P⇡k (si )
si s00

���  ✏1

2.
���g⇡k (s)

ss0 � g⇡k (si )
si s00

���  ✏2

then 9 ✏ � 0 such that:
|(T⇡kJk ) (s)� Jk+1(s)|  ✏ 8 s /2 S.
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Theoretical Proof
Experiments and Results

Conduct a set of experiments on the class of shortest path
problems.
Compare the time it takes to find an optimal policy using
our algorithm and without reducing the states’ set
cardinality.
Define the following two percentages:

A =
Clustering Time + Reduced Time

Optimal Time
⇥ 100,

B =
Reduced Time
Optimal Time

⇥ 100.
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Theoretical Proof
Experiments and Results
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Theoretical Proof
Experiments and Results

101 102 103 104
0

5

10

15

20

25

30

35

40

Number of States

Pe
rc

en
ta

ge
s

A Vs B

 

 
A
B

Figure: The Impact of the Clustering Time

25/1 Theodore B. Trafalis Robust Optimization and Learning in Approximate Dynamic Programming Using Kernels



Kernel Based Reinforcement Learning
Kernel Methods

Kernel methods play a major role in Machine Learning.
They provide a simple framework for manipulating
nonlinear relationships.
Instantaneous adaptation of former linear algorithms.
Require modest computational resources.
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Kernel Based Reinforcement Learning
The Mercer Kernels

A kernel is a continuous symmetric real-valued function
defined on compact subsets of Rn, k : (x , y) 7! k(x , y).
A Mercer kernel is a nonnegative definite kernel.
The domain of a Mercer kernel is called the input space.
The quantity k(x , y) can be used to represent measures of
angle and measures of distance.
Angles and distances are between inputs mapped in a
higher dimensional Hilbert space.
The Hilbert space is called the feature space.
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Kernel Based Reinforcement Learning
The Kernel Trick

Mercer’s theorem suggests a particular decomposition of
Mercer kernels.
A Mercer kernel can be expressed as a dot product
between two inputs mapped in the feature space,
k(x , y) = h�(x) · �(y)i.
Explicit knowledge of the map � and the feature space is
not required. The only thing of importance is the kernel
itself.
With k we can calculate angles and distances between
elements in the feature space without knowing the map �.
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Kernel Based Reinforcement Learning
Purpose of Kernel Methods

Kernel methods simplify the representation of nonlinear
patterns in the input space.
The intersection between hyperplanes and the manifold
has a non-trivial reciprocal image in the input space.
Instead of searching complex patterns in the input space,
we use kernel methods.
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Objectives

Use Linear approximate dynamic programming to speed
up the algorithm.
Incorporate robustness to get stable policies.
Use kernels to define the concept of the neighborhood of a
state.
Combine all the above techniques to generate an on-line
robust RL algorithm.
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RORLK: Algorithm Diagram

Figure: Robust On-line RL using Kernels diagram
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RORLK: Algorithm Diagram

Figure: Robust On-line RL using Kernels diagram
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Reduced States’ Set
Support Vector Clustering -Introduction-

This approach aims to decrease the complexity of the
problem by reducing the number of states.
Many real life problems have states that are similar or
closed to each other.
This similarity yields the same or similar value function.
) calculate the value function just for one of the similar
states.
To determine similar states we will use clustering.
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Reduced States’ Set
Support Vector Clustering -Introduction-

Clustering is a part of data mining that consists of grouping
a set of data according to various attributes.
Many methods have been developed.
The effectiveness of each approach depends on the nature
of the data.
Ben-Hur (2001) derived SVC from SVM.
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Reduced States’ Set
Support Vector Clustering -Main steps-

Map data points to a feature space.
Search for the smallest sphere enclosing all data points.
Map the sphere back and generate clusters.
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Reduced States’ Set
Support Vector Clustering -Formulation-

{Xi}1in a data set of n points in the input space.

Xi 2 Rd and d is the number of attributes.
We need to find the smallest sphere with radius R.
The optimization formulation is the following:

minR,a,⇠i R2 + C
P

i ⇠i
Subject to:

k�(Xi)� ak2  R2 + ⇠i , i = 1 · · · n
⇠i � 0
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Reduced States’ Set
Support Vector Clustering -Dual problem-

To solve this optimization problem, we right the Lagrangian:

L (R, a, µ,�, ⇠) = R2�
P

i

⇣
R2 + ⇠i � k�(Xi)� ak2

⌘
�i�

P
i ⇠iµi+C

P
i ⇠i

Where �i � 0 and µi � 0 are the Lagrange multipliers.
Using the Karush-Kuhn-Tucker complementary slackness
conditions, the Lagrangian becomes:

L (�) =
P

i �(Xi)
2�i �

P
ij �i�j�(Xi) · �(Xj)

With the constraints 0  �i  C.
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Reduced States’ Set
Support Vector Clustering -Dual problem-

Replacing the dot product with the Gaussian kernel
function:

K
�
Xi ,Xj

�
= e�qkXi�Xjk2

Where q is the width parameter.
we get:

max�
P

i K (Xi ,Xi)�i �
P

ij �i�jK (Xi ,Xj)
Subject to:

0  �i  C, i = 1 · · · nP
i �i = 1
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Reduced States’ Set
Support Vector Clustering -Distance from the center and Radius-

The distance of each image in the feature space from the
sphere center a:

R2(X ) = k�(Xi)� ak2

= K (X ,X )� 2
P

i �iK (Xi ,X ) +
P

ij �i�jK (Xi ,Xj)

The radius of the sphere is as follows:
RSphere =

P
Xi is SV R(Xi )

Number of SVs
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Reduced States’ Set
Support Vector Clustering -Clusters-

clusters are defined as the connected components of the
graph induced by A, where A is the adjacency matrix
defined by:
Aij =

⇢
1, if for all y 2 (Xi ,Xj), R(y)  Rsphere

0, Otherwise
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Reduced States’ Set
Reduced States’ set Diagram

Figure: Reduced States’ set diagram
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Reduced Linear Dynamic Programming
Linear Dynamic Programming

Bellman’s equation can be solved using the following Linear
Dynamic Programming (LDP):
max cTJ

subject to : ga
s + �

X

s02S

Pa
ss0J (s0) � J (s), 8s 2 S, 8a 2 A(s)
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Reduced Linear Dynamic Programming
Reduced Linear Dynamic Programming

Using the partitioning S = {S1,S2, . . . ,Sl} we can reduced the
LDP to:

max
lX

i=1

ciJ (si)

subject to : ga
sj
+�

lX

i=1

|Si | Pa
ssi

J (si) � J (sj), 8j = 1 · · · l , 8a 2 A(sj)

where ci =
X

s2Si

cs

43/1 Theodore B. Trafalis Robust Optimization and Learning in Approximate Dynamic Programming Using Kernels



Reduced Linear Approximate Dynamic Programming
Linear Approximate Dynamic Programming

J ⇤ is approximated using a linear combination of preselected
basis functions:

�k : S 7! R, k = 1, . . . ,K

) Generate a weight vector r̃ 2 RK , such that:

J ⇤(s) ⇡
KX

k=0

�k (s)r̃
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Reduced Linear Approximate Dynamic Programming
Linear Approximate Dynamic Programming

Using the vector r̃ we get the Linear Approximate DP (LADP):
max

r
CT�r

subject to

ga
ss00 + �

X

s02S

Pa
ss0(�r)(s0) � (�r)(s), 8s 2 S, 8a 2 A(s)

where � =

2

64
�1(1) · · · �K (1)

...
...

�1(|S|) · · · �K (|S|)

3

75
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Reduced Linear Approximate Dynamic Programming
Reduced Linear Approximate Dynamic Programming

Using the partitioning S = {S1,S2, . . . ,Sl} we can reduced the
LADP to:
max cT�r

subject to ga
sj
+�

lX

i=1

|Si | Pa
sj si

�
�r

�
(si) �

�
�r

�
(sj), 8j = 1 · · · l , 8a 2 A(sj),

where � =

2

64
�1(s1) · · · �K (s1)

...
...

�1(sl) · · · �K (sl)

3

75 .
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LADP Using Kernels

The LADP yields good approximation to the value function
How to choose the basis function and K
We propose to use the partitioning S = {S1,S2, . . . ,Sl}
and set:

�k (s) = (s, sk ), 8 k = 1 . . . l

The approximation will be done using the system’s
parameters
K = l is the number of clusters

47/1 Theodore B. Trafalis Robust Optimization and Learning in Approximate Dynamic Programming Using Kernels



LADP Using Kernels

The LADP yields good approximation to the value function
How to choose the basis function and K
We propose to use the partitioning S = {S1,S2, . . . ,Sl}
and set:

�k (s) = (s, sk ), 8 k = 1 . . . l

The approximation will be done using the system’s
parameters
K = l is the number of clusters

47/1 Theodore B. Trafalis Robust Optimization and Learning in Approximate Dynamic Programming Using Kernels



LADP Using Kernels

The LADP yields good approximation to the value function
How to choose the basis function and K
We propose to use the partitioning S = {S1,S2, . . . ,Sl}
and set:

�k (s) = (s, sk ), 8 k = 1 . . . l

The approximation will be done using the system’s
parameters
K = l is the number of clusters

47/1 Theodore B. Trafalis Robust Optimization and Learning in Approximate Dynamic Programming Using Kernels



LADP Using Kernels

The LADP yields good approximation to the value function
How to choose the basis function and K
We propose to use the partitioning S = {S1,S2, . . . ,Sl}
and set:

�k (s) = (s, sk ), 8 k = 1 . . . l

The approximation will be done using the system’s
parameters
K = l is the number of clusters

47/1 Theodore B. Trafalis Robust Optimization and Learning in Approximate Dynamic Programming Using Kernels



LADP Using Kernels

The LADP yields good approximation to the value function
How to choose the basis function and K
We propose to use the partitioning S = {S1,S2, . . . ,Sl}
and set:

�k (s) = (s, sk ), 8 k = 1 . . . l

The approximation will be done using the system’s
parameters
K = l is the number of clusters

47/1 Theodore B. Trafalis Robust Optimization and Learning in Approximate Dynamic Programming Using Kernels



LADP Using Kernels

The LADP becomes Kernelized LADP:
max cTKr

subject to ga
s + �

X

s02S

Pa
ss0(Kr)(s0) � (Kr)(s), 8s 2 S, 8a 2 A(s),

where

K =

2

64
(s1, s1) · · · (s1, sl)

...
...

(s|S|, s1) · · · (s|S|, sl)

3

75
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RLADP Using Kernels

The RLADP becomes Kernelized RLADP:
max cTKr

subject to ga
sj
+�

lX

i=1

|Si | Pa
sj si

�
Kr

�
(si) �

�
Kr

�
(sj), 8j = 1 · · · l , 8a 2 A(sj)

where

K =

2

64
(s1, s1) · · · (s1, sl)

...
...

(sl , s1) · · · (sl , sl)

3

75
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Experiments and Results

We used the same shortest path problems used in section
The reduce linear dynamic programming did not find the
optimal policies all the time
We introduce the reduction in this experiments:

Rr =
|S|� |S|

|S|

50/1 Theodore B. Trafalis Robust Optimization and Learning in Approximate Dynamic Programming Using Kernels



Experiments and Results

We used the same shortest path problems used in section
The reduce linear dynamic programming did not find the
optimal policies all the time
We introduce the reduction in this experiments:

Rr =
|S|� |S|

|S|

50/1 Theodore B. Trafalis Robust Optimization and Learning in Approximate Dynamic Programming Using Kernels



Experiments and Results

We used the same shortest path problems used in section
The reduce linear dynamic programming did not find the
optimal policies all the time
We introduce the reduction in this experiments:

Rr =
|S|� |S|

|S|

50/1 Theodore B. Trafalis Robust Optimization and Learning in Approximate Dynamic Programming Using Kernels



Experiments and Results
Computation Time
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Experiments and Results
Accuracy and Reduction Rates
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Robust Linear Dynamic Programming
Introduction

Most developed algorithms ignore the uncertainty within
the transition probability matrices.
However, the DP optimal solution is sensitive to
perturbation in transition matrices and in the cost/reward.
Therefore, we need to account for the uncertainty.
Different approaches have been developed.
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Robust Linear Dynamic Programming
Introduction

Uncertainty within the transition probability matrices has
been studied extensively
But not the uncertainty within the reward/cost values
We have augmented the LDP to make the policies robust
with respect to the reward/cost values
We have used Bertsimas and Sim’s robust formulation to
mitigate the effect of uncertainty within the transition
probability matrices
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Robust Linear Dynamic Programming
Augmented Linear Dynamic Programming

Consider the following linear optimization problem:

max cT x

subject to : Ax  b

Each element bi of b can take a finite number of values�
b1

i , . . . , b
q
i

 

In practice, a convex combination of the
�

b1
i , . . . , b

q
i

 
is

used as the expected value for bi

We assume that probability(bi = bw
i ) =

1
q , 8 w = 1 · · · q
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Robust Linear Dynamic Programming
Augmented Linear Dynamic Programming

For each realization bw
i we associate the decision variable xw

i .
Hence, E

�
max cT xw |Axw  bw

 
is equivalent to:

max
X

i

ci

q

qX

v=1

xv
i

subject to :
X

ij,j 6=i

aij

q

qX

v=1

xv
j + aii xw

i  bw
i , 8 i,w

The linear dynamic formulation becomes:

max
X

s

cs

q

qX

v=1

J (sv )

subject to : ga
sw +�

X

s02S,s0 6=sw

Pa
sw s0

q

qX

v=1

J (s
0v ) � (1��Pa

sw sw )J (sw ), 8sw , a,w
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Robust Linear Dynamic Programming

Use Bertsimas and Sim’s formulation to account for
uncertainty within the transition probability matrices
We assume that each entry Pa

ss0 is modeled as a
symmetric and bounded random variable P̃a

ss0 , such that:

P̃a
ss0 2

h
Pa

ss0 � P̂a
ss0 ,Pa

ss0 + P̂a
ij

i

We set ↵a
sw s0w

0 = (1 � �
sw s0w

0 )
�

sw s0w
0 ��Pa

sw s0w
0

q+(1�q)�
sw s0w

0
and

↵̂a
sw s0w

0 = (1 � �
sw s0w

0 )
�P̂a

sw s0w
0

q+(1�q)�
sw s0w

0
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Robust Linear Dynamic Programming

The Robust Linear Dynamic Programming is the following:

max cT
!J! (1)

subject to :
|S|X

j=1

qX

v=1

↵a
sw sv

j
J (sv

j ) + zaw
s �aw

s +
|S|X

j=1

qX

v=1

psw sv
j
 ga

sw , 8 sw , a

(2)
zaw

s + psw sv
j
� ↵̂a

sw sv
j
yv

j , 8 sw , a, j , v (3)

� yv
j  J (sv

j )  yv
j , 8 j , v (4)

psw sv
j
� 0, 8 sw , j , v (5)

z � 0 (6)
y � 0. (7)
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Robust Linear Dynamic Programming

The Reduced Robust Linear Dynamic Programming is the
following:

max
lX

i=1

ci

q

qX

v=1

J (si) (8)

subject to :
lX

j=1

qX

v=1

|Sj |↵a
sw

i sv
j
J (sv

j ) + zaw
si

�aw
si

+
lX

j=1

qX

v=1

psw sv
j
 ga

sw
i
, 8 sw

i , a

(9)

zaw
si

+ psw
i sv

j
� ↵̂a

sw
i sv

j
yv

j , 8 sw
i , a, j, v (10)

� yv
j  J (sv

j )  yv
j , 8 j, v (11)

psw
i sv

j
� 0, 8 sw

i , j, v (12)

z � 0 (13)
y � 0. (14)
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Example: Strategy for American Options
Definitions

An option is the right to engage in a future transaction on
some underlying security for a certain prescribed price
known as the exercise or strike price
There are two basic types of options: American and
European options
There are two kinds of American options: call options and
put options
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Example: Strategy for American Options
Basic concepts

K is the strike price
T is the expiration date
xt is the price of the underlying asset at t
r is the risk free interest rate
� is the volatility
The intrinsic value of a put option for the holder is:

f (xt) =

(
K � xt , if xt  K and t  T

0, otherwise
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Example: Strategy for American Options
American Options and DP

American options can be exercised at any time before
maturity
It is important to set exercising strategies that maximize
the profit
American options can be implemented as optimal stopping
problems (OSPs)
OSPs can be written in the form of a Bellman equation
(DP)
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Example: Strategy for American Options
American Options and DP

The value function is the expected value of the intrinsic
value under the risk neutral assumption:

J (xt) = max
t2[0,T ]

E⇡
�

e�rt f (xt)
 

The evolution of xt is simulated using the Binomial Options
Pricing Model (BOPM)

xt+1 =

(
uxt , with probability p

dxt , with probability 1 � p
.
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Example: Strategy for American Options
The Binomial Options Pricing Model

Figure: The Binomial Options Pricing Model
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Example: Strategy for American Options
Robust Binomial Options Pricing Model

Figure: The Robust Binomial Options Pricing Model
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Example: Strategy for American Options
Numerical Example

The parameters used are:

K = 1 x0 = .5 e�r = .99
Low Volatility Moderate Volatility High Volatility Average

u 13
12

8
6

9
5 1.406

d 12
13

6
8

5
9 .711

Table: Parameters Used for the Exercising Strategy
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Example: Strategy for American Options
Intrinsic Value

The intrinsic value for this example is:
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Figure: The Intrinsic Value for the Put Option

67/1 Theodore B. Trafalis Robust Optimization and Learning in Approximate Dynamic Programming Using Kernels



Example: Strategy for American Options
Results

Time Low Volatility Moderate Volatility High Volatility Average
1 0.393 0.281 0.154 0.253
2 0.393 0.281 0.154 0.253
3 0.393 0.281 .278 0.253
4 0.393 0.281 .278 0.356
5 0.426 0.375 .278 0.356
6 0.426 0.375 .278 0.356
7 0.461 0.375 .278 0.356
8 0.5 0.5 0.5 0.5
9 0.7 0.7 0.7 0.7
10 1 1 1 1

Table: Exercising Strategies -Robust Vs Average-
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Example: Strategy for American Options
Exercising Strategies

The intrinsic value for this example is:
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Figure: Exercising Strategies for the Robust Formulation and the
Average
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Conclusions and Future Research
Conclusions

This work was motivated by the “curse of dimensionality” in
reinforcement learning and dynamic programming
Coped with this problem using clustering
Conducted a mathematical analysis to support the results
obtained
Developed an on line dynamic programming procedure
Presented a novel LP algorithm to mitigate uncertainties
within the transition probability matrices and the
cost/reward
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Conclusions and Future Research
Future Research

Develop a linear dynamic programming that uses
multicriteria optimization (state relevant weight)
Find a good trade off between the reduction and the
accuracy rates
Develop the concept presented in this talk for an infinite
horizon and for continuous states’ space
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Questions

Thank you
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