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Generalities: Ontology, History and Ideas

Robust (Latin: strong, healthy, vigorous, sturdy, tough)

Robustness (Box 1953) <=> Stability

(Tukey 1960): the Least Squares Method estimates are not stable
under small deviations from Gaussianity!
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Generalities: Ontology, History and Ideas

Consider the Cauchy contaminated Gaussian distribution density
(Tukey’s gross-error model)

_ _1—8 (X—0)2 €
f(x'e)mexp<‘ 2 )*w[w(x—e)z]’

where 6 is a parameter of location and 0 < ¢ < 1 is a parameter of
contamination—the probability of outlier occurrence.

The sample mean X is the LSM estimate of location for a Gaussian,
but for arbitrarily small € > 0 it is not even consistent!

The classical robust estimate is the sample median med x.
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Generalities: Ontology, History and Ideas

1) (Huber 1964, 1981): Minimax Approach

Minimax Principle: to search for the best solution in the least
favorable case — a guaranteed quality result, sometimes too
pessimistic.

Huber’s minimax approach in robustness is a good example of
application of the minimax principle.
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Generalities: Ontology, History and Ideas

2) (Hampel 1968, 1986): The Approach Based on Influence
Functions

Lyapunov: Stability = Continuity => Robustness = Continuity

Parametric Statistics (1900—1940)
Robust Statistics (1960-2000)
Nonparametric Statistics (1940—1960)
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Robust Estimation of Location: M-Estimate Tools

Let Xi,..., X, be i.i.d. observations from a symmetric distribution F

with a density f(x — 6), where 6 is a parameter of location. Without any
loss of generality, we set 6 = 0.

M-estimates T, of location were proposed by (Huber 1964)

> (X — Ta) =0,

where (x) is an estimating (score) function.
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Robust Estimation of Location: M-Estimate Tools

Consider the following particular cases of M-estimates:
Least Squares: ¢, s(x) = x, T, = X;
Least Absolute Values: i ay(x) = sign(x), T, = med x;
Maximum Likelihood: ¢y (x) = —f'(x)/f(x), Tn = .

An M-estimate is a generalization of the maximum likelihood
estimate!
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Robust Estimation of Location: M-Estimate Tools

Under regularity conditions imposed on estimating functions ¢ € ¥
and distribution densities f € F, M-estimates T, are consistent and
asymptotically normal N(0, V) with the asymptotic variance

[(x)?f(x) dx
(J ¢/ (x) f(x) ax)?

In the case of maximum likelihood efficient M-estimate, we get the
minimum value of the Cramer-Rao inequality bound:

V(y,f) =

Viome ) = min V. 0) => Vi) = V(=F/11) =

where [(f) is Fisher information for location

I(f) = / (':(()’(‘))>2 f(x) dx.

Georgy Shevlyakov (SPbPU) Robust Statistics 1: Ideas and Tools

9/21



Robust Estimation of Location:
Huber’s Minimax Approach Tools

The minimax solution means that the asymptotic variance V(v, f) has
the saddle-point V(v*, f*)

V(®, £ < V(™ 1) < V(, F),

where

V(y*, f*) = |nf sup V(v, f).
YEV fex
The right-hand side inequality in the saddle-point double inequality is
just the aforementioned Cramer-Rao inequality, whereas the left-hand
side one provides the property of a guaranteed accuracy of
estimation.

Georgy Shevlyakov (SPbPU) Robust Statistics 1: Ideas and Tools 10/21



Robust Estimation of Location:
Huber’s Minimax Approach Tools

This property means that there exists the optimal score function *
such that

V(¥ f) < V(¥™, 1)
for any distribution density f in the class F.

The minimax estimating function * is defined by the maximum
likelihood choice for the least favorable (informative) density *

U (X) = U (x) = = (x)/F (x),
which minimizes Fisher information /(f) over the class F

- inI(f).
argp;l;()
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Robust Estimation of Location:

Huber’s Minimax Approach Tools

Example: Huber’s minimax solution for the class of e-contaminated
normal distributions (Huber 1964)

Fu=Af: f(x)> (1 —-¢e)p(x), 0<e< 1},

where ¢(x) = (27)~/2exp (—x2/2) is the standard normal density
and ¢ is a contamination parameter.

The least informative density is Gaussian in the center with
exponential tails

(1 —e)e(x) for |x| <k,
fi(x) = {
(1 —e)(@r)~"/2exp (—k|x| + k2/2)  for |x| > k.

The optimal minimax estimating function is bounded linear

Y (x) = max [—k, min(x, k)].
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Robust Estimation of Location:
Huber’'s Minimax Approach Tools

Vi

Figure 1: Huber's minimax estimating function
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Robust Estimation of Location:
Hampel’s Influence Function Tools

Let { T} be a sequence of statistics; T,(X) denote the statistic from
{Tn} on the sample X = (xy,..., xn), and let T, 1(x, X) denote the
same statistic on the sample (x, ..., Xn, X). Then the function

SCn(X; Tn, X) = (n+ 1)[Tn11(x, X) = Tn(X)]

characterizes the sensitivity of T, to the addition of one observation at
x and is called the sensitivity curve for this statistic (Tukey 1977).

In particular,

_ 1w _
SCh(x; X, X) = x — n;x,- =X—-X
1=
for the sample mean X.
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Robust Estimation of Location:

Hampel’s Influence Function Tools

Let F be a given distribution and T(F) be a functional defined on some
set F of distributions, and let the estimate T, = T(F,) of T(F) be that

functional of the sample distribution function F,. Then the influence
function /IF(x; T, F) is defined as (Hampel et al. 1986)

FoT.F) = iy T((1 - HF +ttAX) - T(F)

where Ay is the degenerate distribution at x: IF(x; T, F) is the
Gateaux derivative.

For the sample mean x = T(F,) = [ x dFs(x), the influence function is

IF(x;%, F) = x — T(F) = x — /xdF(x).
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Robust Estimation of Location:
Hampel’s Influence Function Tools

Under regularity conditions, the influence function for the M-estimate
has the following form (Hampel et al. 1986)

. _ ¥
N FEOE )

For M-estimates, the relation between the influence function and the
estimating function is the simplest.

Main properties of the influence function:

1. Gross-error sensitivity

V(T,F) =sup|IF(x; T, F)|.
X
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Robust Estimation of Location:
Hampel’s Influence Function Tools

2. Gross-error breakdown point
e*(T,F) =sup{e: sup |T(F)— T(Fo)| < o0}.
F: F=(1—e)Fy+eH

This notion defines the largest fraction of gross errors that still keeps
the bias bounded (Fy — an ideal model, H — a contamination): for
example, ¢*(x) = 0, £*(med x) = 0.5.

3. Asymptotic variance of M-estimates

V(, F) = / IF (x; ¢, F)2dF(x).
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Robust Estimation of Location:
Hampel’s Influence Function Tools

Optimal Huberization:
extremal problems of maximization of estimate efficiency under the
bounded sensitivity to outliers (Hampel et al. 1986)

mfxeff(zp,f) under (¢, f) <7.

Example. In the Gaussian case, the optimal solution coincides with
the Huber’s minimax linear bounded estimating function

P*(x) = Yh(x) = max [—k, min(x, k)].

In general, robust estimates within both Huber’s and Hampel’s
approaches to robustness are close in performance !
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Concluding Remarks

Applications in econometrics via robust regression tools:

Sowt [ xi—Y ¢6; | =0.
i J
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THANK YOU !
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