

By: Kirill Demochkin DETECTOR

State of the art face detection HAAR CASCADE CLASSIFIC VS. MARCINI

Open CV (HAAR

F FHandlenginsered

- Work best for frontal face detection
- Unable to work with edge or contour features

100

bounding_boxes 200

Test results for OpenCV

haarcascade_frontalface_alt2

- Fails to find profiles
- Troubles with partially occluded faces
- Many False Positives

Resize

Image pyramid

Stage 1 P-Net

NMS & Bounding box regression

Stage 3 O-Net

MTCNN (Kaipeng Zhang et al.)

MULTI TASK CASCADING NEURAL

NETWORK Pros:

- Features are learned
- Very adaptive
- Does well with partial occlusion
- Does well with both
 profile and frontal face
 detection

Cons:

- Training Process is tedious
- More computationally expensive
- Need lots of data for effective training

FaceNet

https://github.com/davidsandberg/facenet

- Provides an implementation of MTCNN in python and TF
- Has an MTCNN model pretrained presumably on the • WIDER FACE dataset
- Internally uses MTCNN to align faces for face recognition

Putting it all together

Profile faces

Partial occlusions

Test results

Angles

What's next?

YOLO (https://pjreddie.com/darknet/yolo/

- Real time object detection
- Written in darknet
- Prioritizes speed over accuracy
- One shot learning

Thank you for your time!

BY: Kirill Demochkin

