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The power-law degree sequence

Graphs

Definition (Graph)
A pair G = (V ,E), where V = {v1,… , vN} is a set of vertexes (or nodes),
and E = {e1,… , eM} ⊆ V × V is a set of edges (or links, arrows).

Example
Social contacts : vertexes represent humans or anumals, edges represent

social contacrts (e.g. Zachary karate club, N = 34, Zebra
network, N = 27, Madrid train bombing network, N = 64).

Co-authorship : vertexes represent authors, endges represend coauthorship
(e.g. arXiv astro-ph, N = 19K, DBLP, N = 317K).

Infrastructure : vertexes represent physical locations, edges represent links
(e.g. Euroroad, N = 1K, US power grid, N = 5K).

Social networks : edges represent friendships (e.g. subsets of Facebook,
N = 63K, YouTube, N = 3M, LiveJournal, N = 5M).
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The power-law degree sequence

Some questions about graphs and networks

Is the graph fully connected?

If not, is there a giant component?
What is the average degree (number of links of a node)?
What is the average distance between nodes (shortest path length)?
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The power-law degree sequence

Degree Sequence

Definition (Degree sequence)
Function N ∶ ℕ → ℕ ∪ {0} representing the nuber N(k) of vertexes v ∈ V
with degree k (number of edges (v, ⋅) or (⋅, v) ∈ E ⊆ V × V):

N(k) ∶= |{v ∈ V ∶ deg(v) = k}|

Normalized N(k) is the degree distribution

P(k) = N(k)
N
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The power-law degree sequence
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The power-law degree sequence
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The power-law degree sequence

1

10

100

1000

1 10 100 1000

lo
g

N
(k
)

log k

U. Rovira i Virgili email networks (N = 1, 133)

Roman Belavkin (Middlesex University) March 6, 2018 8 / 35



The power-law degree sequence
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The power-law degree sequence
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The power-law degree sequence
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The power-law degree sequence
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The power-law degree sequence
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The power-law degree sequence
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The power-law degree sequence
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The power-law degree sequence

Power-Law
Power-Law

lnN(k) = � − � ln k
� — intercept
� — slope or exponent

P(k) = k−�
∑N

k=1 k−�

Almost surely connected for � < 1, and a.s. disconnected for � > 1 (Aiello, Chung,
& Lu, 2000, 2001).

A giant componnent almost surely exists if Q ∶= EP{k2} − 2EP{k} ≥ 0 (Molloy &
Reed, 1995).
For power-law with N →∞ (

∑N
k=1 k−� → � (�)) this becomes � (� −2)−2� (� −1) = 0,

which guves the value �0 ≈ 3.47875 (Aiello et al., 2000, 2001).
Power-law graphs can be generated by preferential attachment:

P[(i, j) ∈ E ∣ ki] =
k
i

∑kmax
k=1 k
i
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Power-law and maximum entropy

Power-Law as exponential family

Changing k−� = e− � ln k let us write

P(k) = e−� ln k−Γ(�)

Γ(�) = lnZ(�) is the cumulant generating function:

Γ′ = m1 = −EP{ln k}
Γ′′ = m2 − m2

1 = �
2(ln k)

where mn =
Z(n)

Z are nth moments.
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Power-law and maximum entropy

Variational problems with entropy

P(k) = exp{−� ln k − Γ(�)} is a solution to:

maximize H(P) subject to EP{ln k} ≤ �

where H is the entropy of P(k):

H(P) = −
N
∑

k=1
[lnP(k)]P(k)

Equivalent problem:

minimize EP{ln k} subject to H(P) ≥ lnN − � ≥ 0

ln k plays the role of a cost to be minimized.
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Power-law and maximum entropy

Solution using Lagrange multipliers

Lagrange function

K(P, �, 
) = −
N
∑

k=1
[lnP(k)]P(k)+�

[

� −
N
∑

k=1
(ln k)P(k)

]

+


[

1 −
N
∑

k=1
P(k)

]

Necessary and sufficient conditions:

)
)P

K(P, �, 
) = − lnP(k) − 1 − � ln k + 
 = 0 ⇒ P(k) = e−� ln k−Γ(�)

)
)�

K(P, �, 
) = � −
N
∑

k=1
(ln k)P(k) = 0 ⇒

N
∑

k=1
(ln k)P(k) = �

)
)


K(P, �, 
) = 1 −
N
∑

k=1
P(k) = 0 ⇒ Γ(�) = ln

N
∑

k=1
e−� ln k
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Power-law and maximum entropy

Optimal communication
Let c(xi, yj) be some cost function for xi, yj ∈ V:

minimize EP{c(xi, yj)} subject to I(xi, yj) ≤ �

where I is Shannon’s mutual information:

I(xi, yj) ∶=
∑

(xi,yj)∈X×Y

[

ln
P(xi, yj)

P(xi)P(yj)

]

P(xi, yj)

=H{x} − H{x ∣ y} = H{y} − H{y ∣}

Equivalent problem

minimize I(xi, yj) subject to EP{c(xi, yj)} ≤ �

Solution
P(xi, yi) = e−�c(xi,yj)−Γ(�,xi) P(xi)P(yj)
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Power-law and maximum entropy

Average distance
Consider c(xi, yj) = d(i, j) − 1 and denote l ∶= EP{d(i, j)}.

Let zm denote the average number of neighbours at d(i, j) = m:

z0 = 1, z1 = EP{k},… , zm+1 =
z2
z1

zm

For |V|≫ z1 and z2 ≫ z1 one can assume

|V| =
l
∑

m=0
zm = 1 +

l
∑

m=1

[

z2
z1

]m−1
z1 ≈ 1 +

[

z2
z1

]l−1
z1

This leads to
l =

lnN − ln z1
ln(z2∕z1)

+ 1

Relacing z1 = EP{k} by the actual degree ki, we obtain conditional
l(ki) ∶= EP{d(i, j) ∣ ki}:

l(ki) =
lnN − ln ki
ln(z2∕z1)

+ 1
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Power-law and maximum entropy

Daul problems
Preferential attachment

P[(i, j) ∈ E ∣ ki)] = e−�(l(ki)−1)−Γ(�) = e
 ln ki−Γ(
) =
k
i

∑kmax
k=1 k
i

Solution to

minimize EP{d(i, j) − 1} subject to I(xi, yj) ≤ �

Power law
P(k) = k−�

∑kmax
k=1 k−�

Solution to

maximize H(P) subject to EP{ln k} ≤ �
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Power-law exponent (inverse temperature)

The power-law degree sequence

Power-law and maximum entropy

Power-law exponent (inverse temperature)

Free energy and phase transition
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Power-law exponent (inverse temperature)

Exponent as slope

1

10

100

1000

10000

100000

1e + 06

1 10 100 1000 100001000001e + 06

lo
g

N
(k
)

log k

YouTube network (N = 3M)
LiveJournal (N = 5M)

Roman Belavkin (Middlesex University) March 6, 2018 21 / 35



Power-law exponent (inverse temperature)

Maximum likelihood estimation

Treating k as continuous, the m.l.e is (Newman, 2005)

� = 1 + 1
EP{ln k} − ln k0

where k0 is the smallest degree corresponding to power-law behavious
(i.e. P(k0) = maxP(k)).

Degree k is discrete.
What about � < 1 (possible for N <∞)?
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Power-law exponent (inverse temperature)

Variational approach
Recall that P(k) = exp{−� ln k −Γ(�)} is the solution to the maximum
entropy problem, where � ≥ 0 is the Lagrange multiplier such that the
constraint EP{ln k} ≤ � (or H(P) ≥ lnN − �) is satisfied with equality:

EP{ln k} = −Γ′(�)
H(P) = Γ(�) − � Γ′(�)

This leads to
� =

H(P) − Γ(�)
EP{ln k}

We can estimate EP{ln k}, H(P).
Observe that Γ(�) = − lnP(k = 1).
Making the transofrmation k ↦ k∕k0 leads to

� =
H(P) + lnP(k0)
EP{ln k} − ln k0
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Power-law exponent (inverse temperature)

Exponent (inverse temperature)

Recall the Lagrangian

K(P, �, 
) = H(P) + �[� − EP{ln k}] + 

[

1 −
∑

P
]

= H(�)

Its value at P(k) = exp{−� ln k − Γ(�)} is the maximum entropy,
which depends on the constraint � = EP{ln k}.
Differentiation gives:

� =
)H(�)
)�

Compare with our formula

� =
H(P) − lnP−1(k0)
EP{ln k} − ln k0

= ΔH
Δ�
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Free energy and phase transition

The power-law degree sequence

Power-law and maximum entropy

Power-law exponent (inverse temperature)

Free energy and phase transition
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Free energy and phase transition

Free energy
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Free energy and phase transition

Information and entropy at � = 1

0
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I=
F′

�−1

N = 20
N = 60

N = 100
N = 140
N = 180
N = 220 H(�) = lnN − I(�)

I(�) = lnN − H(�)

Question

What happens to F′(�−1) = I in the limit N →∞ and � → 1?
I = � Γ′(�) − Γ(�)
Γ′(�) = −EP{ln k}, Γ′′(�) = �2(ln k).
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Free energy and phase transition

Approximations at � = 1 and N <∞
nth cumulants Γ(n) = (lnZ)(n):

Γ′ = m1

Γ′′ = m2 − m2
1

Γ(3) = m3 − 3m1m2 + 2m3
1

Γ(4) = m4 − 4m3m1 − 3m2
2 + 12m2m2

1 − 6m4
1

where mn are nth moments of − ln k:

mn(�) =
Z(n)(�)
Z(�)

, Z(n)(�) = (−1)n
N
∑

k=1
(ln k)nk−�

Using ∫ N
1

dx
x = lnN:

Z(�) =
N
∑

k=1

1
k�

|

|

|

|

|

|�=1

≈ lnN , Z(n)(�)||
|�=1

≈
(−1)n

n + 1
(lnN)n+1
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Free energy and phase transition

Expectation of ln k at � = 1
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N =220

EP{ln k} = − Γ′(�)

= −
Z′(�)
Z(�)

|

|

|

|�=1

≈1
2
lnN

Remark

Using Jenssen’s inequality lnEP{k} ≥ EP{ln k} we also have EP{k} ≥
√

N.

Roman Belavkin (Middlesex University) March 6, 2018 29 / 35



Free energy and phase transition

Expectation of ln k at � = 1

1

2

3

4

5

0 1 2 3

E{
ln

k}

�

N =20
N =60

N =100
N =140
N =180
N =220

EP{ln k} = − Γ′(�)

= −
Z′(�)
Z(�)

|

|

|

|�=1

≈1
2
lnN

Remark

Using Jenssen’s inequality lnEP{k} ≥ EP{ln k} we also have EP{k} ≥
√

N.

Roman Belavkin (Middlesex University) March 6, 2018 29 / 35



Free energy and phase transition

Expectation of ln k at � = 1

1

2

3

4

5

0 1 2 3

E{
ln

k}

�

N =20
N =60

N =100
N =140
N =180
N =220

EP{ln k} = − Γ′(�)

= −
Z′(�)
Z(�)

|

|

|

|�=1

≈1
2
lnN

Remark

Using Jenssen’s inequality lnEP{k} ≥ EP{ln k} we also have EP{k} ≥
√

N.

Roman Belavkin (Middlesex University) March 6, 2018 29 / 35



Free energy and phase transition

Expectation of ln k at � = 1

1

2

3

4

5

0 1 2 3

E{
ln

k}

�

N =20
N =60

N =100
N =140
N =180
N =220

EP{ln k} = − Γ′(�)

= −
Z′(�)
Z(�)

|

|

|

|�=1

≈1
2
lnN

Remark

Using Jenssen’s inequality lnEP{k} ≥ EP{ln k} we also have EP{k} ≥
√

N.

Roman Belavkin (Middlesex University) March 6, 2018 29 / 35



Free energy and phase transition

Variance of ln k at � = 1
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The derivative F′(�−1) = I(�) = � Γ′(�) − Γ(�) is not differentiable at � = 1
in the limit N →∞, because Γ′′(�)→∞.
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Skewness and kurtosis at � = 1
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Giant component

General condition of existance (Molloy & Reed, 1995; Albert &
Barabási, 2002)

Q ∶= EP{k2} − 2EP{k} ≥ 0

Observe that Q = EP{(k − 1)2} − 1, which means

EP{(k − 1)2} ≥ 1

On the other hand

inf
a
EP{(k − a)2} = EP{(k − EP{k})2} =∶ �2(k)

Therefore, �2(k) ≥ 1 implies Q ≥ 0.
k − 1 ≥ ln k, and k − 1 approximates ln k near k = 1.
�2(k) = 1 gives �0 ≈ 3.466407…, and Γ′(�) = � ′(�)∕� (�) = 1 gives
�0 ≈ 1.6042….
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Network |V| LCC max k E{k} E{ln k} �(k) H �k �l � ⟨l⟩
Zebra 27 23 14 8.2222 1.8819 22.7 49% 1.691 0.446 0.76 1.79
Karate club 34 34 17 4.5882 1.2805 14.6 57% 2.161 1.184 1.45 2.44
Train bombing 64 64 29 7.5938 1.6586 38.0 64% 4.041 0.751 0.73 2.63
Protein 212 161 21 2.3019 0.4918 7.0 26% 2.091 1.329 1.82 5.11
Email 1,133 1,133 71 9.6222 1.7822 87.2 45% 6.771 1.733 0.65 3.65
Euroroad 1,174 1,039 10 2.4140 0.7753 1.4 20% 6.401 4.470 8.98 19.18
US power 4,941 4,941 19 2.6691 0.8021 3.2 58% 7.631 3.95 5.59 20.09
Routes 6,474 6,474 1,459 4.2926 0.7948 628.9 22% 2.111 1.107 1.08 3.67
arXiv-ph 18,771 17,903 504 21.102 2.2768 934.2 40% 2.861 1.960 0.95 4.17
Facebook 63,731 63,392 1,098 25.640 2.3096 1599.4 37% 2.941 2.145 0.86 4.31
Flickr 105,938 105,722 5,425 43.742 2.4556 13,359.7 38% 1.731 1.476 2.57 4.34
DBLP-authorship 317,080 317,080 343 6.6221 1.3889 100.2 21% 3.261 2.876 1.48 6.75
Amazon-purchase 334,863 334,863 549 5.5299 1.4467 33.2 19% 3.581 3.011 12.9 11.73
YouTube 3,223,589 3,216,075 91,751 5.8167 0.7474 16,435 17% 2.211 1.326 1.68 5.29
LiveJournal 5,204,176 5,189,808 15,016 18.721 1.8562 2557.9 37% 1.5365 2.38 1.06 5.44
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Conclusions

We show how the power-law graphs emerge as the solutions to
variational problem maximizing entropy with a constraint on E{ln k}.

The negative log-degree − ln k is related to average distance l(k), and
preferential attachment emerges as The dual problem of the solution
to variational problem on miniming average distnances with a
constraint on mutual information.
The exponent parameter can be estimated as inverse temperature
using variational principle.
Power-law graphs undergo a phase transition for finite value
� ∈ [1, �0]:

connected
⏟⏞⏞⏟⏞⏞⏟

�<1

disconnected, giant component
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

[1,�0]

no giant component
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

�0<�
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