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The power-law degree sequence

Graphs

Definition (Graph)
A pair G = (V ,E), where V = {v1,… , vN} is a set of vertexes (or nodes),
and E = {e1,… , eM} ⊆ V × V is a set of edges (or links, arrows).

Example
Social contacts : vertexes represent humans or anumals, edges represent

social contacrts (e.g. Zachary karate club, N = 34, Zebra
network, N = 27, Madrid train bombing network, N = 64).

Co-authorship : vertexes represent authors, endges represend coauthorship
(e.g. arXiv astro-ph, N = 19K, DBLP, N = 317K).

Infrastructure : vertexes represent physical locations, edges represent links
(e.g. Euroroad, N = 1K, US power grid, N = 5K).

Social networks : edges represent friendships (e.g. subsets of Facebook,
N = 63K, YouTube, N = 3M, LiveJournal, N = 5M).
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The power-law degree sequence

Some questions about graphs and networks

Is the graph fully connected?

If not, is there a giant component?
What is the average degree (number of links of a node)?
What is the average distance between nodes (shortest path length)?
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The power-law degree sequence

Degree Sequence

Definition (Degree sequence)
Function N ∶ ℕ → ℕ ∪ {0} representing the nuber N(k) of vertexes v ∈ V
with degree k (number of edges (v, ⋅) or (⋅, v) ∈ E ⊆ V × V):

N(k) ∶= |{v ∈ V ∶ deg(v) = k}|

Normalized N(k) is the degree distribution

P(k) = N(k)
N
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The power-law degree sequence
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The power-law degree sequence
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The power-law degree sequence
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The power-law degree sequence
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The power-law degree sequence
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The power-law degree sequence
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The power-law degree sequence
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The power-law degree sequence
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The power-law degree sequence
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The power-law degree sequence
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The power-law degree sequence

Power-Law
Power-Law

lnN(k) = � − � ln k
� — intercept
� — slope or exponent

P(k) = k−�
∑N

k=1 k−�

Almost surely connected for � < 1, and a.s. disconnected for � > 1 (Aiello, Chung,
& Lu, 2000, 2001).

A giant componnent almost surely exists if Q ∶= EP{k2} − 2EP{k} ≥ 0 (Molloy &
Reed, 1995).
For power-law with N →∞ (

∑N
k=1 k−� → � (�)) this becomes � (� −2)−2� (� −1) = 0,

which guves the value �0 ≈ 3.47875 (Aiello et al., 2000, 2001).
Power-law graphs can be generated by preferential attachment:

P[(i, j) ∈ E ∣ ki] =
ki

∑kmax
k=1 ki
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Power-law and maximum entropy

Power-Law as exponential family

Changing k−� = e− � ln k let us write

P(k) = e−� ln k−Γ(�)

Γ(�) = lnZ(�) is the cumulant generating function:

Γ′ = m1 = −EP{ln k}
Γ′′ = m2 − m2

1 = �
2(ln k)

where mn =
Z(n)

Z are nth moments.
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Power-law and maximum entropy

Variational problems with entropy

P(k) = exp{−� ln k − Γ(�)} is a solution to:

maximize H(P) subject to EP{ln k} ≤ �

where H is the entropy of P(k):

H(P) = −
N
∑

k=1
[lnP(k)]P(k)

Equivalent problem:

minimize EP{ln k} subject to H(P) ≥ lnN − � ≥ 0

ln k plays the role of a cost to be minimized.
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Power-law and maximum entropy

Solution using Lagrange multipliers

Lagrange function

K(P, �, ) = −
N
∑

k=1
[lnP(k)]P(k)+�

[

� −
N
∑

k=1
(ln k)P(k)

]

+

[

1 −
N
∑

k=1
P(k)

]

Necessary and sufficient conditions:

)
)P

K(P, �, ) = − lnP(k) − 1 − � ln k +  = 0 ⇒ P(k) = e−� ln k−Γ(�)

)
)�

K(P, �, ) = � −
N
∑

k=1
(ln k)P(k) = 0 ⇒

N
∑

k=1
(ln k)P(k) = �

)
)

K(P, �, ) = 1 −
N
∑

k=1
P(k) = 0 ⇒ Γ(�) = ln

N
∑

k=1
e−� ln k
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Power-law and maximum entropy

Optimal communication
Let c(xi, yj) be some cost function for xi, yj ∈ V:

minimize EP{c(xi, yj)} subject to I(xi, yj) ≤ �

where I is Shannon’s mutual information:

I(xi, yj) ∶=
∑

(xi,yj)∈X×Y

[

ln
P(xi, yj)

P(xi)P(yj)

]

P(xi, yj)

=H{x} − H{x ∣ y} = H{y} − H{y ∣}

Equivalent problem

minimize I(xi, yj) subject to EP{c(xi, yj)} ≤ �

Solution
P(xi, yi) = e−�c(xi,yj)−Γ(�,xi) P(xi)P(yj)
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Power-law and maximum entropy

Average distance
Consider c(xi, yj) = d(i, j) − 1 and denote l ∶= EP{d(i, j)}.

Let zm denote the average number of neighbours at d(i, j) = m:

z0 = 1, z1 = EP{k},… , zm+1 =
z2
z1

zm

For |V|≫ z1 and z2 ≫ z1 one can assume

|V| =
l
∑

m=0
zm = 1 +

l
∑

m=1

[

z2
z1

]m−1
z1 ≈ 1 +

[

z2
z1

]l−1
z1

This leads to
l =

lnN − ln z1
ln(z2∕z1)

+ 1

Relacing z1 = EP{k} by the actual degree ki, we obtain conditional
l(ki) ∶= EP{d(i, j) ∣ ki}:

l(ki) =
lnN − ln ki
ln(z2∕z1)

+ 1
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Power-law and maximum entropy

Daul problems
Preferential attachment

P[(i, j) ∈ E ∣ ki)] = e−�(l(ki)−1)−Γ(�) = e ln ki−Γ() =
ki

∑kmax
k=1 ki

Solution to

minimize EP{d(i, j) − 1} subject to I(xi, yj) ≤ �

Power law
P(k) = k−�

∑kmax
k=1 k−�

Solution to

maximize H(P) subject to EP{ln k} ≤ �
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Power-law exponent (inverse temperature)

The power-law degree sequence

Power-law and maximum entropy

Power-law exponent (inverse temperature)

Free energy and phase transition

Roman Belavkin (Middlesex University) March 6, 2018 20 / 35



Power-law exponent (inverse temperature)

Exponent as slope
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Power-law exponent (inverse temperature)

Maximum likelihood estimation

Treating k as continuous, the m.l.e is (Newman, 2005)

� = 1 + 1
EP{ln k} − ln k0

where k0 is the smallest degree corresponding to power-law behavious
(i.e. P(k0) = maxP(k)).

Degree k is discrete.
What about � < 1 (possible for N <∞)?
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Power-law exponent (inverse temperature)

Variational approach
Recall that P(k) = exp{−� ln k −Γ(�)} is the solution to the maximum
entropy problem, where � ≥ 0 is the Lagrange multiplier such that the
constraint EP{ln k} ≤ � (or H(P) ≥ lnN − �) is satisfied with equality:

EP{ln k} = −Γ′(�)
H(P) = Γ(�) − � Γ′(�)

This leads to
� =

H(P) − Γ(�)
EP{ln k}

We can estimate EP{ln k}, H(P).
Observe that Γ(�) = − lnP(k = 1).
Making the transofrmation k ↦ k∕k0 leads to

� =
H(P) + lnP(k0)
EP{ln k} − ln k0
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Power-law exponent (inverse temperature)

Exponent (inverse temperature)

Recall the Lagrangian

K(P, �, ) = H(P) + �[� − EP{ln k}] + 
[

1 −
∑

P
]

= H(�)

Its value at P(k) = exp{−� ln k − Γ(�)} is the maximum entropy,
which depends on the constraint � = EP{ln k}.
Differentiation gives:

� =
)H(�)
)�

Compare with our formula

� =
H(P) − lnP−1(k0)
EP{ln k} − ln k0

= ΔH
Δ�
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Free energy and phase transition

The power-law degree sequence

Power-law and maximum entropy

Power-law exponent (inverse temperature)

Free energy and phase transition
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Free energy and phase transition

Free energy
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Free energy and phase transition

Information and entropy at � = 1
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I=
F′

�−1

N = 20
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N = 180
N = 220 H(�) = lnN − I(�)

I(�) = lnN − H(�)

Question

What happens to F′(�−1) = I in the limit N →∞ and � → 1?
I = � Γ′(�) − Γ(�)
Γ′(�) = −EP{ln k}, Γ′′(�) = �2(ln k).
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Free energy and phase transition

Approximations at � = 1 and N <∞
nth cumulants Γ(n) = (lnZ)(n):

Γ′ = m1

Γ′′ = m2 − m2
1

Γ(3) = m3 − 3m1m2 + 2m3
1

Γ(4) = m4 − 4m3m1 − 3m2
2 + 12m2m2

1 − 6m4
1

where mn are nth moments of − ln k:

mn(�) =
Z(n)(�)
Z(�)

, Z(n)(�) = (−1)n
N
∑

k=1
(ln k)nk−�

Using ∫ N
1

dx
x = lnN:

Z(�) =
N
∑

k=1

1
k�

|

|

|

|

|

|�=1

≈ lnN , Z(n)(�)||
|�=1

≈
(−1)n

n + 1
(lnN)n+1
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Free energy and phase transition

Expectation of ln k at � = 1
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EP{ln k} = − Γ′(�)

= −
Z′(�)
Z(�)

|

|

|

|�=1

≈1
2
lnN

Remark

Using Jenssen’s inequality lnEP{k} ≥ EP{ln k} we also have EP{k} ≥
√

N.
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Variance of ln k at � = 1
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Remark (Phase transition)

The derivative F′(�−1) = I(�) = � Γ′(�) − Γ(�) is not differentiable at � = 1
in the limit N →∞, because Γ′′(�)→∞.

Roman Belavkin (Middlesex University) March 6, 2018 30 / 35



Free energy and phase transition

Variance of ln k at � = 1

1

2

3

0 1 2 3 4

�2
(ln

k)

�

N =20
N =60

N =100
N =140
N =180
N =220 �2(ln k) = Γ′′(�)|

|�=1

≈ 1
12
(lnN)2

Remark (Phase transition)

The derivative F′(�−1) = I(�) = � Γ′(�) − Γ(�) is not differentiable at � = 1
in the limit N →∞, because Γ′′(�)→∞.

Roman Belavkin (Middlesex University) March 6, 2018 30 / 35



Free energy and phase transition

Skewness and kurtosis at � = 1
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Giant component

General condition of existance (Molloy & Reed, 1995; Albert &
Barabási, 2002)

Q ∶= EP{k2} − 2EP{k} ≥ 0

Observe that Q = EP{(k − 1)2} − 1, which means

EP{(k − 1)2} ≥ 1

On the other hand

inf
a
EP{(k − a)2} = EP{(k − EP{k})2} =∶ �2(k)

Therefore, �2(k) ≥ 1 implies Q ≥ 0.
k − 1 ≥ ln k, and k − 1 approximates ln k near k = 1.
�2(k) = 1 gives �0 ≈ 3.466407…, and Γ′(�) = � ′(�)∕� (�) = 1 gives
�0 ≈ 1.6042….
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Network |V| LCC max k E{k} E{ln k} �(k) H �k �l � ⟨l⟩
Zebra 27 23 14 8.2222 1.8819 22.7 49% 1.691 0.446 0.76 1.79
Karate club 34 34 17 4.5882 1.2805 14.6 57% 2.161 1.184 1.45 2.44
Train bombing 64 64 29 7.5938 1.6586 38.0 64% 4.041 0.751 0.73 2.63
Protein 212 161 21 2.3019 0.4918 7.0 26% 2.091 1.329 1.82 5.11
Email 1,133 1,133 71 9.6222 1.7822 87.2 45% 6.771 1.733 0.65 3.65
Euroroad 1,174 1,039 10 2.4140 0.7753 1.4 20% 6.401 4.470 8.98 19.18
US power 4,941 4,941 19 2.6691 0.8021 3.2 58% 7.631 3.95 5.59 20.09
Routes 6,474 6,474 1,459 4.2926 0.7948 628.9 22% 2.111 1.107 1.08 3.67
arXiv-ph 18,771 17,903 504 21.102 2.2768 934.2 40% 2.861 1.960 0.95 4.17
Facebook 63,731 63,392 1,098 25.640 2.3096 1599.4 37% 2.941 2.145 0.86 4.31
Flickr 105,938 105,722 5,425 43.742 2.4556 13,359.7 38% 1.731 1.476 2.57 4.34
DBLP-authorship 317,080 317,080 343 6.6221 1.3889 100.2 21% 3.261 2.876 1.48 6.75
Amazon-purchase 334,863 334,863 549 5.5299 1.4467 33.2 19% 3.581 3.011 12.9 11.73
YouTube 3,223,589 3,216,075 91,751 5.8167 0.7474 16,435 17% 2.211 1.326 1.68 5.29
LiveJournal 5,204,176 5,189,808 15,016 18.721 1.8562 2557.9 37% 1.5365 2.38 1.06 5.44
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Conclusions

We show how the power-law graphs emerge as the solutions to
variational problem maximizing entropy with a constraint on E{ln k}.

The negative log-degree − ln k is related to average distance l(k), and
preferential attachment emerges as The dual problem of the solution
to variational problem on miniming average distnances with a
constraint on mutual information.
The exponent parameter can be estimated as inverse temperature
using variational principle.
Power-law graphs undergo a phase transition for finite value
� ∈ [1, �0]:

connected
⏟⏞⏞⏟⏞⏞⏟

�<1

disconnected, giant component
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

[1,�0]

no giant component
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

�0<�

Roman Belavkin (Middlesex University) March 6, 2018 34 / 35



Free energy and phase transition

Conclusions

We show how the power-law graphs emerge as the solutions to
variational problem maximizing entropy with a constraint on E{ln k}.
The negative log-degree − ln k is related to average distance l(k), and
preferential attachment emerges as The dual problem of the solution
to variational problem on miniming average distnances with a
constraint on mutual information.

The exponent parameter can be estimated as inverse temperature
using variational principle.
Power-law graphs undergo a phase transition for finite value
� ∈ [1, �0]:

connected
⏟⏞⏞⏟⏞⏞⏟

�<1

disconnected, giant component
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

[1,�0]

no giant component
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

�0<�

Roman Belavkin (Middlesex University) March 6, 2018 34 / 35



Free energy and phase transition

Conclusions

We show how the power-law graphs emerge as the solutions to
variational problem maximizing entropy with a constraint on E{ln k}.
The negative log-degree − ln k is related to average distance l(k), and
preferential attachment emerges as The dual problem of the solution
to variational problem on miniming average distnances with a
constraint on mutual information.
The exponent parameter can be estimated as inverse temperature
using variational principle.

Power-law graphs undergo a phase transition for finite value
� ∈ [1, �0]:

connected
⏟⏞⏞⏟⏞⏞⏟

�<1

disconnected, giant component
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

[1,�0]

no giant component
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

�0<�

Roman Belavkin (Middlesex University) March 6, 2018 34 / 35



Free energy and phase transition

Conclusions

We show how the power-law graphs emerge as the solutions to
variational problem maximizing entropy with a constraint on E{ln k}.
The negative log-degree − ln k is related to average distance l(k), and
preferential attachment emerges as The dual problem of the solution
to variational problem on miniming average distnances with a
constraint on mutual information.
The exponent parameter can be estimated as inverse temperature
using variational principle.
Power-law graphs undergo a phase transition for finite value
� ∈ [1, �0]:

connected
⏟⏞⏞⏟⏞⏞⏟

�<1

disconnected, giant component
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

[1,�0]

no giant component
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

�0<�

Roman Belavkin (Middlesex University) March 6, 2018 34 / 35



References

The power-law degree sequence

Power-law and maximum entropy

Power-law exponent (inverse temperature)

Free energy and phase transition

Roman Belavkin (Middlesex University) March 6, 2018 35 / 35



Free energy and phase transition

Aiello, W., Chung, F., & Lu, L. (2000). A random graph model for massive
graphs. In Proceedings of the 32nd Annual ACM Symposium on
Theory of Computing (pp. 171–180). Portland, OR: ACM Press.

Aiello, W., Chung, F., & Lu, L. (2001). A random graph model for power
law graphs. Experimental Mathematics, 10(1), 53–66.

Albert, R., & Barabási, A.-L. (2002). Statistical mechanics of complex
networks. Reviews of Modern Physics, 74, 47–97.

Molloy, M., & Reed, B. (1995). A critical point for random graphs with a
given degree sequence. Random Structures and Algorithms, 6,
161–180.

Newman, M. (2005). Power laws, Pareto distributions and Zipf’s law.
Contemporary Physics, 46(5), 323–351.

Roman Belavkin (Middlesex University) March 6, 2018 35 / 35


	The power-law degree sequence
	Power-law and maximum entropy
	Power-law exponent (inverse temperature)
	Free energy and phase transition

