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Relation between Kc[p, q] and DKL[p, q]

c ∶ X × Y → ℝ — a cost function (e.g. a metric).

q ∈ (X), p ∈ (Y), Γ[q, p] ⊂ (X × Y):

Γ[q, p] ∶= {w ∈ (X ⊗ Y) ∶ �Xw = q, �Yw = p}

Proposition
Kantorovich (aka Wassershtain) metric (Kantorovich, 1939, 1942;
Vasershtein, 1969; Dobrushin, 1970) between q, p:
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Optimal transportation problems (OTPs)

Kantorovich’s OTP
Optimal Transportation Problem (Kantorovich, 1939, 1942;
Vasershtein, 1969; Dobrushin, 1970)

Kc[p, q] ∶= inf
{

∫X×Y
c(x, y) dw ∶ �Xw = q, �Yw = p

}

where c ∶ X × Y → ℝ is a cost function (e.g. a metric).

Γ[q, p] ∶= {w ∈ (X ⊗ Y) ∶ �Xw = q, �Yw = p}

q
p

(X)↔ (X ⊗ Y)

�21 �22

�12

�11
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Optimal transportation problems (OTPs)

Optimal Transport Plan
Optimal Transportation Problem

Kc[p, q] ∶= inf
{

∫X×Y
c(x, y) dw ∶ �Xw = q, �Yw = p

}

Optimal Transport Plan

Linear operator (Markov morphism)
T ∶ (X)→ (Y):

q ↦ Tq = p = ∫X
p(y ∣ x) dq

p(y ∣ x) — Markov transition kernel
T is determined by w ∈ (X ⊗ Y):

w = p(y ∣ x)⊗ q

�21 �22
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Optimal transportation problems (OTPs)

Monge OTP
Optimal Transportation Problem (Monge, 1781)

Kc[p, q] ∶= inf
{

∫X
c(x, f (x)) dq ∶ f ∶ p = q◦f−1

}

where p = q◦f−1 is push-forward under measurable mapping f ∶ X → Y:

p(E) = q◦f−1(E) = q{x ∶ f (x) ∈ E}

Optimal Transport

p(E ∣ x) has the form:

�f (x)(E) =

{

1 if f (x) ∈ E
0 otherwise

wf ∈ )(X ⊗ Y):

wf (X,Y ⧵ f (X)) = 0

�21 �22

�12

�11
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Information and entropy
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Information and entropy

Shannon’s Information and Entropy
KL-divergence (Kullback & Leibler, 1951)

DKL[p, q] = ∫ [ln p − ln q] dp

Shannon’s information (Shannon, 1948)
For w ∈ Γ[q, p] ⊂ (X ⊗ Y):

Iw{x, y} ∶=DKL[w, q⊗ p]
=H[q] − H[q(x ∣ y)]
=H[p] − H[p(y ∣ x]

Entropy H[p] = − ∫ ln p dp

H[p] ∶= Iw{y, y} = sup
w∶�Y w=p

Iw{x, y}

�21 �22

�12

�11
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Information and entropy

Theorem (Shannon-Pythagorean)
w ∈ (X ⊗ Y), �Xw = q, �Yw = p

DKL[w, q⊗ q] = DKL[w, q⊗ p] + DKL[p, q]

(Belavkin, 2013a)

w
D[w,q⊗p]
��

q⊗ q
D[p,q]

//

D[w,q⊗q]
::

q⊗ p

Proof.

D[w, q⊗q] = D[w, q⊗ p]
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

Iw{x,y}

+D[q⊗ p, q⊗ q]
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

D[p,q]

− ⟨ln q⊗ p − ln q⊗ q, q⊗ p − w⟩
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

0

ln q⊗ p − ln q⊗ q = 1X ⊗ (ln p − ln q)

Cross-Information (Belavkin, 2013a)

DKL[w, q⊗ q] = −⟨ln q, p⟩
⏟⏞⏞⏟⏞⏞⏟

Cross-entropy

−
(

H[p] − DKL[w, q⊗ p]
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
H[p(y∣x)]
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− ⟨ln q⊗ p − ln q⊗ q, q⊗ p − w⟩
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

0

ln q⊗ p − ln q⊗ q = 1X ⊗ (ln p − ln q)

Cross-Information (Belavkin, 2013a)

DKL[w, q⊗ q] = −⟨ln q, p⟩
⏟⏞⏞⏟⏞⏞⏟

Cross-entropy

−
(

H[p] − DKL[w, q⊗ p]
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
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Optimal channel problem (OCP)

Shannon’s OCP
Optimal Channel Problem (Shannon, 1948)

Rc[q](�) ∶= inf
{

∫X×Y
c(x, y) dw ∶ �Xw = q, Iw{x, y} ≤ �

}

Exponential family solutions

Optimal T ∶ (X)→ (Y) is defined by

w = e−�c−lnZ q⊗p , �−1 = −dRc[q](�)∕d�

Observe that w ∉ )(X ⊗ Y), unless
q⊗ p ∈ )(X ⊗ Y) or � →∞.

�21 �22

�12

�11

Value of Information (Stratonovich, 1965)

V(�) ∶= Rc[q](0) − Rc[q](�) = sup{Ew{u} ∶ Iw{x, y} ≤ �}
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Optimal channel problem (OCP)

Relation to Kantorovich OTP
Optimal Channel Problem

Rc[q](�) ∶= inf
{

∫X×Y
c(x, y) dw ∶ �Xw = q, Iw{x, y} ≤ �

}

Optimal Transportation Problem

Kc[q, p](�) ∶= inf
{

∫X×Y
c(x, y) dw ∶ �Xw = q, �Yw = p,

Iw{x, y} ≤ �

}

q and p have entropies H[q] and H[p] and

0 ≤ Iw{x, y} ≤ min{H[q],H[p]}

Kc[q, p] has implicit constraint Iw{x, y} ≤ � = min{H[q],H[p]}] and

Rc[q](�) ≤ Kc[q, p](�)
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Optimal channel problem (OCP)

Inverse Optimal Values
Inverse of the OCP Value

R−1
c [q](�) ∶= inf

{

Iw{x, y} ∶ �Xw = q, ∫ c dw ≤ �
}

Inverse of the OTP Value

K−1
c [q, p](�) ∶= inf

{

Iw{x, y} ∶ �Xw = q, �Yw = p, ∫ c dw ≤ �
}

These inverse values represent the smallest amount of Shannon’s
information required to achieve expected cost ∫ c dw = �.
If � = Kc[q, p](�), then

R−1
c [q](�) ≤ K−1

c [q, p](�)
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Optimal channel problem (OCP)

Common Solution
Theorem
Let wOCP and wOTP ∈ (X × Y) be optimal solutions to OCP and OTP
problems with the same constraint I(x, y) ≤ �. Then Rc[q](�) = Kc[p, q](�)
if and only if wOCP = wOTP ∈ Γ[p, q].

Proof.
wOCP ∈ )D∗[−�c, q⊗ p] of subdifferential of D∗ at u = −� c:

D∗[u, q⊗ p] = ln∫X×Y
eu(x,y) dq(x) dp(y)

wOTP ∈ )D∗[−�c, q⊗ p] implies

(1 − t)wOCP + twOTP ∈ )D∗[−�c, q⊗ p] , t ∈ [0, 1]

and the KL-divergence D[w, q⊗ p], the dual of D∗[u, q⊗ p], not
strictly convex.
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Dual formulation of OTP

Optimal transportation problems (OTPs)

Information and entropy

Optimal channel problem (OCP)

Dual formulation of OTP

Geometry of information divergence and optimization
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Dual formulation of OTP

Dual formulation

Consider f ∶ X → ℝ and g ∶ Y → ℝ such that

f (x) − g(y) ≤ c(x, y)

Define

Jc[p, q] ∶= sup
{

Ep{f } − Eq{g} ∶ f (x) − g(y) ≤ c(x, y)
}

Clearly
Jc[p, q] ≤ Kc[p, q]

Can Jc[p, q] be related to DKL[p, q]?
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Dual formulation of OTP

KL-divergence

D[p, q] = D[p, r] + D[r, q] − ∫X
ln

dq(x)
dr(x)

[dp(x) − dr(x)]

= D[p, r] − D[q, r] − ∫X
ln

dq(x)
dr(x)

[dp(x) − dq(x)]

Let f (x) − g(y) ≤ c(x, y) satisfy also:

�f (x) = ∇D[p, r] = ln
dp(x)
dr(x)

, � ≥ 0

�g(x) = ∇D[q, r] = ln
dq(x)
dr(x)

, � ≥ 0

Thus dp(x) = e� f (x)−�[�f ] dr(x), dq(x) = e� g(x)−�[�g] dr(x) and

D[p, r] = � Ep{f } − �[� f ] , D[q, r] = � Eq{g} − �[� g]

Therefore

D[p, q] = �Ep{f }− �Eq{g}− (�[�f ] − �[�g]) − � ∫X
g(x) [dp(x) − dq(x)]
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Dual formulation of OTP

KL-divergence (cont.)
Therefore

D[p, q] = �Ep{f }− �Eq{g}− (�[�f ] − �[�g]) − � ∫X
g(x) [dp(x) − dq(x)]

Let us denote

Jc,"[p, q] ∶=
1
"
[

�Ep{f } − �Eq{g}
]

where " = inf{� ≥ 0 ∶ �f (x) − �g(y) ≤ � c(x, y)}.
We have the following inequality:

Jc,"[p, q] ≤ Jc[p, q] ≤ Kc[p, q]

and

D[p, q] ≤ "Kc[p, q] − (�[�f ] − �[�g]) − � ∫ g(x) [dp(x) − dq(x)]
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Dual formulation of OTP

Common solution for Dual OTP
Theorem
Let (f , g) be the solution to the dual OTP. If there exists a reference
measure r ∈ (X) such that f = ∇D[p, r] and g = ∇D[q, r], then

D[p, q] = Kc[p, q] − (�[f ] − �[g]) − ∫ g(x) [dp(x) − dq(x)]

Proof.
f = ∇D[p, r] and g = ∇D[q, r] imply that � = � = 1, and

p = exp(f − �[f ]) r , q = exp(g − �[g]) r

The result follows, because

Ep{f } − Eq{g} = Jc[p, q] = Kc[p, q]
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Geometry of information divergence and optimization

Optimal transportation problems (OTPs)

Information and entropy

Optimal channel problem (OCP)

Dual formulation of OTP

Geometry of information divergence and optimization
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Geometry of information divergence and optimization

Problems on Conditional Extremum

Ep{u} = ⟨u, p⟩ expected utility

�u(�) = −R−u[q](�) utility of
information �:

�u(�) ∶= sup{⟨u, p⟩ ∶ F[p, q] ≤ �}

�u(�) = �−1
u (�) information of

utility �:

�u(�) ∶= inf{F[p, q] ∶ ⟨u, p⟩ ≥ �}

p(�) optimal solutions:

p(�) ∈ )F∗[�u, q] , F[p(�), q] = �

!3

!1!2

q

Ep{f } ≥ �

Ep{ln(p∕q)} ≤ �
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Geometry of information divergence and optimization

General Solution
Lagrange function for �u(�) ∶= sup{⟨u, p⟩ ∶ F[p, q] ≤ �}
(�u(�) ∶= inf{F[p, q] ∶ ⟨u, p⟩ ≥ �}):

L(p, �−1) = ⟨u, p⟩ + �−1(� − F[p, q])
(

L(p, �) = F[p, q] + �(� − ⟨u, p⟩)
)

Necessary and sufficient conditions )L ∋ 0:

)pL(p, �−1) = {�u} − )pF[p, q] ∋ 0
)�−1L(p, �−1) ∋ � − F[p, q] = 0

Optimal solutions are subgradients of F∗[u, q] = sup{⟨u, p⟩ − F[p, q]}:

p(�) ∈ )F∗[�u] , F[p, q] = �
(

⟨u, p(�)⟩ = �
)
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Geometry of information divergence and optimization

Example: Exponential Solution

For F[p, q] = DKL[p, q]:

L(p, �−1) = ⟨u, p⟩ + �−1(� − ⟨ln(p∕q), p⟩ + ⟨1, p − q⟩)

Necessary and sufficient conditions ∇L(p, �−1) = 0:

∇pL(p, �−1) = u − �−1 ln(p∕q) = 0
)�−1L(p, �−1) = � − DKL[p, q] = 0

Optimal solutions are gradients of D∗
KL[u, q] = ln⟨e

u, q⟩:

p(�) = e� u−lnZ[�u] q , DKL[p(�), q] = �
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Geometry of information divergence and optimization

Solution to Shannon’s OCP

The solution for
Iw{x, y} = DKL[w, q⊗ p] ≤ �:

w(�) = e�u−lnZ[�u] q⊗ p

w ∉ )(X ⊗ Y).
T ∶ (X)→ (Y) cannot have kernel
�f (x)(⋅).
The dual is strictly convex:

D∗
KL[u, q⊗ p] = ln∫ eu q⊗ p

�21 �22

�12

�11

Roman Belavkin (Middlesex University) Kantorovich’s and Shannon’s optimization problems March 6, 2018 25 / 29



Geometry of information divergence and optimization

Solution to Shannon’s OCP

The solution for
Iw{x, y} = DKL[w, q⊗ p] ≤ �:

w(�) = e�u−lnZ[�u] q⊗ p

w ∉ )(X ⊗ Y).

T ∶ (X)→ (Y) cannot have kernel
�f (x)(⋅).
The dual is strictly convex:

D∗
KL[u, q⊗ p] = ln∫ eu q⊗ p

�21 �22

�12

�11

Roman Belavkin (Middlesex University) Kantorovich’s and Shannon’s optimization problems March 6, 2018 25 / 29



Geometry of information divergence and optimization

Solution to Shannon’s OCP

The solution for
Iw{x, y} = DKL[w, q⊗ p] ≤ �:

w(�) = e�u−lnZ[�u] q⊗ p

w ∉ )(X ⊗ Y).
T ∶ (X)→ (Y) cannot have kernel
�f (x)(⋅).

The dual is strictly convex:

D∗
KL[u, q⊗ p] = ln∫ eu q⊗ p

�21 �22

�12

�11

Roman Belavkin (Middlesex University) Kantorovich’s and Shannon’s optimization problems March 6, 2018 25 / 29



Geometry of information divergence and optimization

Solution to Shannon’s OCP

The solution for
Iw{x, y} = DKL[w, q⊗ p] ≤ �:

w(�) = e�u−lnZ[�u] q⊗ p

w ∉ )(X ⊗ Y).
T ∶ (X)→ (Y) cannot have kernel
�f (x)(⋅).
The dual is strictly convex:

D∗
KL[u, q⊗ p] = ln∫ eu q⊗ p

�21 �22

�12

�11

Roman Belavkin (Middlesex University) Kantorovich’s and Shannon’s optimization problems March 6, 2018 25 / 29



Geometry of information divergence and optimization

Solution to Kantorovich’s OTP
Γ[q, p] is convex:

�X[(1 − t)w1 + tw2] = (1 − t)q + tq = q

There exists closed convex functional F:

Γ[q, p] = {w ∶ F[w, q⊗ p] ≤ 1}

Then the solution to OTP is:

w(�) ∈ )F∗[−�c, q⊗ p]

�21 �22

�12

�11

Monge-Amper equation

q = p◦∇'|∇2'|

where ' ∶ X → ℝ ∪ {∞} is convex, and ∇' ∶ X → Y is such that
p = q◦(∇')−1 (McCann, 1995; Villani, 2009).
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Geometry of information divergence and optimization

Strict Inequalities
Theorem (Belavkin, 2013b)

Let {w(�)}u be a family of w(�) ∈ (X ⊗ Y)

maximizing Ew{u} on sets {w ∶ F[w] ≤ �} , ∀ � = F[w]

F ∶ (X ⊗ Y)→ ℝ ∪ {∞} closed convex and minimized at

q⊗ p ∈ )F∗(0) ⊂ Int((X ⊗ Y))

If F∗ is strictly convex, then

1 w(�) ∈ )(X ⊗ Y) iff � ≥ supF (i.e. � →∞).
2 For any � ∈ )(X ⊗ Y) with F[�] = F[w(�)] = �

E�{u} < Ew(�){u}

3 For any � ∈ )(X ⊗ Y) with E�{u} = Ew(�){u} = �

F[�] > F[w(�)]
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3 For any � ∈ )(X ⊗ Y) with E�{u} = Ew(�){u} = �

F[�] > F[w(�)]
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Geometry of information divergence and optimization

Strict Bounds for Monge OTP

Corollary
Let wf ∈ Γ[q, p] be a solution to Monge OTP Kc[p, q].

Let w(�) is a solution to Shannon’s OCP Rc[q](�).
If wf and w(�) have equal Iwf

{x, y} = Iw(�){x, y} = � < sup Iw{x, y},
then

Kc[p, q](�) > Rc[q](�) > 0

If wf and w(�) achieve equal values Kc[p, q] = Rc[q](�) = � > 0, then

K−1
c [p, q](�) > R−1

c [q](�)
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