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Generalities: Ontology, History and Ideas

Robust (Latin: strong, healthy, vigorous, sturdy, tough)

Robustness (Box 1953) <=> Stability

(Tukey 1960): the Least Squares Method estimates are not stable
under small deviations from Gaussianity!
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Generalities: Ontology, History and Ideas

Consider the Cauchy contaminated Gaussian distribution density
(Tukey’s gross-error model)

f (x ; θ) =
1 − ε√

2π
exp

(
−(x − θ)2

2

)
+

ε

π[1 + (x − θ)2]
,

where θ is a parameter of location and 0 ≤ ε < 1 is a parameter of
contamination—the probability of outlier occurrence.

The sample mean x̄ is the LSM estimate of location for a Gaussian,
but for arbitrarily small ε > 0 it is not even consistent!

The classical robust estimate is the sample median med x .
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Generalities: Ontology, History and Ideas

1) (Huber 1964, 1981): Minimax Approach

Minimax Principle: to search for the best solution in the least
favorable case — a guaranteed quality result, sometimes too
pessimistic.

Huber’s minimax approach in robustness is a good example of
application of the minimax principle.
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Generalities: Ontology, History and Ideas

2) (Hampel 1968, 1986): The Approach Based on Influence
Functions

Lyapunov: Stability = Continuity => Robustness = Continuity

Parametric Statistics (1900–1940)
Robust Statistics (1960–2000)
Nonparametric Statistics (1940–1960)
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Robust Estimation of Location: M-Estimate Tools

Let X1, . . . ,Xn be i.i.d. observations from a symmetric distribution F
with a density f (x − θ), where θ is a parameter of location. Without any
loss of generality, we set θ = 0.

M-estimates Tn of location were proposed by (Huber 1964)∑
ψ(Xi − Tn) = 0,

where ψ(x) is an estimating (score) function.
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Robust Estimation of Location: M-Estimate Tools

Consider the following particular cases of M-estimates:
Least Squares: ψLS(x) = x , Tn = x̄ ;
Least Absolute Values: ψLAV (x) = sign(x), Tn = med x ;
Maximum Likelihood: ψML(x) = −f ′(x)/f (x), Tn = θ̂ML.

An M-estimate is a generalization of the maximum likelihood
estimate!
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Robust Estimation of Location: M-Estimate Tools

Under regularity conditions imposed on estimating functions ψ ∈ Ψ
and distribution densities f ∈ F , M-estimates Tn are consistent and
asymptotically normal N(0,V ) with the asymptotic variance

V (ψ, f ) =
∫
ψ(x)2f (x)dx(∫
ψ′(x) f (x)dx

)2 .

In the case of maximum likelihood efficient M-estimate, we get the
minimum value of the Cramer-Rao inequality bound:

V (ψML, f ) = min
ψ∈Ψ

V (ψ, f ) => V (ψML, f ) = V (−f ′/f , f ) =
1

I(f )
,

where I(f ) is Fisher information for location

I(f ) =
∫ (

f ′(x)
f (x)

)2

f (x)dx .
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Robust Estimation of Location:
Huber’s Minimax Approach Tools

The minimax solution means that the asymptotic variance V (ψ, f ) has
the saddle-point V (ψ∗, f ∗)

V (ψ∗, f ) ≤ V (ψ∗, f ∗) ≤ V (ψ, f ∗),

where

V (ψ∗, f ∗) = inf
ψ∈Ψ

sup
f∈F

V (ψ, f ).

The right-hand side inequality in the saddle-point double inequality is
just the aforementioned Cramer-Rao inequality, whereas the left-hand
side one provides the property of a guaranteed accuracy of
estimation.
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Robust Estimation of Location:
Huber’s Minimax Approach Tools

This property means that there exists the optimal score function ψ∗

such that

V (ψ∗, f ) ≤ V (ψ∗, f ∗)

for any distribution density f in the class F .
The minimax estimating function ψ∗ is defined by the maximum
likelihood choice for the least favorable (informative) density f ∗

ψ∗(x) = ψML(x) = −f ∗′(x)/f ∗(x),

which minimizes Fisher information I(f ) over the class F

f ∗ = arg min
f∈F

I(f ) .
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Robust Estimation of Location:
Huber’s Minimax Approach Tools
Example: Huber’s minimax solution for the class of ε-contaminated
normal distributions (Huber 1964)

FH = {f : f (x) ≥ (1 − ε)φ(x), 0 ≤ ε < 1},

where φ(x) = (2π)−1/2 exp
(
−x2/2

)
is the standard normal density

and ε is a contamination parameter.

The least informative density is Gaussian in the center with
exponential tails

f ∗H(x) =


(1 − ε)φ(x) for |x | ≤ k ,

(1 − ε)(2π)−1/2 exp
(
−k |x |+ k2/2

)
for |x | > k .

The optimal minimax estimating function is bounded linear

ψ∗
H(x) = max [−k ,min(x , k)].
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Robust Estimation of Location:
Huber’s Minimax Approach Tools

ψ
H
*

Figure 1: Huber’s minimax estimating function
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Robust Estimation of Location:
Hampel’s Influence Function Tools

Let {Tn} be a sequence of statistics; Tn(X ) denote the statistic from
{Tn} on the sample X = (x1, . . . , xn), and let Tn+1(x ,X ) denote the
same statistic on the sample (x1, . . . , xn, x). Then the function

SCn(x ;Tn,X ) = (n + 1)[Tn+1(x ,X )− Tn(X )]

characterizes the sensitivity of Tn to the addition of one observation at
x and is called the sensitivity curve for this statistic (Tukey 1977).

In particular,

SCn(x ; x ,X ) = x − 1
n

n∑
i=1

xi = x − x

for the sample mean x .
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Robust Estimation of Location:
Hampel’s Influence Function Tools
Let F be a given distribution and T (F ) be a functional defined on some
set F of distributions, and let the estimate Tn = T (Fn) of T (F ) be that
functional of the sample distribution function Fn. Then the influence
function IF (x ;T ,F ) is defined as (Hampel et al. 1986)

IF (x ;T ,F ) = lim
t→0

T ((1 − t)F + t∆x)− T (F )

t
,

where ∆x is the degenerate distribution at x : IF (x ;T ,F ) is the
Gateaux derivative.

For the sample mean x = T (Fn) =
∫

x dFn(x), the influence function is

IF (x ; x ,F ) = x − T (F ) = x −
∫

x dF (x).
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Robust Estimation of Location:
Hampel’s Influence Function Tools

Under regularity conditions, the influence function for the M-estimate
has the following form (Hampel et al. 1986)

IF (x ;ψ,F ) =
ψ(x)∫

ψ′(x)dF (x)
.

For M-estimates, the relation between the influence function and the
estimating function is the simplest.

Main properties of the influence function:

1. Gross-error sensitivity

γ∗(T ,F ) = sup
x

|IF (x ;T ,F )|.
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Robust Estimation of Location:
Hampel’s Influence Function Tools

2. Gross-error breakdown point

ε∗(T ,F ) = sup{ε : sup
F : F=(1−ε)F0+εH

|T (F )− T (F0)| <∞}.

This notion defines the largest fraction of gross errors that still keeps
the bias bounded (F0 – an ideal model, H – a contamination): for
example, ε∗(x̄) = 0, ε∗(med x) = 0.5.

3. Asymptotic variance of M-estimates

V (ψ,F ) =

∫
IF (x ;ψ,F )2dF (x).
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Robust Estimation of Location:
Hampel’s Influence Function Tools

Optimal Huberization:
extremal problems of maximization of estimate efficiency under the
bounded sensitivity to outliers (Hampel et al. 1986)

max
ψ

eff (ψ, f ) under γ(ψ, f ) ≤ γ.

Example. In the Gaussian case, the optimal solution coincides with
the Huber’s minimax linear bounded estimating function

ψ∗(x) = ψ∗
H(x) = max [−k ,min(x , k)].

In general, robust estimates within both Huber’s and Hampel’s
approaches to robustness are close in performance !
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Concluding Remarks

Applications in econometrics via robust regression tools:

∑
i

ψ∗

xi −
∑

j

ϕij θ̂j

 = 0.
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THANK YOU !
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