Robust Statistics 1: Ideas and Tools

GEORGY L. SHEVLYAKOV

Peter the Great St. Petersburg Polytechnic University

Summer School 2018, March 05, Nizhniy Novgorod, RUSSIA

OUTLINE

Generalities

Robust Estimation of Location

Huber's Minimax Approach

Hampel's Approach Based on Influence Functions

Concluding Remarks

References

Robust (*Latin*: strong, healthy, vigorous, sturdy, tough)

Robustness (Box 1953) <=> Stability

(Tukey 1960): the Least Squares Method estimates are not stable under small deviations from Gaussianity!

Consider the Cauchy contaminated Gaussian distribution density (**Tukey's gross-error model**)

$$f(x;\theta) = \frac{1-\varepsilon}{\sqrt{2\pi}} \exp\left(-\frac{(x-\theta)^2}{2}\right) + \frac{\varepsilon}{\pi[1+(x-\theta)^2]},$$

where θ is a parameter of location and $0 \le \varepsilon < 1$ is a parameter of contamination—the probability of outlier occurrence.

The sample mean \bar{x} is the LSM estimate of location for a Gaussian, but for arbitrarily small $\varepsilon > 0$ it is not even consistent!

The classical robust estimate is the sample median med x.

1) (Huber 1964, 1981): Minimax Approach

Minimax Principle: to search for the best solution in the least favorable case — a guaranteed quality result, sometimes too pessimistic.

Huber's minimax approach in robustness is a good example of application of the minimax principle.

2) (Hampel 1968, 1986): The Approach Based on Influence Functions

Lyapunov: Stability = Continuity => Robustness = Continuity

Parametric Statistics (1900–1940)

Robust Statistics (1960–2000)

Nonparametric Statistics (1940–1960)

Robust Estimation of Location: M-Estimate Tools

Let X_1, \ldots, X_n be i.i.d. observations from a symmetric distribution F with a density $f(x - \theta)$, where θ is a parameter of location. Without any loss of generality, we set $\theta = 0$.

M-estimates T_n of location were proposed by (Huber 1964)

$$\sum \psi(X_i-T_n)=0,$$

where $\psi(x)$ is an estimating (score) function.

Robust Estimation of Location: *M*-Estimate Tools

Consider the following particular cases of *M*-estimates:

Least Squares: $\psi_{LS}(x) = x$, $T_n = \bar{x}$;

Least Absolute Values: $\psi_{LAV}(x) = sign(x), T_n = med x;$

Maximum Likelihood: $\psi_{ML}(x) = -f'(x)/f(x)$, $T_n = \widehat{\theta}_{ML}$.

An *M*-estimate is a generalization of the maximum likelihood estimate!

Robust Estimation of Location: M-Estimate Tools

Under regularity conditions imposed on estimating functions $\psi \in \Psi$ and distribution densities $f \in \mathcal{F}$, M-estimates T_n are consistent and asymptotically normal N(0, V) with the asymptotic variance

$$V(\psi, f) = \frac{\int \psi(x)^2 f(x) \, dx}{\left(\int \psi'(x) \, f(x) \, dx\right)^2}.$$

In the case of maximum likelihood efficient M-estimate, we get the minimum value of the Cramer-Rao inequality bound:

$$V(\psi_{ML}, f) = \min_{\psi \in \Psi} V(\psi, f) = > V(\psi_{ML}, f) = V(-f'/f, f) = \frac{1}{I(f)},$$

where I(f) is Fisher information for location

$$I(f) = \int \left(\frac{f'(x)}{f(x)}\right)^2 f(x) dx.$$

Robust Estimation of Location: Huber's Minimax Approach Tools

The minimax solution means that the asymptotic variance $V(\psi, f)$ has the saddle-point $V(\psi^*, f^*)$

$$V(\psi^*, f) \leq V(\psi^*, f^*) \leq V(\psi, f^*),$$

where

$$V(\psi^*, f^*) = \inf_{\psi \in \Psi} \sup_{f \in \mathcal{F}} V(\psi, f).$$

The right-hand side inequality in the saddle-point double inequality is just the aforementioned Cramer-Rao inequality, whereas the left-hand side one provides the property of a guaranteed accuracy of estimation.

Robust Estimation of Location: Huber's Minimax Approach Tools

This property means that there exists the optimal score function ψ^* such that

$$V(\psi^*, f) \leq V(\psi^*, f^*)$$

for any distribution density f in the class \mathcal{F} .

The minimax estimating function ψ^* is defined by the maximum likelihood choice for the least favorable (informative) density f^*

$$\psi^*(x) = \psi_{ML}(x) = -f^{*\prime}(x)/f^*(x),$$

which minimizes Fisher information I(f) over the class \mathcal{F}

$$f^* = \arg\min_{f \in \mathcal{F}} I(f)$$
.

Robust Estimation of Location:

Huber's Minimax Approach Tools

Example: Huber's minimax solution for the class of ε-contaminated normal distributions (Huber 1964)

$$\mathcal{F}_H = \{ f : f(x) \ge (1 - \varepsilon)\varphi(x), \quad 0 \le \varepsilon < 1 \},$$

where $\varphi(x) = (2\pi)^{-1/2} \exp(-x^2/2)$ is the standard normal density and ε is a contamination parameter.

The least informative density is Gaussian in the center with exponential tails

$$f_H^*(x) = \begin{cases} (1 - \varepsilon)\varphi(x) & \text{for } |x| \le k, \\ (1 - \varepsilon)(2\pi)^{-1/2} \exp\left(-k|x| + k^2/2\right) & \text{for } |x| > k. \end{cases}$$

The optimal minimax estimating function is bounded linear

$$\psi_H^*(x) = \max\left[-k, \min(x, k)\right].$$

Robust Estimation of Location: Huber's Minimax Approach Tools

Figure 1: Huber's minimax estimating function

Let $\{T_n\}$ be a sequence of statistics; $T_n(X)$ denote the statistic from $\{T_n\}$ on the sample $X=(x_1,\ldots,x_n)$, and let $T_{n+1}(x,X)$ denote the same statistic on the sample (x_1,\ldots,x_n,x) . Then the function

$$SC_n(x; T_n, X) = (n+1)[T_{n+1}(x, X) - T_n(X)]$$

characterizes the sensitivity of T_n to the addition of one observation at x and is called the **sensitivity curve** for this statistic (Tukey 1977).

In particular,

$$SC_n(x; \overline{x}, X) = x - \frac{1}{n} \sum_{i=1}^n x_i = x - \overline{x}$$

for the sample mean \overline{x} .

Let F be a given distribution and T(F) be a functional defined on some set F of distributions, and let the estimate $T_n = T(F_n)$ of T(F) be that functional of the sample distribution function F_n . Then **the influence function** IF(x; T, F) is defined as (Hampel *et al.* 1986)

$$IF(x;T,F) = \lim_{t\to 0} \frac{T((1-t)F + t\Delta_x) - T(F)}{t},$$

where Δ_x is the degenerate distribution at x: IF(x; T, F) is the Gateaux derivative.

For the sample mean $\overline{x} = T(F_n) = \int x \, dF_n(x)$, the influence function is

$$IF(x; \overline{x}, F) = x - T(F) = x - \int x \, dF(x).$$

Under regularity conditions, **the influence function** for the *M*-estimate has the following form (Hampel *et al.* 1986)

$$IF(x; \psi, F) = \frac{\psi(x)}{\int \psi'(x) dF(x)}.$$

For *M*-estimates, the relation between the influence function and the estimating function is the simplest.

Main properties of the influence function:

1. Gross-error sensitivity

$$\gamma^*(T,F) = \sup_{x} |IF(x;T,F)|.$$

2. Gross-error breakdown point

$$\varepsilon^*(T,F) = \sup\{\varepsilon \colon \sup_{F\colon F = (1-\varepsilon)F_0 + \varepsilon H} |T(F) - T(F_0)| < \infty\}.$$

This notion defines the largest fraction of gross errors that still keeps the bias bounded (F_0 – an ideal model, H – a contamination): for example, $\varepsilon^*(\bar{x}) = 0$, $\varepsilon^*(med x) = 0.5$.

3. Asymptotic variance of M-estimates

$$V(\psi,F) = \int IF(x;\psi,F)^2 dF(x).$$

Optimal Huberization:

extremal problems of maximization of estimate efficiency under the bounded sensitivity to outliers (Hampel *et al.* 1986)

$$\max_{\psi} \textit{eff}(\psi, \textit{f}) \quad \text{under} \quad \gamma(\psi, \textit{f}) \leq \overline{\gamma}.$$

Example. In the Gaussian case, the optimal solution coincides with the Huber's minimax linear bounded estimating function

$$\psi^*(x) = \psi_H^*(x) = \max[-k, \min(x, k)].$$

In general, robust estimates within both Huber's and Hampel's approaches to robustness are close in performance!

Concluding Remarks

Applications in econometrics via robust regression tools:

$$\sum_{i} \psi^* \left(\mathbf{x}_i - \sum_{j} \phi_{ij} \widehat{\theta}_j \right) = \mathbf{0}.$$

References

Hampel, F.R., Ronchetti, E., Rousseeuw, P.J., Stahel, W.A., 1986. Robust Statistics. The Approach Based on Influence Functions. Wiley, New York.

Huber, P.J., 1964. Robust estimation of a location parameter, Ann. Math. Statist., 35, 1–72.

Huber, P.J., 1981. Robust Statistics. Wiley, New York.

Shevlyakov, G.L., Vilchevski, N.O., 2002. Robustness in Data Analysis: criteria and methods. VSP, Utrecht.

Shevlyakov, G.L., Vilchevski, N.O., 2011. Robustness in Data Analysis. De Gruyter, Boston.

Shevlyakov, G.L., Oja, H., 2016. Robust Correlation: Theory and Applications. Wiley.

THANK YOU!