

In Beijing, China - August 20th-24th 2018

Efficient Statistical Face Recognition Using Trigonometric Series and CNN Features

Andrey V. Savchenko

Dr. of Sci., PhD,

 Full Professor, Senior researcher in Laboratory of Algorithms and Technologies for Network Analysis, National Research University Higher School of Economics, Nizhny Novgorod, Russia

- Senior researcher in Samsung-PDMI Joint AI Center

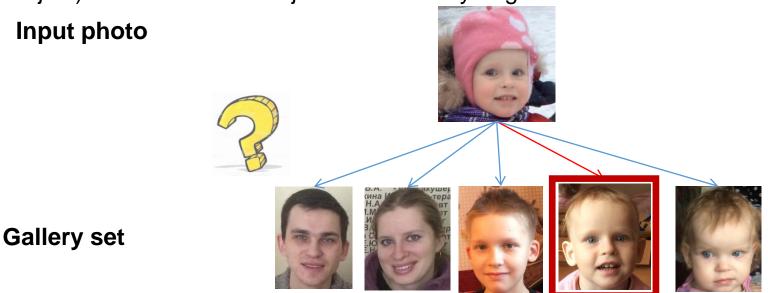
E-mail: avsavchenko@hse.ru

Face identification

What for?

Assign an observed facial image X to one of C>1 identities specified by N reference images $\{X_n\}$ from the gallery set.

Small-sample-size case: *number of reference photos per class is small* (5-20 photos per subject). The number of subjects can be very large



Key idea

Improve the **running time** of instance-based learning by using estimates of class densities with the trigonometric series expansion

And now we introduce the agenda of our talk

- Instance-based Learning in Face Recognition
- 2 Proposed Method
- 3 Experimental results
- Conclusion and future work

Facial features: Deep Embeddings

Deep Convolutional Neural Networks (CNN)



Agenda

Statistical approach: empirical Bayesian classifier

Intro

Nearest neighbor (NN) classifier

$$\max_{c \in \{1, \dots, C\}} p_c \hat{f}(\mathbf{x} | H_c)$$

State-of-the-art

Methods

Results

Conclusion

Advantages

State-of-the-art

Instance-based Learning

- 1. High accuracy for small sample size (SSS): N/C is small
- 2. Very high training speed

Disadvantages

- 1. Classification performance is low: O(DN)
- 2. Memory-based approach: space complexity is also linear

State-of-the-art

Methods

Results

Conclusion

Intro

State-of-the-art

The Rosenblatt-Parzen kernel with the Gaussian window is used

Agenda

$$\hat{f}(\mathbf{x}|H_c) = \frac{1}{N(c)} \sum_{n=1}^{N(c)} K(\mathbf{x}, \mathbf{x}_n(c))$$

$$K(\mathbf{x}, \mathbf{x}_n(c)) = \frac{1}{\left(2\pi\sigma^2\right)^{D/2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{d=1}^{D} (x_d - x_{n;d}(c))^2\right)$$

$$\lim_{X_M} K(\mathbf{x}, \mathbf{x}_{\ell_1}(1))$$

$$\lim_{X_M} K(\mathbf{x}, \mathbf{x}_{\ell_1}(1)$$

$$\lim_{X_$$

PNN has the same advantages and disadvantages as typical instance-based learning methods

Runtime complexity **exponentially** depends on dimensionality!

Agenda

 $\varphi_i^{(1)}(x_d) = \cos(\pi j x_d), \varphi_i^{(2)}(x_d) = \sin(\pi j x_d)$

Recognition procedure. Features are **normalized**: Fourier series

The Dirichlet kernel is used instead of the Parzen kernel

$$f_j(x_d \mid H_c) = \frac{1}{2N(c)} \sum_{n=1}^{N(c)} \frac{\sin(\pi(J+0.5)(x_d - x_{n;d}(c)))}{2\sin(\pi(x_d - x_{n;d}(c)))}$$

State-of-the-art

Orthogonal series (Fourier, Hermite or Legendre) instead of the Parzen kernel.

Methods

Results

Conclusion

Disadvantages

Research

Methods

Intro

Orthogonal series expansion of probability density

- The Dirichlet kernel is not always non-negative!
- 2. Computational complexity remains identical to k-NN/PNN

Research

Estimate the likelihood as the average of the first *J* partial sums

Results

Conclusion

$$f(x_d|H_c) = \frac{1}{J+1} \sum_{n=1}^{N(c)} f_J(x_d|H_c)$$

The right-hand side is the non-negative Fejér kernel

$$F_{J+1} = \frac{1}{J+1} \left(\frac{\sin((J+1)\pi(x_d - x_{r;d}(c))/2)}{\sin(\pi(x_d - x_{r;d}(c))/2)} \right)^2$$

2 Canonical form of density estimate (*) is replaced to the equivalent form

$$f(x_d|H_c) = \frac{1}{2N(c)} + \sum_{i=1}^{J} w_{j;d}^{(1)}(c) \varphi_j^{(1)}(x_d) + w_{j;d}^{(2)}(c) \varphi_j^{(1)}(x_d)$$

No requirement for an exhaustive search in the training set

Intro

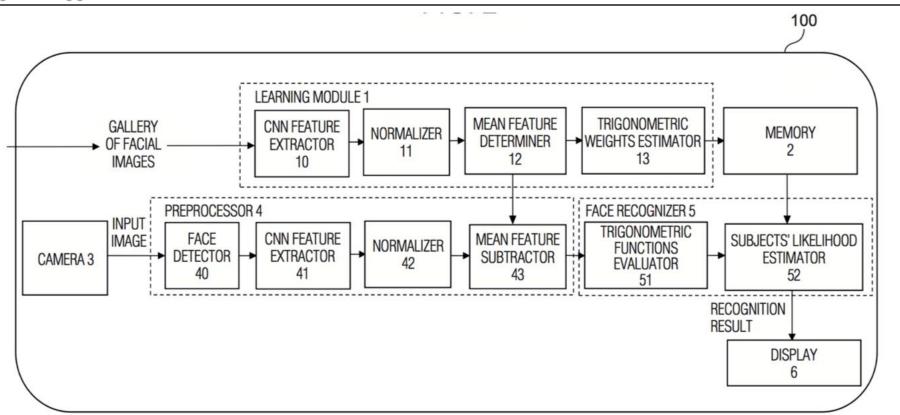
Agenda

State-of-the-art

Methods

Results

Proposed Approach (2)



Intro

Agenda

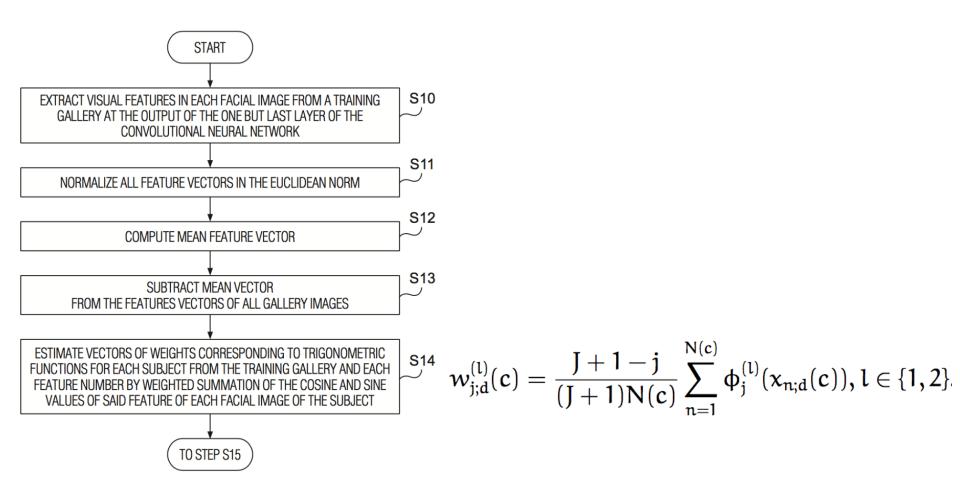
State-of-the-art

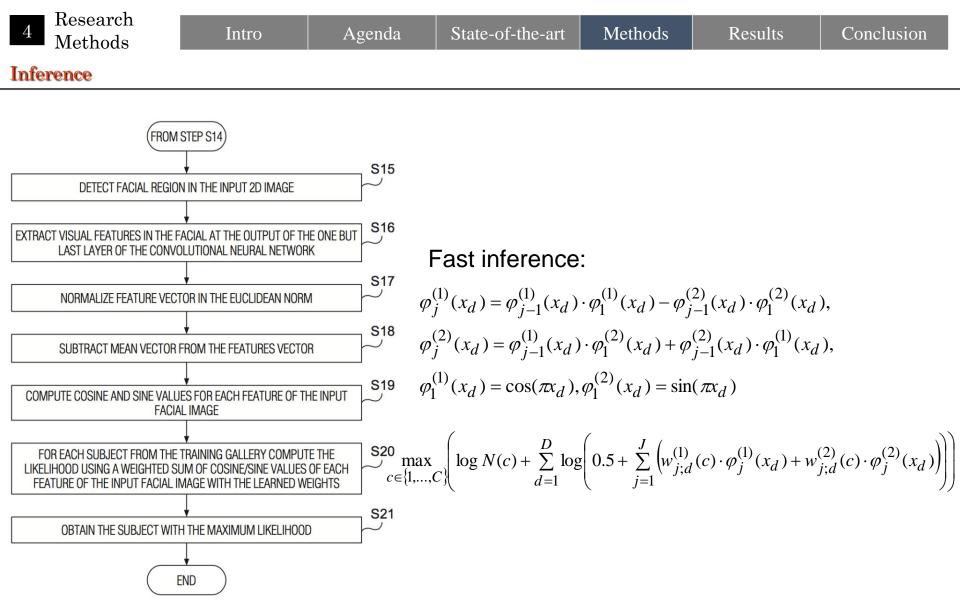
Methods

Results

Conclusion

Training





Advantages of the proposed classifier

- 1. Converges to the optimal Bayesian decision.
- 2. Can be implemented completely in parallel.
- 3. Excellent training speed. The new instance can be added in real time:

$$\frac{N(c)w_{j;d}^{(l)}(c) + \phi_j^{(l)}(x_{N(c)+1;d}(c))}{N(c)+1}$$

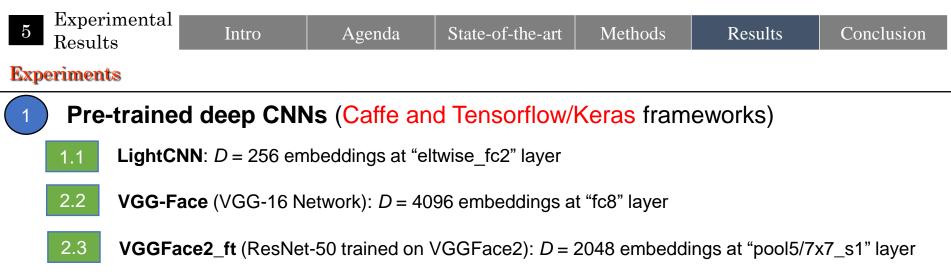
4. Orthogonal series estimate converge when $J=O(N^{1/3})$:

$$J = 2 \left| \sqrt[3]{N/C} \right|$$

Runtime complexity and memory space complexity: $O(DN^{1/3}C^{1/3})$

- Classification is approximately N^{2/3}—times faster than the instance-based learning
- More efficient than the instance-based learning, if the following condition holds:

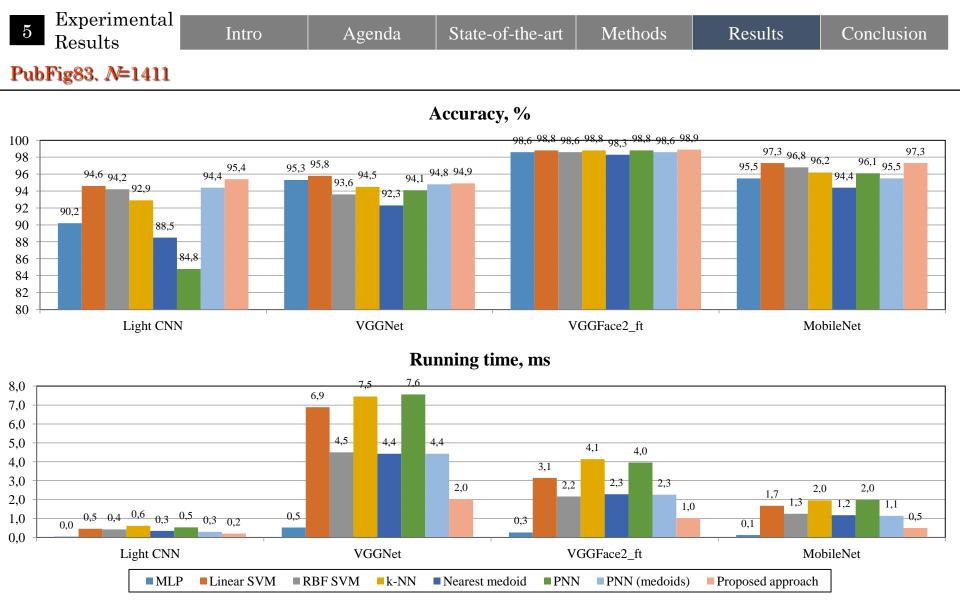
$$\frac{N/C}{4\left[\sqrt[3]{N/C}\right]+1} \ge 1 \qquad N \ge 5C$$

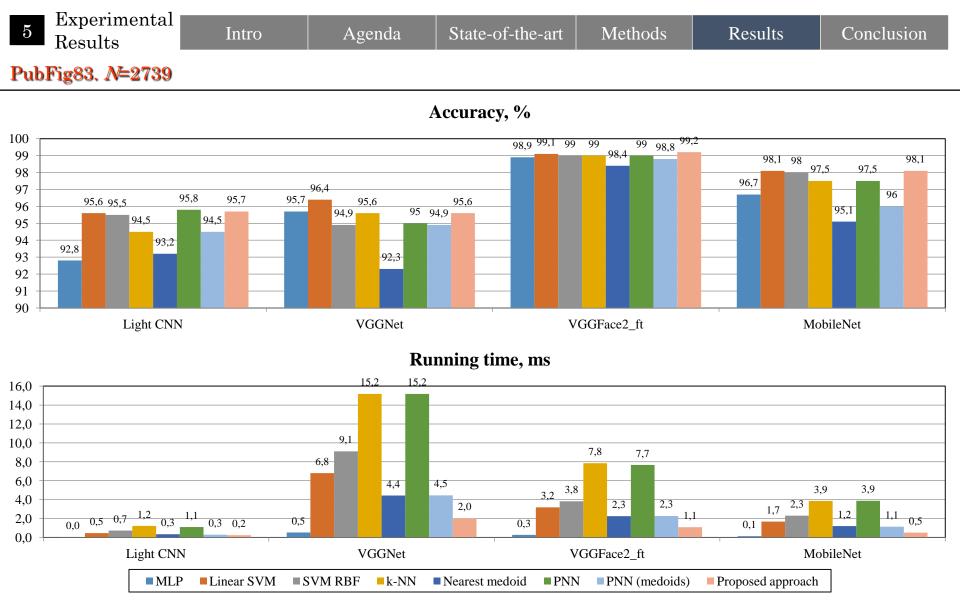


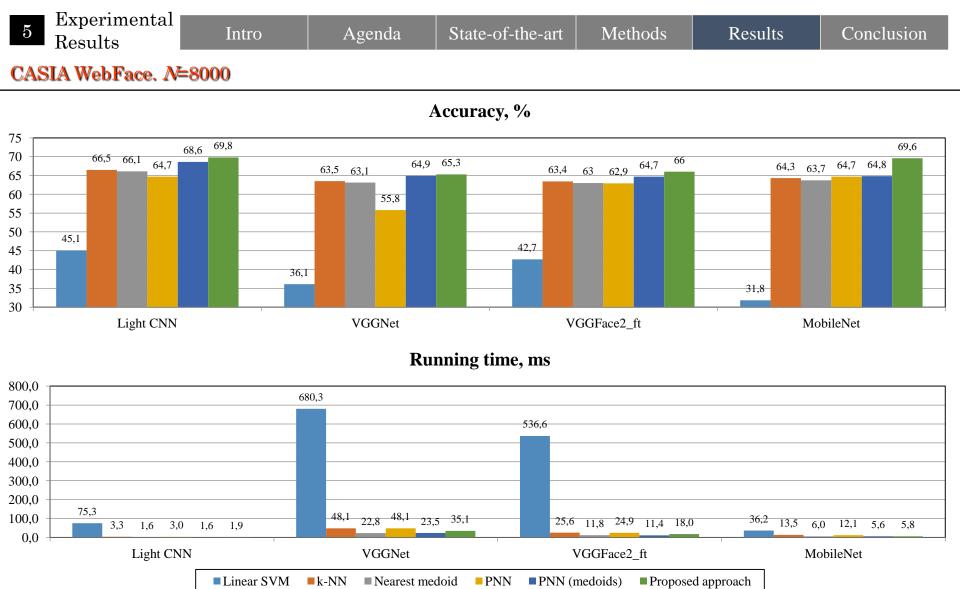
- 2 Datasets
 - PubFig83

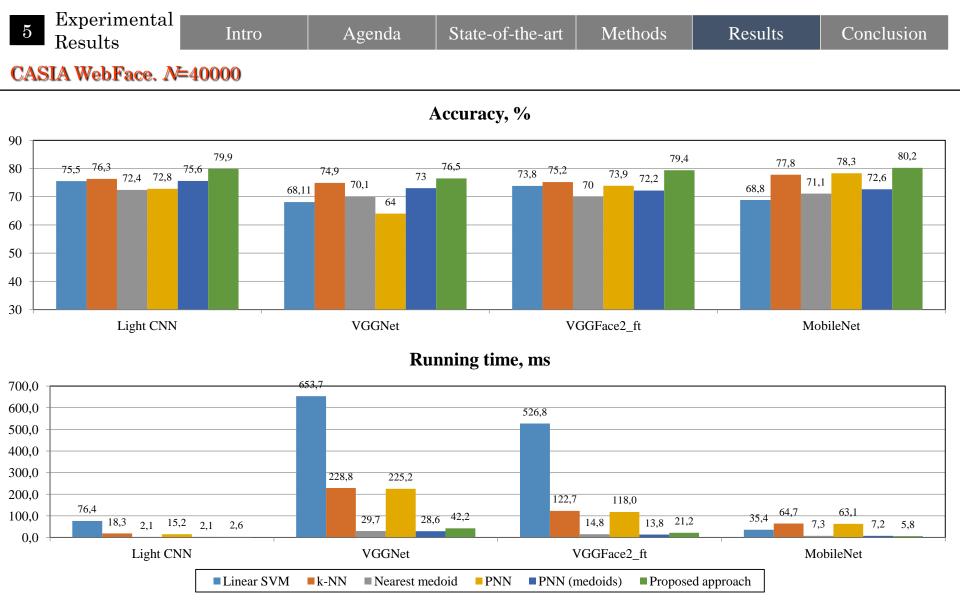
 Number of subjects C 83 Total number of photos 13811
 - 2.2 First 1000 persons from CASIA WebFace dataset
 Number of subjects C 1000 Total number of photos 79709

Hardware: MacBook 2015 laptop (8 core 2.2 GHz Intel Core i7, 16 Gb RAM)









And summarizing our results we have the following conclusions

Proposed approach has a list of advantages

- Saves all advantages of the PNN including convergence to the Bayesian decision
- 2 Significantly improves the classification performance of instance-based learning
- No need to optimize the smoothing parameter in the PNN
- 4 C++ implementation is freely available:
 - https://github.com/HSE-asavchenko/HSEFaceRec/tree/master/src/recognition_testing
 - •https://github.com/HSE-asavchenko/HSE FaceRec_tf

And disadvantages

- Naïve assumption about independence of features
- No distance calculation as in the Gaussian kernel in the PNN

What we are going to do in the future

- Application of our approach to other tasks, e.g. image categorization
- 2 Imbalanced face recognition
- Our prior probability estimation does not influence the decision too much. Platt scaling?
 - 1.2 Proper choice of the cut-off parameter?
- Uncorrelated features from the range [-1; 1] are required. How to normalize various features properly?
- Implement the Bayesian networks with our classifier in order to weaken the requirement of feature independence

Thank you for your attention

Any Questions?